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Noise in strong laser-atom interactions: Frequency fluctuations
and nonexponential correlations
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We extend our study of the effects of jump-type noise on laser-atom interactions to frequency-
telegraph noise. Such noise can be used as a model of collisional effects, in which the atomic transi-
tion frequency randomly jumps, or as a model of finite laser bandwidth effects, in which the laser
frequency exhibits random jumps. We show that these two types of frequency noise can be dis-

tinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal
and spectral motional narrowing, nonexponentia1 correlations, and non-Lorentzian spectra. Its exact
solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the
white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-
atom interactions.

I. INTRODUCTION

The radiative interactions of atoms and molecules are
affected by processes, such as collisions of various kinds,
which cannot be followed in microscopic detail. There is
a long tradition in which these processes are treated
theoretically by statistical methods. ' This subject has
been reopened in recent years because the strength of
laser-induced radiative interactions can invalidate earlier
results based on harmonic-oscillator (Lorentz model) pic-
tures of atomic electrons. '

A central assumption in most stochastic theories of col-
lisional line shape is that the subject atom or molecule ex-
periences a brief, perhaps even instantaneous, shift in its
internal eigenenergies and transition frequencies due to a
collision. It is also possible that the laser frequency un-
dergoes fluctuations at the same time. Such fluctuations
would contribute to a finite bandwidth of the laser light.
As theoretical treatments have become more detailed,
there has arisen experimental interest in testing these
theories by taking careful account of laser noise and by
deliberately injecting controlled laser frequency fluctua-
tions into multiphoton absorption experiments.

In this paper we present a theory of strong laser-atom
interactions, using a simple model of frequency fluctua-
tions that has some common features and some advan-
tages over previous models. Its features include analytic
simplicity and a flexible form for the basic free correla-
tion function, which may be nonexponential. Its principal
advantage, which follows directly from the model's sim-
plicity, is that the fundamental atomic or molecular
response functions can be evaluated exactly, in finite
terms. Even the most complicated dipole correlation
function or scattered light spectrum requires, at worst, the

inversion of a finite matrix. This is in strong contrast to
the situation encountered with the previously most-used
model, in which the instantaneous frequency is assumed
to be an Ornstein-Uhlenbeck (OU) Gaussian stochastic
process with an exponential autocorrelation. In the OU
model formal expressions can be obtained for response
functions, but only in terms of infinite hierarchies of one
kind or another.

It is important to mention a few technical features of
our model. It is based on the random telegraph. It is not
a Gaussian model but rather "pre-Gaussian" and has a
Gaussian limit. We have discussed other pre-Gaussian
models.

Our pre-Gaussian model shares with the OU model the
important non-Lorentzian property. As Georges and
Lambropoulos have emphasized, non-Lorentzian models
can be essential for accurate prediction of some phenome-
na. Also, it is well to keep in mind when comparing
various models that to date none has been shown to have
deep connections with the microscopic dynamics of fre-
quency fluctuations, and that is true of our model as well.

In Sec. II, after an elementary introduction to the ran-
dom telegraph model of laser frequency fluctuations, we
derive the laser power spectrum and its non-Lorentzian
band shape. For such a simple model the atomic response
to such fluctuations can be easily established. In Sec. III
we illustrate the atomic response of a two-level atom cou-
pled to an external laser field. We discuss the time evolu-
tion of the two-level population and the non-Lorentzian
band shape effects in far-wing ionization, for systems sub-
jected to laser frequency-telegraph noise. In Sec. IV we
consider a non-Lorentzian band shape in the case of the
fluorescence spectrum of a strongly driven two-level atom.
In Sec. V we discuss the fluorescence spectrum of a
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strongly driven atom with frequency-interrupting col-
lisional noise. Finally, some concluding remarks are given
in Sec. VI.

