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Noise in strong laser-atotn interactions: Phase telegraph noise
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We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph)

random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of
various kinds, or from other exterrial forces. Our discussion is carried out in two stages. First,
direct and partially heuristic calculations determine the laser spectrum and also give a third-order

differential equation for the average inversion of a two-level atom on resonance. At this stage a

number of general features of the interaction are able to be studied easily. The optica1 analog of
motional narrowing, for example, is clearly predicted. Second, we show that the theory of general-

ized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of
a/1 kinds (not only phase noise) to be treated systematically, by means of a master equation first used

in the context of quantum optics by Burshtein. %'e use the Burshtein equation to obtain an exact ex-

pression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting

laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other

noi. e models. Detailed treatments of the effects of other than phase noise are given in other papers.

I. INTRODUCTION

Observations of light absorption and scattering by
atoms and molecules provide information about radiative
dynamical processes as well as about atomic and molecu-
lar structure. For example, under ideal conditions intense
monochromatic light tuned near a resonance line of an
isolated atom can. excite fluorescence radiation that re-

veals nonlinear properties of the light-matter interaction,
most notably ac Stark splitting of the fluorescence spec-
tral line. '

However, ideal atoms exist and interact with mono-
chromatic light only in theoretical models. Real atoms
experience a fluctuating environment of many perturbing
interactions, and real lasers can exhibit a variety of fluc-
tuations in phase, frequency, and amplitude. Incorpora-
tion of such stochastic phenomena into the relevant atom-
ic Liouvi. lie or Schrodinger equation, by way of empirical
constants (relaxation times and bandwidths), is a common
step toward realistic theoretical modeling. It should,
however, be possible to do better than this, even without
attempting a fully microscopic treatment. One way of do-
ing better is to incorporate stochastic processes, instead of
empirical constants, into the fundamental equations to
represent perturbing interactions. There is a long history
of such use of stochastic processes in physics.

We have developed a series of models of noisy laser-
atom interactions, all based on so-called jump processes,
the simplest example of which is the two-state random
telegraph. These models allow convenient and very flexi-
ble manipulation of interaction parameters, while permit-

ting nonperturbative examination of the (possibly very

strongly nonlinear) noisy laser-atom interaction. In this

paper we describe the characteristics of such models and
use one of them to calculate features of the atomic
response. For simplicity in writing, we will speak of the
stochastic influences that we intend to consider by the
term "laser noise, " although they might equally well ori-
ginate, for example, in collisions of various kinds or from
other external sources (density fluctuations, etc.).

Almost all previous analyses of noisy laser-atom in-
teractions have been based on assumptions of Gaussian
noise with extremely short coherence times (leading to cu-
mulant approximations). The random telegraph models '

that we will explore are subject to neither of these restric-
tions. We will also show that almost any kind of tele-

graph noise, whether associated with phase, frequency, or
amplitude fluctuations, leads to equations for average
values that have finite algebraic solutions. This is another
significant advantage for telegraph-noise models, in the
context of laser-atom interactions.

%'e concentrate our attention in this paper on phase
telegraph noise. The technique that we use will be applied
subsequently to frequency and amplitude telegraph noise.
%'e note that phase and frequency telegraphs are physical-
ly distinct, although obviously closely related. Previous
treatments of so-called "phase diffusion" in laser-atom in-
teractions are probably more accurately associated with
random frequencies and so do not provide close analogs to
the results obtained here. In Sec. II we derive the two-

point correlation and spectrum of a laser field with
random-phase telegraph noise, and we find the average

30 2381



2382 J. H. EBERLY, K. %ODKIEWICZ, AND B. W. SHORE 30

&12 [ A+i~] &12+
' t«—t)«22 &11)

&pi ———[ —,
'

A id, ]&—2i ——,iQ*(t)(&2p —&ii),

&ii ——A&2q+ , iQ(t—)&2i——,
' iQ*(t)&i2,

022= —A022 —
2 EQ(t)02i+ 2 l Q (t)a i2 ~

(2.1a)

(2.1b)

(2.1c)

(2.1d)

where o;~=
~

i )(j ~. We denote laser-atom detuning and
the radiative decay rate by 5 and A, as usual. The field is
represented classically, with a fixed amplitude and a
time-dependent phase: E(t) =el'Oexp[ icoL t i/—(t)]-
The instantaneous Rabi frequency is defined to be

Q( t) =(2dz& e/it) 8'Oexp[ i/(t)), — (2.2)

where dq~ is the two-level transition dipole matrix ele-

equation of motion satisfied by the inversion of a two-
level atom exposed to such a field of resonance in Sec. III.

