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Quantum-beat and sideband spectra of recoilless ¥ radiation of ’Fe were measured as a function
of frequency and the voltage on the quartz crystal on which a ’Co source was deposited. The side-
band spectra were analyzed using a Rice distribution of the modulation index. The width of this
distribution was shown to depend on the frequency; the narrowest distribution was found at 9.795
MHz. The results of the quantum-beat measurements are in agreement with the optical theory of

Monahan and Perlow.

I. INTRODUCTION

When a source of recoillessly emitted y rays is vibrated
at a high frequency and the emitting nuclei make several
oscillations on the average during their decay, the fre-
quency modulation of the y rays becomes visible in the
energy spectrum. Sidebands appear in this spectrum as it
is measured by slowly moving a resonant absorber be-
tween source and detector. Sideband spectra were ob-
served for the first time by Ruby and Bolef.! One may
understand the sidebands as the result of the interaction
between y quanta and ultrasonic phonons.? From a side-
band spectrum the intensity and the frequency of the pho-
nons can be obtained. The phase of the phonons does not
play any role and perfect sideband specta can be measured
with sources with thickness larger than the ultrasonic
wavelength.’

The phase of the phonons can be determined in a
quantum-beat measurement.*> The absorber is at rest
with respect to the source (or moves at a constant veloci-
ty), and the arrival time of the y rays is measured with
respect to the phase of the rf signal that drives the source.
Beats occur in the obtained time spectrum due to the in-
terference between the sidebands or between one sideband
and the carrier. In order to be able to observe quantum
beats, phase changes of the source vibration must be kept
small during the several hours needed to measure a spec-
trum as well as the phase spread over the area of the
source (several millimeters). The thickness of the source
must be small with respect to the ultrasonic wavelength.

A theoretical description of the quantum-beat spectra
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has been given by Monahan and Perlow.” A quantum-

beat spectrum measured with a ®’Zn source at a frequency
of 65 kHz was in accordance with the theory.® The other
quantum-beat measurements reported until now>~>7 were
performed with >’Co and ®™Te sources at frequencies of
10 and 30 MHz, respectively. The Monahan theory was
tested to a limited extent,> but in all cases the amplitudes
of the beat components in the measured spectra were
smaller than the theoretical values. So the sources were
not completely coherent, if we assume that the theory of
Monahan is correct.

Only in a few cases is the intensity of the sidebands
in reasonable accordance with the simple J2(a) behavior
[see Eq. (4), Sec. II], in which it is assumed that the vibra-
tion amplitudes of all nuclei are equal. In all other cases,
the intensity of the sidebands is proportional to
exp(—ag)I,(a}) [see Eq. (9), Sec. IIJ; see, for instance,
Refs. 2, 3, and 11. This result is in accordance with a
Rayleigh distribution for the amplitude of the vibration
source nuclei. In the literature such a source is often
called incoherent. This is confusing, because it would be
impossible to observe quantum beats from a really in-
coherent source, in contrast to reality.>>’ Therefore, it is
better to introduce a degree of coherence that is related to
the observed quantum-beat structure.

8—10

II. THEORETICAL SUMMARY

The electric field vector of the y radiation from a de-
caying state with mean lifetime 1/A, measured at a dis-
tance x —x, from the source, is

for t > ¢,
(1)

where ¢, is the formation time of the state, w, the angular frequency of the y ray, and & the reduced wavelength.

The source vibrates harmonically:

X=X, +xosin(Q¢) .

After substitution into Eq. (1) and neglecting a constant phase we find
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with @ =x,/A, the modulation index, which is propor-
tional to the vibration amplitude.

A. The sideband spectrum

The frequency spectrum of phase-modulated y rays is
found by Fourier transforming Eq. (3), squaring the
modulus, and integrating over all formation times ¢,. The
result"® (except for a proportionality constant) is

Ji(a)

I)= 3 : )
@ ,,=2_¢, (@—wo+nQR)++22

where J, is the Bessel function of the first kind of order
n. The same result can be obtained by a quantum-
mechanical treatment.” 2

Most observed sideband spectra can be described very
well>>!! with the formula

lo)= 3 exp(—7(a?Nly(3(a™) )
(0—wo+nQ)?+ 322

n=-—oo

where I, is the modified Bessel function of the first kind
of order n. This formula can be derived in several ways.