II. ELEMENTARY TREATMENT OF STOCHASTIC
FIELD

= 2 2
T

(2.1)

Bivalued instantaneous frequency-telegraph noise con-
sists of random jumps between two possible frequency
values (states) a and —a. We assume that these states are
distributed with probability: g (a ) = —,

' 5,+ —,
' 5~, . The,

instantaneous frequency at time t can be written in the
following form: p(t)=a( —1)"" ', where n(t, O) is the
number of times the telegraph changes its state between 0
and t. The random telegraph is a Markov process; i.e.,
n(t, O)=n(t, ti)+ n(t), 0) for t&t, &0, with a Poisson
distribution of n. The mean of n is proportional to the
time interval t through the mean dwell time T of the tele-
graph: (n(t, O) ),„=t/T. From these definitions'0 we cal-
culate in a straightforward way that (p(t) ) =0, and

(p(t+t)p(t) ) =ax(( —1)n(t+r0)( 1)n(t 0))

a&(( 1 }n(t+r, t) )

a (f(g)) — a f ds e I 1(f(s)) (2 4d)
Bt

where we have inserted the correlation (2.1) derived above.
The solution of this simple integro-differential equation
can be found very easily:

(f( ) ) ) + 1
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TA,
s

where
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The electric field E(t) thus has the following Fourier
spectrum

1
f(s)=i)s(s+s) (i( f ds)sis+s)f(s) . (24c)

0

Now we calculate the stochastic average (f(r)), decorre-
lating p(t+s) from the function f(s) in Eq. (2.4) due to
property (2.2). This procedure was used by us in a similar
problem in our preceding paper, " Sec. III. It is justified
in the Appendix of this paper [see the discussion of Eq.
(A13)]. Thus (f(~) ) satisfies the equation

This formula indicates that T/2 has the clear physical in-
terpretation as the coherence time of the frequency fluc-
tuations. From the Markov property we conclude that
p, (t), defined as a random telegraph, is not a Gaussian sto-
chastic process though it is entirely defined by its two-
point correlation function (2.1). For example, we have the
following recurrence relation:

S~(to) =2 Re f dre'"'(E(t)E'(t+r) )

Sm.a
I
ED

I

'

(co —toL, ) + —2a (to —toL, ) +a4 4 2 2 4
T2

(2.7)

E( t) =EDexp[ i toL t i/—L (t)],— (2.3a)

where the field's phase is described by a random frequency
telegraph:

t
Pt (t) = f ds p(s) . (2.3b)

That is, by comparison with the preceding paper, " here
the phase itself is not a telegraph but rather a smoothed
telegraph. The physical consequences are not trivial, as
we will show. First, the correlation of E(t) can be ob-
tained from the following trivial equations for f(7 )

=exp[i f ds p(s)]:

a f(~)=tp(t+r)f(~), (2.4a)
Bt

f(r)=1+i f dsp(t+s)f(s) .

By combining these we can obtain

(2.4b)

(p ( t i ) p ( tn ) ) (p ( t i )p ( t 2 ) ) (p ( t 3 ) p ( tn ) )

if ti &t2&t3» t„. (2.2)

This formula shows a decorrelation pattern that is clearly
different from the well-known Gaussian decorrelation of
moments higher than second.

Now we can calculate the field correlation of the elec-
tric field

It is clear from these formulas that depending on the
sign of 1/T awe can h—ave a singlet or a doublet for
the electric field power spectrum. With the increase of
the dwell time T, the central part of the power spectrum
centered around ~=coL splits into two components locat-
ed at frequencies to =(oL +[az —( I /T )]'r . In either case,
singlet as well as doublet, an important feature of the
frequency-telegraph jump model is a non-Lorentzian spec-
trum for the laser light. This remark is independent of
the structure near line center. In all cases the far wing of
the power spectrum given by Eq. (2.7) falls off as 1/co,
i.e., faster than Lorentzian.

Figure 1 shows examples of the field spectrum for the
parameter choice a =0.2. In these frames the solid curve
(F) is the field spectrum, and dotted curves (L') show
Lorentzian profiles (all curves are normalized to unit peak
value). For short switching times, such as T=1 [Fig.
1(c)], we observe a single peak, nearly Lorentzian. For
larger values of T the field spectrum becomes indistin-
guishable from a Lorentzian for frequencies

I

t'o —toL, I
&2/T, but for very large detunings the profile

goes as co . For longer dwell times T the spectrum splits
into two components; see Figs. 1(a) and 1(b). The fre-
quency peaks occur at to=toL+a and the wings fall as

Both the central portion and the far wings differ
from Lorentzian shape.
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2dp)
Q(t) = Epexp[ —iPL (t)]=Qpe (3.2)

CO

C)
U)0

FIG. 1. Plot of log~p5' (solid curve F}detuning D =co co~ of-
the spectrometer frequency co from the mean laser frequency mL

for the spectrum S+(D) of a laser field whose frequency under-
goes bivalued random telegraph fluctuations of amplitude
a =0.2 about the mean value coL, . (a) Mean interruption time
T=10, (b) T=10, (c) T=1. Dotted curve I. shows Lorentzian
profile, adjusted to agree with SF(D) at edge of figure. All
curves are normalized to unit peak value.

where dz~ is the two-level transition dipole matrix ele-
ment and PI (t) is determined by the random telegraph
p(t) as in (2.3b).