Section IV is devoted to a brief review of generalized
L U15bUIl PI UC,C5bC5& Ul WlllUll H U I Id LION JILL lCIQQI cLPIL I5 d,

simple example. The Chapman-Kolmogorov-
Smoluchowski equation for two-time joint probabilities is
used to derive our working master equation. This master
equation is solved in Sec. V for the resonance spectrum of
the two-level atom discussed in the previous sections. A
summary of our results is given in Sec. VI. An Appendix
is devoted to a detailed solution of a simple telegraph-
noise problem as an example of an application of our mas-
ter equation.

II. ELEMENTARY CONSIDERATIONS

Because we have in mind strong laser probes of atomic
systems, that is, near-resonance excitation, only one tran-
sition in the atom will be greatly affected by the laser
light, so we adopt the familiar two-level picture for the
atom, and we use the rotating wave approximation
(RWA). The atomic equations of motion are, in the
Heisenberg picture,

c(t,7-)—= (&2i(t+1.)&i2(t) ) . (2.3)

Notice that the equal-time value (&=0) of this two-point
function gives the upper-state population (and thus the in-
version) immediately.

In Sec. IV we describe a generalized master equation
appropriate to jump processes and apply it to the present
problem. However, we can illustrate first the simplicity
of random telegraph models by calculating directly the
laser's electric field autocorrelation function and spec-
trum. In order to evaluate

(2.4)

we simply observe that P(tz) =P(t&)+[1—( —1)"]a,where
a is the amount of the jurnp assigned to the random-phase
telegraph, and where the + indicates that the first phase
value subsequent to P(ti ) depends on whether P(ti ) is it-
self associated with +a or —a. The integer n is the
number of times the telegraph changes its state between t&

and t2. The random telegraph is a Poisson process; the
probability that its state changes n times in an interval of
length At is given by

p„=e "(n )"/n!, (2.5)

where the mean number n is related to ht through the
dwell time T (i.e., the mean time between interruptions)
for the telegraph:

n =Et/T . (2.6)

The evaluation of the correlation function is a straight-
forward sum over n, the number of jumps, from 0 to ao.
We must also average over the two initial possibilities for
P(ti ). The result is

ment. It is the phase P(t) that we will represent as a ran-
dom telegraph in this paper. .

The fundamental quantity in laser-atom interactions is
llLG LlLP&LC cl LL l&VHI I CLCLll&LL o ILL LlLLILCiLL5LCPLLLCb5 I&I ILL Il l5

given by

(e ' ' )=—'ggp„(e+-'(' ' " )')=cos a+sin ae (2.7)

It is clear that the laser field is statistically stationary (i.e.,
it is time translation invariant, depending only on ti —t2)
and it has a pure coherent part and a noise part, which
will contribute a delta function and a broadened Lorentzi-
an, respectively, to its Fourier spectrum [i.e., the absolute
square of the Fourier transform of the correlation (2.7)]:

~i„„(co)=2m
~

8'0
~

cos a 5(co —coL )

+sin a
2/T . (2.8)

(co —toL, ) +(2/T)
Note that if a =sr/2 the coherent part of (2.7) disappears.
This is just the case that the phase telegraph reduces to
the more familiar zero-mean amplitude telegraph, since in
this case a switch of the telegraph's state is a phase
change of ir, equivalent to an amplitude sign change. It is
well known (see S. O. Rice, Ref 4) that th. e amplitude

t
w = —A (1+8)—J dt'exp[ —(A/2)(t —t')]

0
&&Re[Q*(t)Q(t')]w(t') . (3.1)

Here the Rabi frequency carries the phase random tele-
graph:

Q(t) =Q,e-'~'" . (3.2)

telegraph has a pure exponential correlation and Lorentzi-
an spectrum.

III. ELEMENTARY APPROACH TO ATOMIC
RESPONSE

As a second example of the application of the two-state
phase random telegraph to laser-atom problems, we con-
sider the direct calculation of the expected inversion of a
two-level atom described by Eq. (2.1), in the limit of exact
resonance. The dipole variables can be eliminated exactly
and we find an integro-differential equation for
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We assume that the inversion and Rabi frequency decorre-
late in this case, since t & t' and since the laser field is an
external field and independent of the inversion. Under

this assumption, to be justified later in the Appendix, the
expected value of the inversion (w without circumflex)
satisfies the equation

tv= —&(I+tv) —Qo J dt'exp[ —(A/2)(t —t')](cos a+e 2~' ' ~~ sin a)tv(r'),

where we have inserted the correlation (2.7) derived above. It is easy to show that (3.3) is equivalent to a third-order dif-

ferential equation with constant coefficients:

w+ 22+ —w'+ Qo+ 4 A +3—w+ —Qo+ —QTcos a+ + m+ + =0
T T 2 T 4 T 4 T

(3.4)

with initial conditions tv(0), tv(0)= —A [1+tv(0)] and

tv(0) =A + (A —Qo) w (0). We are mostly interested
here in the effect of the phase jump on the strong-field
( QQ »A ) atomic response. We also take 1 / T» A. In
that case (3.4) reduces to