(i) Quantum mechanically, assuming an incoherent dis-
tribution of the ultrasonic phonons (Abragam,'* Mishory
and Bolef?). Mishory and Bolef justified this by assuming
that the ultrasonic phonon-relaxation time is very short.
This, however, is not true for crystals vibrating in their
lowest-frequency vibration modes.'*

(ii) Classically, assuming phase incoherence’® (i.e., a
uniform distribution of phases). However, since
quantum-beat spectra are observed for sources which ex-
hibit sideband spectra according to Eq. (5), this assump-
tion cannot be true.?

(iii) Quantum mechanically, assuming a finite coher-
ence time 7, which is larger than the nuclear lifetime 1/A
but smaller than the total time needed for the measure-
ment (Gupta'®). This is the same assumption as that
which underlies (ii). '

(iv) Quantum mechanically, assuming a Rayleigh distri-
bution of the number of phonons in the ultrasonic mode,
but not specifying anything about phases (Pfeiffer
et al.'?). We think that the approach of Pfeiffer e al. is
correct.

We will now formulate the problem in classical terms.
v rays are emitted by a large number of nuclei, vibrating
with the same frequency but with different amplitudes
and phases :

x;(t)=a;Asin(Qt +a;) . (6)

The sideband spectrum from each nucleus is given
separately by Eq. (4). When the amplitudes of the nuclei
are distributed with a probability function P(a), we must
weigh Eq. (4) with this probability function:

P(a)JX(a)da

o= 3 [° . ™

n=—oo (a)—a)0+nﬂ)2+%k2

If we assume that the probability function for the am-
plitudes is a Rayleigh distribution

2

2a3

(8)

P(a)= Lzexp
ar

the sideband spectrum becomes!®

w (—a@)I,(a})
Ho)= 3 PR ©)
n=—w (@—0o+nQ) +7A

which is equal to Eq. (5) because for a Rayleigh distribu-
tion (a?) =2a3.

The phase of the vibration is irrelevant in this argu-
ment. There may be a distribution of phases ranging
from a uniform one to a 8 function, and the phase distri-
bution may be correlated with the amplitude distribution
or not.

The assumption that the distribution of the amplitudes
is a Rayleigh distribution is an ad hoc assumption, which
is justified by the fact that it is a simple distribution func-
tion for a variable that can take only positive values and
that many experimental sideband spectra agree with Eqs.
(5) or (9). In these cases, the vibrational energy of the
source is probably shared by many modes. The com-
ponent of the vibration amplitude in the direction of the
y-ray detector may therefore vary as a function of the po-
sition of the emitters on the source or as a function of
time.

In general the width of the amplitude distribution may
be smaller than that of a Rayleigh distribution. A good

choice is then the Rice distribution:!”!8
2, 2
aa a‘+a
P(a)=-51o |5 |exp | -5 (10)
ar ag 2aj

In the limit a,—0 the Rice distribution is equal to the
Rayleigh distribution. For R =a,/ag >>1 we find an
average value for a, {(a)=a, and a standard deviation
=ap. We will call R the amplitude sharpness of the
source. For agr —0 we get the delta function 8(a —a, ).

B. The quantum-beat spectrum

Monahan and Perlow’ derived the following formula
for the quantum-beat spectrum, using classical optical
theory:

I0=1+ 3 3 1, @N(@GCy(so)

n=—eol=——oo

xXexpli(n —1)Qt] . (11)
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The complex function G, is given by Eq. (2.16") in Ref.
5 and depends on the isomer shift Aw between source and
absorber, the thickness of the absorber, the vibration fre-
quency (, the natural linewidth A, and the width A’ of a
Lorentzian distribution of isomer shifts in source and/or
absorber. We assume a distribution of modulation index
P(a) and a distribution of phases that are uncorrelated.
The effect of the phase distribution is an attenuation of
the amplitudes of the beat components in the quantum-
beat spectrum F;. When the phase distribution is Gauss-
ian with standard deviation o, the attenuation coefficients
are’