We calculate the inversion of a two-level atom
described by Eq. (3.1) in the limit of exact resonance.
This problem has been approached with a different noise
model in our paper immediately preceding this one. "We
can eliminate the dipole variables exactly, and from Eq.
(3.1) we obtain the following integro-differential equation
for N =O.

pp
—0.$].

w= — ds e
0

&& Re[Q*(t)Q(s)]w(s) —A (w+ 1) . (3.3)

The inversion and Rabi frequency decorrelate in this case,
due to relation (2.2). Thus the stochastic expectation
value of the inversion (w without circumflex) satisfies the
equation

t
w= —Qp I ds[(f(t —s))e '"~ "' 'w(s)] —A(w+1),

(3.4)

where (f(r)) denotes the correlation function (2.5) de-
rived above. It is easy to show that Eq. (3.4) is equivalent
to a third-order differential equation with constant coeffi-
cients:

m+ 22+ —w+ Qo+a +A —+2 .. p p 2 5A

T T 4

2QO AQO
+ + +A —+—+Ha m

T 2 T 4

III. ELEMENTARY TREATMENT OF ATOMIC
RESPONSE

As the first simple example of elementary applications
of the two-state random telegraph model of frequency
fluctuations, we consider the direct calculations of the
atomic population in the familiar two-level picture for the
atom. In the Heisenberg picture and in the rotating wave
approximation, the atomic equations of motion take the
following form

A —+—+Aa =0 . (3.5)
1

T 4

2 .. p ~ 2QOw'+ —w'+(Qp+a )w+ w=0 .
T T

(3.6)

We are mostly interested here in the effect of the frequen-
cy jump on the atomic response in the strong-field case
(Qp~ A). We also take I/T ))A. In that case Eq. (3.5)
reduces to

4

&iq ———(A/2+id, )&ig+ —Q(t)(&ip —&ii),
2

(3.1a)

&pi ———(A /2 —ib, )&pi ——Q*(t)(&gg —& ) i),2
(3.1b)

& i i
——A &qq+ —Q( t)&qi ——Q*(t)&iq, (3.1c)

o22= —Ao22 — Q(t)&21+ Q (t)CT12 ~

2 2
(3.1d)

where we denote laser-atom detuning and radiative decay
rate by 6 and A and the atomic operators are (in the
frame rotating with frequency coL, ) as usual &,i ——

~

i ) (j
~

.
In Eqs. (3.1) the instantaneous Rabi frequency is defined
to be

Note that this differs from the corresponding equation de-
rived in Sec. III of the preceding paper. We will discuss
elsewhere the relation of these equations to similar third-
order equations derived and studied by Burshtein.

Equation (3.5) can be solved exactly, of course, in terms
of the roots of a cubic polynomial. Just as in the preced-
ing paper, it is easier to consider the two interesting lirn. its
of very slow and very fast switching of the frequency tele-
graph. For T~ oo we obtain from Eq. (3.6) the following
solution:

a +Qpcos+Qp+a t
w(t)= z z w(0) .

a +00
(3.7)

Note that this is a familiar expression in a different con-
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IV. LIGHT SCCATTERING WITH FREQUENCY
FLUCTUATION

0 50 100
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V&(t, r) =&»(t+r)&»(t),

Vg(t, r) =&$2(t+r)&]2(t)exp[2iyL, (t+1.)],
V3(t r) —&/$(t+ r)&$2(t)exp[i/I {t+'r)]

V4(t, r) =&22(t, r)&~~(t)exp[iPL (t+r)] .