-+ ' -+O'N+ 'Q' os' -0
T T

(3.5)

This equation reduces in turn to a slightly simpler one if a
further average over the size of the phase jump a is made.
We will discuss elsewhere the relation of this equation to
similar third-order equations derived by Burshtein.

Equation (3.5) can be solved exactly, of course, in terms
of the roots of a cubic polynomial. It is easier to consider
the two limits of very slow and very rapid switching of
the phase telegraph. In the first case T is very large and
the second and fourth terins in (3.5) can be ignored, leav-

ing only the ordinary Rabi oscillation equation9 for the in-
version. That is, w-Reexp( iQot)tv, —where tv is nearly
constant. If the ignored terms are then reconsidered in or-
der to determine the slow time dependence of P, it is easi-

ly found that they contribute frictional damping of the
Rabi oscillations at a rate proportional to the telegraph
switching rate 1/T. That is, in this limit the oscillation
frequency and damping rate are

I

represented by Eqs. (3.6) and (3.7), for 1/T«QO and
1/T»QO, it turns out that y«QO. Strong damping,
which is not characterized by a single damping rate,
occurs only for 1/T-QO.

In Fig. 1 we show an example of phase random tele-

graph influence on atomic-level populations, taking
a =0.4~ and three different phase switching rates. The
regimes of weak damping (QOT=10), strong damping
(QOT= 1), and motional narrowing (QOT=O. 1) are clearly
evident. Of course, the fact that both level populations
decay to —,

' (i.e., the inversion w decays to zero, not to
—1) is an indication that the phase-jump relaxation is

purely "transverse, " or of the T2 type, and that the inho-
mogeneous terms in (3.4) have been dropped. The calcula-

Pm

0

Q=Q0, y= —sin a .1

T
(3.6)

Q T=1.0

On the other hand, if T is very short, then the first and
third terms in (3.5) can be ignored. Again, the frequency
and damping rate are easily found:

QoT
Q=Qocosa, y= sin a .

4
(3.7)

Note that now Q is the average Rabi frequency, taking
both telegraph states Qoe" and Qoe " into account.
Also, damping now occurs at a rate proportional to T, i.e.,
inversely proportional to the switching rate 1/T.

Both of these conclusions, regarding the oscillation fre-
quency and the damping rate, are indications that when T
is quite short compared to a Rabi cycle the response of
the atom enters the motional narrowing regime, well
known in the theory of magnetic resonance. That is, the
interruptions due to the switching of the phase random
telegraph become so frequent that the atom can only no-
tice the average value of the external signal (Rabi frequen-
cy). We also note that very fast and very slow switching
both lead to very weak damping. In both regimes

0'

Pm

0—
0 20

FIG. 1. Populations P =(cr ) vs time {in units of inverse

Rabi frequency Q0) for two-state atom resonantly excited by
random telegraph phase noise, with phase jumps of a =0.4n.
Successive frames show different choices for the mean interrup-
tion time T.
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tions required for the figure were made according to the
general methods to be described next, rather than directly
from Eq. (3.5).

subject to the initial condition

p(a, to I ap, tp}=5 (4.5)

IV. RANDOM TELEGRAPH JUMP PROCESSES
AND MASTER EQUATIONS

Our telegraph model of a random process x (t) [in Secs.
II and III, x (t)=P(t), laser phase] rests on the following
assumptions.

(a) The quantity x(t) remains constant except during
infinitesimally brief jumps, when it changes to a new con-
stant value.

(b) The process x (t) is stationary in time and the jumps
occur at random.

(c) The jump process is Markovian: the value of x(t}
immediately after a jump depends, at most, only upon the
value immediately preceding the jump, not upon any prior
history.

In short, our telegraph constitutes a stationary Markov
chain.