Fj=exp[—$(jo)*]. (12)

We define the degree of coherence C as follows:

n
c=L13F, (13)
n i

where the summation is made for the most relevant com-
ponents.
We rewrite (11) as

I(t,ac,aR,Aa)) = 1+D0(ac,aR,Aa))

-+ 2 2[Dj(ac,aR,Aa)) l

Jj=1

Xcos[jQt+¢;(a;,ar,Aw)]
(14)

with

Dj(az,ag,M0) = Y,

l=—cw

[ fow P(a,a;,ar ;4 (al(a)da
XF']'G)‘+1 I(A(U)

and
djlac,ar,Aw)=argD;(a.,ag,Aw) .

The spectrum consists of a constant background and a
series of beat components with frequencies equal to the vi-
bration frequency and its harmonics. If the time is not
measured we must average Eq. (14) over ¢ and we find a
constant 1+ Dy(a.,ag,Aw). The term Dy(a.,ag,Aw) is a
real negative number which describes the resonant absorp-
tion. In a normal MGdssbauer transmission experiment,
Aw is artifically varied by means of the Doppler effect,
and for {a )0 we find the sideband spectrum.

III. MEASUREMENTS AND CALCULATIONS

A 0.3-mm-thick X-cut quartz crystal was covered on
both sides with a 1.0- and a 0.3-um-thick copper elec-
trode. Into the thick electrode 112-keV ’Co ions were
implanted up to a source strength of 5 uCi; see Fig. 1. No
annealing was done. The linewidth, measured with a thin
’FeRh absorber, was 0.30 mm/s. All measurements were

du MARCHIE van VOORTHUYSEN, ZHANG, AND de WAARD 30

conducting
epoxy resin

region imptanted
with  57Co

FIG. 1. Mounting of the source.

done with a thick Na,’Fe(CN)s-10H,O absorber
(t;=6.4). The isomer shift with respect to ’CoCu is
—0.2919(7) mm/s (Ref. 19). The y rays were detected
with a 0.1-mm-thick Nal(T]) crystal. The block diagram
is given in Fig. 2. The time-to-amplitude converter (TAC)
is started by the fast signal from the detector. A signal
that has a constant phase with respect to the driving elec-
tric field in the piezoelectric crystal stops the TAC. Only
one out of eight pulses is admitted, enabling the observa-
tion of eight periods in the time spectra.

The output pulses from the linear gate were processed
in two different ways. (1) During the quantum-beat mea-
surements the absorber was at rest and the digital infor-
mation from the analog-to-digital converter (ADC) was
processed by the multichannel counter (MCC) interface.2’
(2) During the sideband measurements the absorber was
moving at constant acceleration and all pulses were count-
ed as a function of velocity.

The time resolution of the system was determined by
measuring the y—x-ray coincidences from a %Y source
with the help of an extra plastic scintillation detector,
which is connected to the system at the point in the block
diagram indicated by ¥,. The full width at half max-
imum of the measured prompt time peak was 8.4 ns.
With the aid of the measured time spectrum attenuation
factors T; were calculated numerically for each harmonic
component in the quantum-beat spectrum. The results
are T7,=0.879, T,=0.682, T3=0.529, and T,=0.422.
The dependence of these numbers on the frequency will be
neglected in Sec. III B.

The quantum-beat spectra were analyzed with the func-
tion

vibrating
source \
McC Apple

interface

1T

memory

FIG. 2. Block diagram.
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4
I(t")=C' |14+ 3, Ajcos(jQt'+P;) - (15)
j=1

with C’, 4;, and P; as free parameters. The experimental

amplitudes are reduced with respect to the theoretical am-

plitudes 2 | D; | for two reasons. (1) Only a fraction f of

the photons is recoillessly emitted, and (2) the oscillations

are attenuated due to the finite time resolution of the

detection system. Taking these effects into account, we
find from Egs. (14) and (15)

2fT; | D;
= M (16)
1+fDy
The shape of the Mdssbauer spectrum becomes
I(a,,ag,Aw)=1+fDyla.,ag,Aw) , (17

where Aw is artifically varied by means of the Doppler ef-
fect.