(4.3a)

(4.3b)

(4.3c)

(4.3d)

First we define an operator vector V(t, r) with the follow
ing four components:

V(t, r)= iM—L [p(t+r)] V(t,r), (4.4)

where M is given by the stochastic matrix

With the aid of Eqs. {3.1) and (3.2), a matrix equation for
V can be found. The average of its first component (in
the limit taboo) is just the desired C(r). The equation for
V(t, r) is

ML [p(t+r, )]=
0

0

iA
2

+ b, 2p, (t+—r)

Qp

2

Qp

2

—p(t+r)

Qp

2

&o

2

p(t+—r), iA—

(4.5)

V( m, 0)= hm (&2g(t), 0,&)2(t)exp[~PL, (t)],0) . (4.6)

Because &J(t)&Jt, ( t) =&;k(t), the required initial condition
takes the form

The Appendix is devoted to the full solution of dynami-
ca1 equations that can be cast in the form given by Eq.
(4.4). We shall not give here the explicit analytical solu-
tion which can be found in the Appendix, but instead we

0
(a

0

Ch -2

Ql

40

(c)

Flo. 3. plots of log,& vs detuning D for emission spectrutn
of two-level atom (solid curve A) and laser field (dotted curve
F) for laser frequency fluctuations, a =0.1. As in Fig. 2,
Qo ——1, and as in Figs. 1 and 2 frames show results with dif-
ferent mean i.nterruption times: (a) T=10, (b) T=10, (c)
T=1. Other parameters: radiative decay rate A =10, spec-
trometer width y& ——10

-6
-10

D
FIG. 4. Plots of log&pS as in Fig. 2, but with a frequency

jump a =2.0 and different mean interruption times: {a) T=10,
(b) T =1, (c) T=10 '. Other parameters are the same as in
Fig. 2.
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show curves of the light scattering spectrum calculated
numerically directly from Eq. (A7). Figure 3 shows the
scattered light spectrum of a two-level atom (solid curves)
and the spectrum of the driving field (dotted curves) for
excitation on resonance by a frequency noisy laser with
a =0.1 and three values of T. For T =1 the ac Stark
peaks have line shapes very close to Lorentzian profiles
except in the very far wing. For larger values of T the
non-Lorentzian profile of the scattered light spectrum
fluorescence is clear (see also Fig. 2). For T=10 and 10
we have A, &0 [see Eq. (2.6)] and the two components
exp(+i

~

A,
~

) of the laser power spectrum given by Eq.
(2.7) split the resonance lines of the fluorescence light.

In Fig. 4 we show curves of the same power spectrum,
but with a much larger jump parameter of the frequency,
a =2. These three curves clearly show that the Rabi
splitting is affected by a according to Eq. (3.8). For small
values of T the resonance peaks merge and the Stark split-
ting is given by Qo only. Note that for T=10 ' we ob-
serve the motional narrowing of the spectral profiles dis-
cussed for phase fluctuations in the preceding paper. For
T =10 the pattern is more complicated. The peak posi-
tions can be predicted by a lengthy analysis of the matrix
Ml to lie at positive and negative values given by a, 2a,
and Q+2a, in good agreement with the figure.

V. LIGHT SCATTERING WITH ENERGY-SHIFTING
COLLISIONS

IO

—6
0

(&)

O

—4

—6
0

0

FIG. 5. Plots of log~+ detuning D for emission spectrum of
a two-level atom for collisional frequency Auctuations, a =O. I.
As in Figs. 2 and 4, Qo ——1 and consecutive frames show results
with different mean interruption times: (a) T= l0, (b) T=10,
(cj T=1.

In this section we investigate the scattered light spec-
trum of a nondegenerate two-level atom resonantly driven

by strong monochromatic laser light in the presence of
energy-shifting collisions. The incoherences due to col-
lisions can be described by fluctuations of the atomic de-

tuning. ' The simplest model of such phase-interrupting
collisions assumes that the atomic detuning 6 in the
atomic equations (3.1) should be replaced by

6( t) =rn2, )(t) mt. ——m2(+ p—(t) mt. ——5+p(t—), (5.1)

the two parameters a and T ' can be interpreted, respec-
tively, as the strength and frequency of collisions.

The correlation function C(r), for the calculation of the
fluorescence spectrum [see Eq. (4.1)], can be calculated

from the same operator vector V(t, w) given in Eqs. (4.3).
In this case the field is assumed monochromatic so
PL(t)=const. For simplicity we take Pt. (t)=0 The.
equation for V(t, r) follows from Eqs. (3.1) and (5.1):

where p(t) is the instantaneous deviation of the atomic en-

ergy due to collision. This instantaneous frequency is a
random telegraph signal described by Eqs. (2.1)—(2.6), and

V( t, 'r ) = iMc [p ( t +—'r )]V( t, r),
d~

where the matrix Mc is given by

(5.2)

iA
2

b. p(t+ ~)——

iA +b, +p(t+r)
Qp

2

Qp

2

Qp

2
Mc[@(t+r) ]= Ap

2

p

2

Qp

2

Qp

2

iA
(5 3)