It is well known"' that the dynamics of such Markov
chains is completely described by two basic functions
c(a;t) and f (a

I
P;t) governing all possible transitions

among the different states a of the telegraph. The func-
tion c (a;t) is the frequency that the telegraph in the state
n at time t will change its state in the interval t, t+dt.
The function f(a

I
P;t) is the conditional probability that

in the interval t, t+dt this change takes the telegraph
from state» given that the transition ends in the state a.
From the definition of the conditional probability

f(a
I
P;t) it is clear that for every fixed state a and time t

we have

g f(a IP;t)=1. (4.1)

We adopt a common simplification and specialize to
the case of so-called (Ref. 12, p. 428) generalized Poisson
processes. These are special Markov chains for which all
c (a;t) are equal to the same constant value, and the func-
tions f(a

I
P;t) are time independent

c(a;t) =—,1
(4.2)T'

f (a
I
P;t) =f(a

I P) . (4.3)

These definitions imply that the number of transitions
within a finite interval ht has a Poisson-like distribution
[see (2.5)] with a mean value equal to htlT. The proba-
bility of remaining in a given telegraph state decreases
with time as exp( —

I
t

I
IT).

It is well known that the joint probability distribution
function p (a, t

I
aptp) of a Markov chain satisfies a set of

differential (backward or forward) Chapman-
Kolmogorov-Smoluchowski equations which take the fol-
lowing form

p(a, t
I ao, to)—

Ot
1= —Tp(a t

I ao to)+ T gf(a I &)p(»t I ao to)

(4.4)

For Markov processes the joint probability
p (a, t

I
ap, tp) and the one-fold distribution function

P, (a, t) describe the statistical properties completely. The
time evolution of the one-fold distribution function is
given by the following equation:

P&(a, t)=~(a, t I»tp)P&(»to) .
P

(4.6)

For later applications we denote the i.nitial probability dis-
tribution of the Markov chain x (t) at tp by

Pi« to}=g(a} . (4.7)

The response of an atom to strong laser excitation in
the presence of such a jump process x (t) is determined by
the appropriate Heisenberg or Liouville equation, of
course. In the present case the relevant equations are
given in (2.1). In any case, they can be written symboli-
cally

Bt
V(t) = iM[—Qo, b„.. .;x (t)]V(t), (4.8)

where M is effectively the Liouville operator. For exam-

ple, if applied to Eqs. (2.1), V(t) is the operator vector
[&~@,&z&,&»,&zz] and M is the matrix of coefficients in
(2.1). The random process x(t) is in this case implicitly
carried by Q(t).

What is wanted is ( V(t) ), that is, the solution to (4.8)
averaged over the ensemble of jumps of the implicit tele-

graph x (t). To obtain ( V(t) ) one proceeds indirectly, de-
fining a marginal average V~(t) by the equation

V(t) =( V(t)) =gg(a) V.(t), (4.9)

where V (t) is the average value of V(t) under the condi-
tion that x is fixed at the value a at time t. Let us assume
that the matrix M(x) depends only upon the current
value of x (t), not upon any prior values. From Eq. (4.8)
we obtain the intrinsic or Hamiltonian time dependence of
V (t), but the full time dependence of ( V (t) ) includes, in
addition, the effects of the random interruptions coming
from x switching from u to other values. The full equa-
tion appropriate to Markovian jump processes is the rnas-
ter equation which has been introduced into quantum op-
tics first by Burshtein:

8 . 1—V (t)= iM(a)V (t—) +[5 &
—f—(a IP]V&(t) . —

P

(4.10)

The second and third terms of this equation are the
Chapman-Kolmogorov-Smoluchowski (CKS} terms given
in (4.4). Without M, Eq. (4.10) would be a CKS equation
of traditional type, and without the CKS terms it is the
nonstochastic equation obtained from (4.8) by fixing the
random telegraph in the state u for all time.

Of course, the full master equation (4.10) can be written
compactly as
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V= —i 8'V, (4.11a)

1i W —p= iM—~p —[o —
p f(a—

~
P)],r (4.11b)

with appropriate matrix multiplications implied. For ex-

ample, in the common case that the dynamical variable V
is actually a coinponent of the vector (&i&,&z„&»,&z2),
then (4.8) is already a matrix equation in the atomic
operator space. The existence of N possible telegraph
states then means that JV is a matrix in the product space
of the atomic operator vector and telegraph. It is useful
to see how the required matrix manipulations can be car-
ried out explicitly in at least one case, and we include such
a demonstration in the Appendix.