The time scale in Eq. (14) was chosen such that at t=0
the source is at equilibrium position. The laboratory time
scale ¢’ differs from ¢:

a B

= — t' —_ - At ) 18
+gtgt (18)
in which a is the phase of the mechanical vibration of the
source with respect to the phase of the electric field acting
on the piezoelectric crystal, 3 the phase of V, with respect
to ¥, (Fig. 2), and At an unknown electronic time delay
which is assumed to be constant throughout the measure-
ment. From Egs. (14), (15), and (18) we find for the
corrected phases of the components in the quantum-beat

spectrum:

Pj corr=Pj +JB= _¢j —j(a+QAt)+nj277-
(n; integer) (19)
or

P; .
—j?l%—ﬁ#ﬂm

a=—

n121T
+ I (20)

The sideband spectra were analyzed with Egs. (7) and
(10), using the following free parameters: the Rice param-
eters a, and ag, the intensity of the absorption integral,
the isomer shift, the distance between the sidebands Q,
and the effective width of the separate lines. From a, and
ag the average value of the modulation index and the am-
plitude sharpness R =a, /ap was calculated.

A. Sideband spectra as a function of rf frequency

On the basis of a preliminary measurement the voltage
of the rf signal, V,, was chosen to correspond to an aver-
age value of the modulation index of about 2.4. For this
value, the central line (carrier) in the sideband spectrum
disappears in the case of a delta function, P(a)=8(a —a’)
for the modulation index (R =« ), so the sensitivity for
the determination of the amplitude sharpness R is large.
In Fig. 3 sideband spectra are shown for three different rf
frequencies and (a)=2.2—2.4. In all cases the best
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1ok T 9795 MHz
Q=236 ag=0.40
08f
]
06+ 9806 MHz {
oial __— ac=199 az=094
| ~ _— 9755 MHz
04 Q. =195 a, =118
02+
|
0 ' — : ' ‘
0 1 2 3 4 5 6

a

FIG. 4. Distribution function of the modulation index for the
same rf frequencies as in Fig. 3.

least-squares fits are obtained for a Rice distribution of
modulation indices. The R is strongly dependent on the
frequency, its maximum value lies at 9.795 MHz, where
the intensity of the carrier is still significantly larger than
it would have been for a unique value of the modulation

“index [Fig. 3(a)]. In Fig. 4 Rice distribution functions

P(a) of the modulation index are drawn [Eq. (10)], using
the parameters a. and ay as they are determined from the
least-squares fits to the spectra.

The results of the measurements are summarized by
Fig. 5. The resonance curve {a)/V, has a complicated
shape, indicating that there exist many vibration modes
between 9.7 and 9.9 MHz. The maximum vibration am-
plitude occurs at 9.8075 MHz. An interesting feature is

100 -

L. . |

1 1 1 i 1 1
976 978 980 9.82 984 986
frequency (MHz)

1
7k

FIG. 5. Resonance curve of the source (top), amplitude
sharpness as a function of frequency (bottom).



the behavior of the amplitude sharpness R as a function
of frequency. This function has a sharp maximum at
9.795 MHz, at which frequency we find only a small
shoulder in the resonance curve. The top of the resonance
curve is at a much higher frequency.

B. Quantum-beat spectra as a function of rf frequency

The value V, of the driving rf voltage was chosen such
that the average modulation index {a) was equal to 1.
At this value the amplitude of the fundamental com-
ponent A; has its maximum value (see Fig. 11). The pro-
portionality between ¥, and (a) was checked in Sec.
IIIC.

Figure 6 gives a quantum-beat spectrum at 9.795 MHz

and {a ) =1.00. The spectrum was analyzed with Eq. (15)
with the following results: A4;=0.278(1), 4,=0.054(1),
P,=3.209(5) rad, and P, =5.77(2) rad.