The required initial condition is

V(00,0)= hm [o22(t),0,o)2(t),0] (5.4)

Note that the collisianal interaction matrix Mc is dif-
ferent from the laser fluctuation interaction matrix given

by Eq. (4.5).
The frequency fluctuations p(t) enter the interaction

matrix Mc[p(t)] differently depending on whether their
source is an atomic energy fluctuation or laser frequency
fluctuation. It is interesting to note that these differences
show up first in the equations of motion involving atomic
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—6
0

-6
0

1 I

—2 0 2
D

FICx. 6. Plots of log~pS as in Fig. (5) but with a different col-
lisional frequency jump a =2.0 and different mean interruption
times: (a) T=10, (b) T=1, (c) T=10 '. Other parameters the
same as in Fig. 5.

correlations. Single expectation values involving just di-
pole moments and atomic inversions do not show these
differences. The solution for the light scattering spectrum
is given in the Appendix.

Figure 5 shows the light scattering spectrum of a two-
level atom for excitation on resonance with energy-
shifting collisions with a =0.1 and three values of T.
The most important feature of these curves compared to
laser frequency fluctuations is the disappearance of the
additional splitting of the central and wing components.
This can be seen from the following argument. For laser
frequency fluctuations the Rabi amplitude in the proper
limit has the forin of exp(+i

~

A,
~

) leading to a splitting of
the spectral components. For collisional noise the Rabi
frequency is independent of p(t) and only the atomic ener-

gy fluctuates. Figure 6 shows the same resonance fiuores-
cence power spectrum but with a much larger jump pa-
rameter of the collisional noise a =2. We note that the
peak splittings are just as should be expected from the two
different effective Rabi frequencies already obtained in
Eqs. (3.8) and (3.9) for short and long telegraph switching
times.

that the telegraph model of laser frequency fluctuations
leads to exactly soluble atomic equations of motion, i.e.,
the response functions of an atomic system exposed to
such noise can be determined explicitly in finite terms.
We have discussed the population dynamics as well as the
light scattering spectrum and we have studied the effect
of the non-Lorentzian bandshapes on far-wing absorption
rates.

We have shown that a frequency telegraph can also be
used to introduce collisional noise into the laser-atom in-
teraction, and we have studied the atomic response to
strong laser excitation under such conditions. Since only
the difference of the laser and atomic frequencies (the de-
tuning) enters in the rotating-wave-approximation atomic
equations, it might be thought redundant to study col-
lisional noise separately from laser noise. However, a
comparison of the light scattering spectrum of the atom
calculated in the two cases (laser frequency noise, col-
lisional frequency noise) shows that the origin of the fre-
quency noise makes a difference. This is perhaps surpris-
ing, but it has also been observed with other noise models
and will be discussed elsewhere. '

These remarks point, of course, to the most obvious
characteristic of our results. This is that the response of
the atom to strong laser excitation not only exhibits in-
teresting characteristics in the presence of noise, but that
these characteristics can differ significantly depending on
the model of the noise and even within a given noise
model. The sharp spikes shown in our light scattering
spectra in Figs. 3(a) and 4(a), as contrasted with those in
Figs. 3(c) and 4(c), are clear evidence for this. The differ-
ences with spectra following from other noise models is
just as great or greater. One conclusion is that, as experi-
mental tests of various kinds become available, it will be
valuable to have a variety of flexible theoretical models on
hand.
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APPENDIX

VI. SUMMARY

In this paper we have discussed characteristics of strong
atom-field interactions in the presence of pre-Gaussian
frequency-telegraph noise. We have shown that when
such a model is used for laser frequency fluctuations it
leads to a nonexponential autocorrelation of the laser elec-
tric field and a non-Lorentzian laser power spectrum, one
that falls off more rapidly in the wings. We have shown

In our earlier publications and in the preceding paper"
we have given a more detailed description of telegraph
signals as examples of a special class of Markov chains.
We recall now the most important properties of such sto-
chastic processes. It is well known that the dynamics of a
Markov chain is completely described by the following
Chapman-Kolmogorov-Smoluchowski (CKS) equation for
the joint probability distribution p(at

~
uoto) for the

chain's possible states a and ao..