The important message contained in (4.11) is that no
matter how many states are ascribed to the telegraph, or
how many components V actually has in a given case, the
full and exact solution to the stochastic dynamical equa-
tion of interest can be obtained by finite-matrix inversion
and by a calculation of the roots of the proper secular
equation. Of course, such matrix inversions are rather
rarely possible to carry out in fully analytic form, but they
are always possible to find numerically with whatever
desired accuracy. %"hat is more, in some applications,
such as caIcuIations of absorption and scattering spectra,
only Laplace transforms are required. In such cases even
the secular equation becomes unnecessary. From one
point of view, this is the single most attractive feature fol-
lowing from the telegraph model of stochastic processes.
In contrast to Gaussian stochastic-noise models, where in-
finite continued fraction' or other' methods have un-
solved convergence problems, the telegraph model is ex-
tremely well defined.

V. ATOMIC FLUORESCENCE SPECTRUM

The Burshtein master equation (4.10) can be applied
easily to ihe calculation of the fluorescence spectrum of a
two-level atom' strongly excited by a laser with telegraph
noise. The stationary spectrum, conveniently norfnalized,
is given by

A(co)=2Re f e
'+' 'C(r)dr, (5.1)

where C(r) is the dipole autocorrelation (2.3) in the sta-
tionary limit,

C (r) = lim ( &2,(t +r)&)2(t) ), (5.2)

and y is the bandwidth of the spectrometer being used to
analyze the fluorescence. '

It is clear that P'(e) is, effectively, the Laplace
transform of C(r), and that C(v.) is the first component
of a vector V(r) which is the stationary limit of the vec-
tor V(t, r),

%e do not want to overemphasize numerical roethods.
Burshtein has already examined a nuinber of important
laser-atom interaction problems, showing that telegraph
models do not need to rely soIely on numerical work. We
have given another example in Sec. III, and in our paper
about pre-Gaussian statistics. ' In the following paper we
will give others subsequently when we discuss frequency
telegraphs and non-I. orentzian hne shapes. ' However, it
remains true that the enormous f1exibility of telegraph
models, and their undoubted utility in theoretical rnodel-

ing, is based on the ease of numerical solution of (4.11).
We describe elsewhere our numerical methods' and de-
vote Sec. V to an examination of some numerical results.

V(r, r) =[(0&z(t +r)o &2(t) ), (&2i(t +r)& i2(r) ), ( && i(t /r)o'i2(t) ), (&z2(t +r)&&2(t) ) ] (5.3)

It is known that in the absence of stochastic forces
V(t, r) satisfies a first-order 4)&4 matrix differential equa-
tion in v. with constant coefficients, easily obtained from
Eq. (2.1). The Burshtein master equation allows stochas-
tic telegraph-type noise to be added at the sole expense of
enlarging the matrix dimensionality from 4 p 4 to
4Ng4X, where X is the number of states of the tele-
graph. But, because the Burshtein equation also has con-
stant coefficients, the Laplace transform of V(r, r) with
respect to ~ is trivial. Thus, in the stationary limit
(taco) the spectrum W(co) can be obtained exactly and
explicitly in terms of finite (4X X4X) determinants.

The Appendix is devoted to the full solution of the
Burshtein equation in a simple case, including the time
evoIution which requires, in effect, the inverse Laplace
transform and thus some 4Xg4/ matrix inversions.
Here we present only the results for the resonance Auores-
cence spectrum of the atom whose inversion was calculat-
ed in Sec. III. %'e wi11 not display the 8&8 matrix alge-
bra, but only graphs of the results. The spectra can be
displayed in a variety of ways. In Fig. 2 we show a set of
spectra for a double range of phase values a from 0 to m.
Some of the features of the spectrum can be understood

on the basis of the discussion in Sec. III, but new charac-
teristics are evident also.

Note that the spectra of Fig. 2 are taken in the motional
narrowing regiIDe of telegraph jumps: GOT &&1. Note

T=lo 2

.~ &.0~

0.571.

0

Np

FIG. 2. Steady-state fluorescence spectrum for two-state
atom resonantly excited by random telegraph phase noise vs
D=u, —coL, , detuning of spectrometer frequency co, from laser
frequency coL, (in units of Rabi frequency 0, ), for various values
af the jump parameter a and with mean interruption time
T= 10 Qo '. Spectrometer width is y, =0.0200.
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(a) a = 0.2'
A. T = 10.00

M10-2

0 1

0 1

0
(Ms-

GAL�)

jQ

FIG. 4. Fluorescence spectrum for two-state atom resonantly
excited by random telegraph phase noise with phase jumps of
a =0.4m and three choices of mean interruption time T. Spec-
trometer width is y, =0.02Qo.

102

FIG. 3. Steady-state fluorescence spectrum for two-state
atom resonantly excited by random telegraph phase noise vs
D =co, —col. , detuning of spectrometer frequency co, from laser
frequency coL, (in units of Rabi frequency 0, ), for various
choices of mean interruption time T. In (a) the phase jump is
0.2m and in (b) it is 0.4m. Spectrometer width is y, =0.0200.