The theoretical amplitudes and phases were calculated
with the Monahan theory [Egs. (10), (14), and (16) for
F;j=1]. The width parameter A’ which is necessary to
calculate the coefficients G,; was fixed at the value where
D(0,0,Aw), calculated as a function of Aw, has the same
shape as the Mdssbauer dip of the nonvibrating source:
A'=0.152 mm/s. An effective recoilless fraction
f=0.642 of the source was determined from the
Mossbauer absorption maximum, the theoretical value of
D(0,0,0), and Eq. (17). The theoretical amplitudes are
A;=0.298 and 4,=0.060. A comparison with the ex-
perimental values shows that the source is not completely
coherent. The theoretical phases are: ¢;=—1.276 and
¢,=—1.878 rad. According to Eq. (20) x =(P;4+¢;)/j
should be independent of j. We find x=1.933(5) for
j=1and x =1.944(10) for j=2, values which are in good
agreement.

The results of the measurement are summarized in Fig.
7. The structure in the curves giving the theoretical am-
plitudes is caused by the variation of the amplitude sharp-
ness R with frequency (Fig. 5). The degree of coherence
of the source has a maximum value in the frequency
range where the amplitude sharpness has a peak, although
the coherence peak is much broader. So there seems to be
a correlation between the amplitude sharpness and the de-
gree of coherence.

1 ] 1 1 1 1 1
0 100 200 300 400 500 600 700 800
TIME (ns)

FIG. 6. Quantum-beat spectrum, solid curve: fit using Eq.
(15) with C'=1.
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974 976 978 980 982 984 9.86
frequency (MHz)

FIG. 7. Experimental and theoretical amplitudes of quantum
beats as a function of frequency. Solid curve, theoretical A4;;
dashed curve, theoretical 4,. No distribution of phases was as-
sumed.

The phase difference a of the mechanical vibration of
the source and the driving field was calculated (except for
a constant) with Eq. (20) (see Fig. 8). The phase jump
over the whole region is 7, as it should be with a mechani-
cal vibrator. We see a nice correlation between phase and
amplitude: where the phase decreases most rapidly with
frequency we find peaks or shoulders in the resonance
curve.

C. Sideband spectra as a function of rf voltage

The measurements were performed at 9.795 MHz,
where the amplitude sharpness R has its maximum value.
The spectra were analyzed with a Rice distribution of
modulation indices. The amplitude sharpness turned out
to be constant for {a ) > 1.5. For lower values of {(a ) the
error in R became too large, and the R was kept constant
in the least-squares fits to the spectra. The modulation-

‘
o
+ o
+ ® a
abke 5 # (',%
@
59
= ?
g4
e o
% .
°
©
Yo .
-5k °
°
.
o
s
L .
-6 % cr sl
L 1 1 1 Il n 1 ! i ]
9z, 976 978 9.80 982 984 986

frequency (MHz)

FIG. 8. Phase of the source vibration with respect to the
driving rf signal. Circles, derived from the fundamental fre-
quency (j=1); crosses, derived from the second harmonic
(j=2).
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index parameters @, and ap turn out to be proportional to
the rf voltage V.. A few spectra are given in Fig. 9. The
oscillating behavior of the carrier and the lowest order
(| n | <4) sidebands can be clearly seen.

D. Quantum-beat spectra as a function of rf voltage

The measurements were performed at 9.795 MHz. A
few spectra are given by Fig. 10. At a small modulation
index the only frequency in the quantum-beat spectrum is
the fundamental frequency. In fact, the spectrum gives a
direct projection of the movement of the source. From
the shape of the spectra at a small modulation index we
conclude that the movement is harmonic. It is much
more difficult to draw such a conclusion from measured
sideband spectra.?! In Fig. 10 we see that the second har-
monic contribution is growing between {a)=1.5 and 2.5.
At (a)=5.8 the higher harmonics are clearly visible.