30 NOISE IN STRONG LASER-ATOM INTERACTIONS: 2397

—p(a, t
I ap, tp)= c—(a, t)p(a, t

I ap tp)

+ pc(a, t)f(a
I p;t)p(p, t

I ap rp),

c(a, t) =—and f(a
I
P;t) =51

T
(A2)

(Al)

where c(a, t) is the frequency that the telegraph in the
state at time t will change its state in the interval t, t+dt
and the function f(a

I
P;t) can be interpreted as the condi-

tional probability of making a change from P during the
interval t, t+dt, giuen the transition ends in a.

In this paper we specialize Eq. (Al) to a two-state (a
and —a) telegraph noise described in Sec. II. For the
two-state telegraph noise we have

& v(t))
dt

—ils
2i' —Mg ——
T.

& v(r))
Vg (t) (A9}

where

Equation (A7) is a special case of a master equation asso-
ciated with the general CKS relation. Such master equa-
tions have been introduced into quantum optics first by
Burshtein. This master equation gives a full description
of the stochastic expectation value of V and as such will
play a fundamental role in all our applications. Due to
the obvious symmetric (AS) and antisymmetric superposi-
tions of the marginal averages forming the solutions of
Eq. (A7) we can write the following closed system of
equations involving only stochastic expectation values of
V

and accordingly the CKS equation (Al) takes the form

a
p(a, t

I ap, tp)

1 1
p(a, t

I

a—p, tp)+ —p( a, t
I ap, i—p) (A3)

and

V~(t) = , [V.—(r) V—.(t)]
M, „=—,

' [M(a)+M( —a )] .

(A10)

(Al 1)

with the initial condition p(a, tp
I ap, tp}=5,. This

equation can be solved easily, leading for t ) tp to

p(a, t
I
a„t,) = —,'5,(1+e '

)

For time-independent M matrices, a closed formula for
the stochastic expectation value of the V operator can be
obtained from Eq. (A9). From this equation we obtain
the following exact integro-differential equation for V(t)
[if Vg(0)=0]:

(A4)

With the help of this solution we calculate the correlation
function (2.1) [with g(ap) defined in Sec. II]:

& V(t)}= iMs& V—(t))

&p(t+r)p(t) &
= g aaop(a, t+~

I aoito)g(ao)
a,ao

2 —2(~(/T (A5)
which has the Laplace-transform solution

(A12)

&v(0)}.
1

2
Mg

z+iMg+—
as predicted from the simple arguments used in Sec. II.

In the case of laser-atom interactions, the dynamical
equations of motion, which have their origin in the basic
equation (3.1), can be written in the following general
orm:

(A13)

= —iM [x(t) ]V(t) (A6}

with a given matrix M which depends locally on the
external arbitrary noise x (t). For Markov chains we can
write the following exact equation for the marginal aver-
age V (t) of the quantity V(t) with a random telegraph
noise x (t) described by Eq. (A3):

d .- 1 1
V (r)= —iM(a) ——V (t)+ V(t) . (A7)—

i S(co)=2Re& V, (z =ico+ys) } (A14)

This result can be generalized: The solution of any
dynamical equation of motion that can be written in the
form (A6) can be averaged over the telegraph noise x (t)
exactly. Application' of Eq. (A13) with the definitions
(4.3)—(4.6) or (5.1)—(5.4) leads to the stationary power
spectrum of light scattering due to laser or collisional
fluctuations, respectively. For A =0 and 6=0 the
dynamical equations of motion for the atomic correla-
tions, Eqs. (4A) and (5.2), have a steady-state initial condi-
tion Vz(00)=0. Following Eq. (4.1) the light scattering
spectrum is

The stochastic expectation value of V is given by

& V(r) ) = g g(a) V (t)= —,
' [V, (t)+ V,(t)] . (A8)

where & Vi(z)} is the Laplace transform of the atomic
correlation function. For the case of A =0 and no detun-
ing we calculate from Eq. (A13) that these correlations
have the following forms.
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Laser frequency fluctuations,
2

(z+4b )(z+b —c ) + d
Qo

2
2 Qod z Qo

z(z+4b)(z+b —c)+ + (z+4b)
2 2

(A15)

tions:

a z+—2 2
T

00+2
b=

2z+—
T

2

Z+ — +Qp
2 2

Coilisional fluctuations,

Qo
(z+b)+

Vi(z) =-
& (z+b —c)[z(z+b+c)+Qo]

(A16)

2
2 z+—

T

2

z+ — +Q2 2
0

2Q

2+— +02 2
0

(A17)

In Eqs. (A15) and (A16) we have used the following nota-
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