Qpcosa as T becomes sufficiently short. In Fig. 4 we
show the three spectra that correspond exactly to the three
population curves in Fig. 1.

VI. SUMMARY

also that the sideband splitting, as a function of a, evi-
dently follows the form Q=Qpcosa, as foretold in (3.6).
One remarkable result is seen for a=a/2, where the
phase telegraph produces a zero-mean amp/itude fluctua-
tion. In strong contrast to the case of Gaussian chaotic
amplitude fluctuation, ' here the spectrum shows no split-
ting at all.

In Fig. 3 we show spectra obtained from two of the
phase telegraphs contained in Fig. 2, namely a =0.2m and
0.4n.. In this case the size of the phase jump is held fixed
and the telegraph switching rate 1/T is varied. Note that
as the relaxation rate 1/T gets smaller (for example, as
QpT goes from 1 to 100}the spectral lines do not get cor-

. respondingly narrower. This is because the spectrometer
bandwidth y=0.02Qp is not smaller than 1/T. In other
words, we see an instrumental effect.

We showed the temporal dynamics of population inver-
sion for a =0.4m in Sec. III. In the corresponding spec-
trum [Fig. 3(b}] we see clear reflections of the population
dynamics. The region around QOT=1 shows no clear
spectral features, for example, and in Fig. 1 it showed
only overdamped decay with little oscillation. Similarly,
motional narrowing is clearly evident and is consistent
with the change in oscillation frequency from Qo to

In this paper we have discussed some of the characteris-
tics of generalized Poisson processes, i.e., random tele-
graph signals (RTS), and the ways that they enter into the
dynamics of strong resonant laser-atom interactions. We
noted some differences with other kinds of noise models,
and we stated the advantages of random telegraphs for
theoretical calculations. In addition to giving the back-
ground of the formalism, we discussed in detail some new
results for a two-level atom exposed to a laser modulated
by a two-state phase telegraph. These included a new ex-
pression for the population equation, including spontane-
ous emission damping, as well as solutions for the fluores-
cence spectrum. Features relating to motional narrowing,
spectrometer resolution, and amplitude fluctuations were
pointed out. In the following paper we will draw on the
formalism established here to discuss the randomly jurnp-
ing frequency p(t)=dP/dt. We shall discuss examples
which demonstrate both temporal and spectral motional
narrowing, nonexponential correlations, and non-
Lorentzian spectra,
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APPENDIX: THE T%0-STATE TELEGRAPH,
AN EXPLICIT SIMPLE APPLICATION

OF THE MASTER EQUATION

For a two-state random telegraph signal the CKS equa-
tion (4.4) takes the following form:

V N(t) = i—IV~pV p(t),

where

IV It =5 pM {a)— 5k' [5 p f—(a
~
P)] . (A7)

—p(a, t
~
ao, to)

Bt

It is clear that the CKS terms generally give rise to relaxa-
tion, so we can identify a relaxation matrix I ~~ as

p(a t
I
ao to)+ p{—a t

I
ao to} .

This equation can be solved exactly leading to

p(a, t
I ao, to) =

z 5,(1+e '
)

Of course, M may also include damping terms, due, for
example, to radiative decay, as in (2.1).

The two-state telegraph for which f ( +,—)

=f ( —,+ ) =1 is the simplest jump process. For this case
the relaxation matrix is

The two-state (+a) jump process has the following initial
probabthty dkstrtbutson (4.7):

g(a)= —,'5, +—,'5

With the solution (A2) we can calculate the phase depen-
dent correlation function (2.4) from the following formu-
la:

and the Burshtein equation takes the simple form

V& M& i (1—/T) i (1/T) V&

V2 i (1/T) Mz i (1/—T) Vz

(A9)

(e ' ' ) = g e' p(a, t, ~a„t, )e 'g(a, )

—2
I t) —t2 ( /T

=cos a+sin a e (A4)

where M~ z
——M(+a). If V is a vector then M is a ma-

trix and 1/T is a diagonal matrix. Equation (A10) can be
solved exactly in terms of Laplace transforms:

V (t) = iM"'(x)V'(t)—, (A5)

This result confirms the elementary derivation performed
in Sec. B.

Equation (4.11) is the symbolic master equation under-

lying our discussion of telegraph noise. If V is a com-

ponent of the atomic operator vector, say the kth, then

Eqs. {2.1) show that it is connected to the other com-
ponents. That is, (4.8) could be written

V,{.)
V2(z)

1
— A2

AiAz —1/T
1/T

i
Aqui —1/T

V((0)
X V(0)

1/T
3 iAz —1/T

l.