The measurements are summarized in Figs. 11-—13.
The theoretical curves were calculated with Egs. (16),(14),
and (10) with R=5.89 and F;=1. No parameter was ad-
justed to the experimental amplitudes. The oscillations in
the theoretical amplitudes are very well reproduced by the
experiment, although the peak-to-valley ratio of the exper-
imental points seems to be reduced with respect to the
theory. Possibly, the width of the distribution of modula-
tion indices is still somewhat larger than the width of a

140
{a)=048
1201 A A ; 4 X f
AAAA RN R
U AR R AR S B AN
100—(";:{'\"‘1"1‘['\!'1}
"‘?,’»'*»’1"‘-J‘f=;
PV v vt
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. . ) EROS
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8 Wi
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) (u):;@
A fafahadaiads,
1.00\!\v\f143w2‘f L}.H:";‘zf“,l‘.f‘
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{ i oo ViU
'v V“\/ &y‘)”\f";; \‘dd\,
080}
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1.00:'\‘,» ﬂ)ﬁﬂf’&f\/’ﬁﬁﬂ/‘\f\ﬂﬁﬂ!
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0 100 200 300 40 500 600 700 800
TIME (ns)

FIG. 10. Quantum-beat spectra as a function of rf voltage.
Solid curves: fits using Eq. (15) with C’=1. Spectra are labeled
with the average value of the modulation index as it is deter-
mined in Sec. NI C.

0 1 2 3
‘ @

FIG. 11. Amplitudes of the 9.795- and 19.59-MHz com-
ponents in the quantum-beat spectra as a function of modula-
tion index. The statistical errors are smaller than the points.
Solid curves are results of calculations (see text).

Rice distribution with R=5.89.

The experimental A; and A4, values are systematically
smaller than the theoretical values. Of course, we obtain
a better agreement when the attenuation factors F; are
free parameters in a least-squares fit of the amplitudes.
The results are F;=0.955(7), F,=1.033(12), F;

Az
(%)

0 1 2

3
{a)
FIG. 12. Amplitudes of the 29.385 and 39.18-MHz com-
ponents in the quantum-beat spectra as a function of modula-
tion index. Solid curves are results of calculations, dashed
curves are results of fits with F; and F, as free parameters.
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FIG. 13.
quantum-beat spectra as a function of modulation index. The
curves are the result of one fit with ¢ as a free parameter.

=0.729(11), and F,=0.628(12). The degree of coherence
[Eq. (13)] calculated from the first and second harmonic
is C;3=097 and calculated from all components
C,4=0.87. '

The phases of the components in the quantum-beat
spectra, corrected for the phase angle 3 between V, and
V;, are plotted in Fig. 13. All points were fitted simul-
taneously to Eq. (19) [and Eqgs. (10) and (14)] with
Y= —a—QAt as the only free parameter. The agreement
between experiment and theory is good, except for a small
reduction of the peak-to-valley ratio P . and a shift of
about 0.3 rad for P, ..

IV. DISCUSSION

The high-frequency properties of the source can be
summarized as follows. At the optimum frequency, 9.795

Corrected phases of the components in the-
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MHz, the amplitude sharpness is R=5.9 (which means a
relative FWHM of the modulation-index distribution of
30%, see Fig. 4). The degree of coherence for the first
and second harmonics is 97%. The quantity of this
source is much better than any other high-frequency
source reported up to now. This is probably caused by the
mounting of the crystal, which is the same as the mount-
ing of commercial AT-cut crystals used for frequency
control, and the method which is applied to attach the ra-
dioactive material to the quartz crystal. In our earlier
work’ the crystal was mounted in the same way, but a dif-
fusion process at 900°C was necessary, which probably
spoiled the crystal.

A thorough test was made of the optical theory of
Monahan and Perlow. When we restrict ourselves for the
moment to the first and second harmonics in the
quantum-beat spectra, the amplitudes are correctly repro-
duced by the theory within an accuracy of 5%. The
phases are reproduced very well, with the electronic delay
at At as the only free parameter for the whole measure-
ment. At extreme. values of the amplitudes and phases
there is a discrepancy between theory and experiment. We
think that it is caused by a variation in modulation indices
which is somewhat larger than the variation according to
the Rice distribution. Although the Rice distribution is
an elegant way to describe the distribution function of the
modulation indices, it is only a model which works
reasonably for the description of sideband spectra, but
may deviate from reality. So the discrepancy at the ex-
treme values is probably no indication of failure of the
theory. ,

The large attenuation factors for the third and fourth
harmonics do not allow a statement about the validity of
the theory concerning these harmonics, although the
phases are in reasonable agreement with the theory.
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