Azd (
—1/T

(A 1 1)

where repeated indices are summed, as usual. Then the
master equation (4.11) takes the explicit form

where Ak ——z+1/T+iMk If M~ and. M2 are numbers,
the solutions for V& (t) and Vz(t) have the form

Vi(0)

(
V2(0)

(A12)

where

Q =—[—,'(M) —Mz)' —(I/T}']'"——,
' (M, —M, ),

R—:[2Q [Q+ —,
'

(Mi —Mz)] I

A, + ——T'(M ) +M2 ) i (1/T)—

(A13)

(A14)

+[ ~ (M i —Mz ) —(1/T} ]'i2 . (A15)

This expression applies to any bivalued RTS, whether for
phase, frequency, or amplitude fluctuations.

Two limiting regimes have particular interest. When
X' is suf6ciently long the solutions become

V~(t)=e + V&(0) with A+-M~ i (1/T) —(A16a)

V2(t)=e Vz(0) with X =M2 i (1/T) . (A16b)—

(A17)

When T is sufficiently short the solutions approach the
limit

The stochastic average is the sum of these two indepen-
dent solutions, each appropriate to a particular value of
the fluctuation parameter a, but with damping rate aug-
mented by the mean interruption rate 1/T:

{V(t})=e ' + V, (0}+e V2(0) .
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Vt(t)

V,(t)

V)(0)

decreasing T, the eigenvalue A, possesses a large imagi-
nary term and hence will contribute nothing to the expres-
sion for V (t). The stochastic average, in this limit, be-
comes

Vp(0)
(A18) V(T)=e + [V&(0)+Vz(0)] . (A20)

where

A+-= —,
' (Mt+M2) —i(T/2)(M) —Mp) (A19a)

= —,
' (Mt+M~) i (2—/T)+i (T/2)(Mt —M2) . (A19b)

We see that the interruptions occur so rapidly that the
atom responds only to the average Bloch matrix (recall re-

marks in Sec. III). We also note that, whereas the
imaginary contribution to A, + gets smaller linearly with

I

We can apply the preceding analysis to obtain the
third-order differential equation (3.4) in a rigorous way,
i.e., without the decorrelation step performed in Eq. (3.1).
By introducing the operator-valued vector V=(&tz, &zt,
&t~,&22) we obtain from the atomic equations (2.1) the
proper M~ and Mq matrices required in the solution
(All). For otz(0)=o2t(0)=0 and 6=0, from this equa-
tion we calculate the following expression for the Laplace
transform of the inversion:

A
IV(z) =ozz(t) —o ~t(z) = w(0) ——

z
z+ — z+ —+—

2 2 T

(z+&) z+ — z+ —+—+
~

&
~

' z+ —+2 2cos a
2 2 T 2 T

(A21)

Simple algebraic transformations of Eq. (A21) lead to the differential equation (3.4), thus providing a justification for the
decorrelation procedure used in Sec. III.

'Permanent address: Institute of Theoretical Physics, PL-00-
681, Warsaw, Poland.

Address during 1983—1984: Department of Physics, Imperial
College of Science and Technology, University of London,
London SW72AZ, United Kingdom.

For theory, see A. I. Burshtein, Zh. Eksp. Teor. Fiz. 49, 1362
(1965) [Sov. Phys. —JETP 22, 939 (1966)];M. Newstein, Phys.
Rev. 167, 89 (1968); B. R. Mollow, ibid. 188, 1969 (1969).
For experiment, see F. Schuda, C. R. Stroud, and M. Herch-
er, J. Phys. B 7, L198 (1974); F. Y. Wu, R. E. Groue, and S.
Ezekiel, Phys. Rev. Lett. 35, 1426 (1975); W. Hartig, W.
Rasmussen, R. Schieder, and H. Walther, Z. Phys. A 278, 205
(1976).

Recent experimental work demonstrates interest in such fluc-
tuations and possible detailed comparisons with theories
which include such effects. See, for example, P. Agostini, A.
T. Georges, S. E. Wheatley, P. Lambropoulos, and M. D.
Levenson, J. Phys. B 11, 1733 (1978); B. R. Marx, J. Simons,
and L. Allen, ibid. 11, L273 (1978); D. W. Nitz, A. V. Smith,
M. D. Levenson, and S. J. Smith, Phys. Rev. A 24, 288
(1981); D. S. Elliott, R. Roy, and S. J. Smith, ibid. 26, 12
(1982); L. Allen, in Coherence and Quantum Optics V,

proceedings of the Fifth Rochester Conference, 1983, edited
by L. Mandel and E. Wolf (Plenum, New York, in press).

The use of relaxation times T] and T2 originated with F. Bloch
in his theory of nuclear magnetic resonance. Later applica-
tions to optical resonance phenomena are summarized in M.
Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics
(Addison-Wesley, Reading, Mass. 1974); L. Allen and J. H.
Eberly, Optical Resonance and Two-Level Atoms (Wiley, New
York, 1975).

For example, see S. O. Rice, in Selected Topics in Noise and
Stochastic Processes, edited by N. Wax (Dover, New York,
1954); P. W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954); and

discussions and references in R. Kubo, in Fluctuation, Relax-
ation and Resonance in Magnetic Systems, edited by D. Ter
Haar (Oliver and Boyd, Edinburgh, 1962); N. G. Van Kam-
pen, Phys. Rep. 24C, 171 (1976); R. F. Fox, ibid. 48C, 179
(1978); I. Oppenheim, K. E. Shuler, and G. H. Weiss, Sto-
chastic Processes in Chemical Physics: The Master Equation
(NIT, Cambridge, Mass. , 1977).

5G. S. Agarwal, Phys. Rev. Lett. 37, 1383 (1976); J. H. Eberly,
ibid. 37, 1387 (1976); H. J. Kimble and L. Mandel, Phys.
Rev. A 15, 689 (1977); P. Avan and C. Cohen-Tannoudji, J.
Phys. B 10, 155 (1977); P. Zoller and P. Lambropoulos, ibid.
12, L547 (1979).

See the early papers of A. I. Burshtein: A. I. Burshtein, Ref. 1;
A. I. Burshtein and Yu. S. Oseledchik, Zh. Eksp. Teor. Fiz.
51, 1071 (1966) [Sov. Phys. —JETP 24, 716 (1967)]; L. D.
Zusman and A. I. Burshtein, ibid 61, 976 (19.71) [ibid 34, .
520 (1972)].

7P. Zoller and F. Ehlotzky, J. Phys. B 15, 3023 (1977); K.
Wodkiewicz, Z. Phys. B 42, 95 (1981).

8An earlier description of the contents of several forthcoming
papers by the present authors is given by B. W. Shore and J.
H. Eberly, in Coherence and Quantum Optics V, proceedings
of the Fifth Rochester Conference, 1983, edited by L. Mandel
and E. Wolf (Plenum, New York, in press). See also Ref. 16.

See, for example, L. Allen and J. H. Eberly, Ref. 3.
toA. Abragam, The Principles of Nuclear Magnetism (Oxford

University, London, 1961); C. P. Slichter, Principles of Mag
netic Resonance (Springer, Heidelberg, 1978).

~~For a full discussion of the mathematics of Markov chains,
see J. L. Doob, Stochastic Processes (Wiley, New York, 1967),
Chap. V.
A sufficient description of Markov chains and their transitions
for our purposes can be found in W. Feller, An Introduction
to Probability Theory and Its Applications (Wiley, New York,



30 NOISE IN STRONG LASER-ATOM INTERACTIONS: PHASE. . . 2389

1958), Vol. I.
See, for example, Ref. 11,p. 239; or Ref. 12, p. 523.

~4See, for example, S. N. Dixit, P.&Zoller, and P. Lambropoulos,
Phys. Rev. A 21, 1289 (1980);K. Wodkiewicz, J. Math. Phys.
23, 2179 (1982).
J. J. Yeh and J. H. Eberly, Phys. Rev. A 24, 888 (1981).

I~K. %'odkiewicz, B. W. Shore, and J. H. Eberly, J. Opt. Soc.
Am. B 1, 398 (1984).
K. Wodkiewicz, B. W. Shore, and J. H. Eberly, following pa-

per, Phys. Rev. A 30, 2390 (1984).

~~B. W. Shore, J. Opt. Soc. Am. 8 1, 176 (1984).
J. H. Eberly and K. Wodkiewicz, J. Opt. Soc. Am. 67, 1252
(1977).

~oB. R. Mollow, Ref. 1; P. W. Milonni, Ph.D. thesis, University
of Rochester, 1974; H. J. Kimble and L. Mandel, Phys. Rev.
A 13, 2123 (1976); K. Wodkiewicz and J. H. Eberly, Ann.
Phys. (N.Y.) 101, 574 (1976).
A. T. Georges and P. Lambropoulos, Phys. Rev. A 20, 991
(1979);P. Zoller, ibid. 20, 1019 (1979).


