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Test of the optical theory of Mossbauer quantum beats
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Quantum-beat and sideband spectra of recoilless y radiation of '7Fe were measured as a function
of frequency and the voltage on the quartz crystal on which a 57Co source was deposited. The side-
band spectra were analyzed using a Rice distribution of the modulation index. The width of this
distribution was shown to depend on the frequency; the narrowest distribution was found at 9.795
MHz. The results of the quantum-beat measurements are in agreement with the optical theory of
Monahan and Perlow.

I. INTRODUCTION

When a source of recoillessly emitted y rays is vibrated
at a high frequency and the emitting nuclei make several
oscillations on the average during their decay, the fre-
quency modulation of the y rays becomes visible in the
energy spectrum. Sidebands appear in this spectrum as it
is measured by slowly moving a resonant absorber be-
tween source and detector. Sideband spectra were ob-
served for the first time by Ruby and Bolef. ' One may
understand the sidebands as the result of the interaction
between y quanta and ultrasonic phonons. From a side-
band spectrum the intensity and the frequency of the pho-
nons can be obtained. The phase of the phonons does not
play any role and perfect sideband specta can be measured
with sources with thickness larger than the ultrasonic
wavelength.

The phase of the phonons can be determined in a
quantum-beat measurement. ' The absorber is at rest
with respect to the source (or moves at a constant veloci-
ty), and the arrival time of the y rays is measured with
respect to the phase of the rf signal that drives the source.
Beats occur in the obtained time spectrum due to the in-
terference between the sidebands or between one sideband
and the carrier. In order to be able to observe quantum
beats, phase changes of the source vibration must be kept
small during the several hours needed to measure a spec-
trum as well as the phase spread over the area of the
source (several millimeters). The thickness of the source
must be small with respect to the ultrasonic wavelength.

A theoretical description of the quantum-beat spectra

has been given by Monahan and Perlow. A quantum-
beat spectrum measured with a Zn source at a frequency
of 65 kHz was in accordance with the theory. The other
quantum-beat measurements reported until now ' were
performed with Co and ' Te sources at frequencies of
10 and 30 MHz, respectively. The Monahan theory was
tested to a limited extent, ' but in all cases the amplitudes
of the beat components in the measured spectra were
smaller than the theoretical values. So the sources were
not completely coherent, if we assume that the theory of
Monahan is correct.

Only in a few cases ' is the intensity of the sidebands
in reasonable accordance with the simple J„(a) behavior
[see Eq. (4), Sec. II], in which it is assumed that the vibra-
tion amplitudes of all nuclei are equal. In all other cases,
the intensity of the sidebands is proportional to
exp( —an't)I„(a~) [see Eq. (9), Sec. II]; see, for instance,
Refs. 2, 3, and 11. This result is in accordance with a
Rayleigh distribution for the amplitude of the vibration
source nuclei. In the literature such a source is often
called incoherent. This is confusing, because it would be
impossible to observe quantum beats from a really in-
coherent source, in contrast to reality. Therefore, it is
better to introduce a degree of coherence that is related to
the observed quantum-beat structure.

II. THEORETICAL SUMMARY

The electric field vector of the y radiation from a de-
caying state with mean lifetime I/A, , measured at a dis-
tance x —x, from the source, is

exp —
~ k(t —tQ)+i coot—1/2 l

E(x,t, tQ) =
0 for t &to

X —XS
for t) to

where to is the formation time of the state, coo the angular frequency of the y ray, and the reduced wavelength.
The source vibrates harmonically:

x, =x, +xosin(Qt) . (2)

After substitution into Eq. (1) and neglecting a constant phase we find

30 2356 1984 The American Physical Society



30 TEST OF THE OPTICAL THEORY OF MOSSBAUER QUANTUM BEATS 2357

I
—

2 A(t t—p)+i[capt+a sin(Qt)]) for t &tp
E""'= 0 f-«t, (3)

with a=xp/k, the modulation index, which is propor-
tional to the vibration amplitude.

P(a)J„(a)da
I(ro) =

( cil —cop +n Q ) + 4 A,

A. The sideband spectrum

The frequency spectrum of phase-modulated y rays is
found by Fourier transforming Eq. (3), squaring the
modulus, and integrating over all formation times tp Th. e
result' (except for a proportionality constant) is

2
00 J„(a)

I(to) =
(ro top+—nQ) + ~ A,

(4)

where J„ is the Bessei function of the first kind of order
n. The same result can be obtained by a quantum-
mechanical treatment. '

Most observed sideband spectra can be described very
well ' '" with the formula

exp( ——,
' (a ))I„(—,

' (a ))
I(co)=

(ro cop+nQ) —+ 4A,
(5)

where I„ is the modified Bessel function of the first kind
of order n This .formula can be derived in several ways.

(i) Quantum mechanically, assuming an incoherent dis-

tribution of the ultrasonic phonons (Abragam, ' Mishory
and Bolef ). Mishory and Bolef justified this by assuming
that the ultrasonic phonon-relaxation time is very short.
This, however, is not true for crystals vibrating in their
lowest- frequency vibration modes. '

(ii) Classically, assuming phase incoherence' (i.e., a
uniform distribution of phases). However, since
quantum-beat spectra are observed for sources which ex-

hibit sideband spectra according to Eq. (5), this assump-
tion cannot be true.

(iii) Quantum mechanically, assuming a finite coher-
ence time ~, which is larger than the nuclear lifetime 1/A,

but smaller than the total time needed for the measure-
ment (Gupta' ). This is the same assumption as that
which underlies (ii).

(iv) Quantum mechanically, assuming a Rayleigh distri-
bution of the number of phonons in the ultrasonic mode,
but not specifying anything about phases (Pfeiffer
et al. ' ). We think that the approach of Pfeiffer et al. is
correct.

We will now formulate the problem in classical terms.

y rays are emitted by a large number of nuclei, vibrating
with .the same frequency but with different amplitudes
and phases

x;(t)=a;lrsin(Qt+a;) .

The sideband spectrum from each nucleus is given
separately by Eq. (4). When the amplitudes of the nuclei
are distributed with a'probability function P(a), we must
weigh Eq. (4) with this probability function:

the sideband spectrum becomes'

exp( —az )I„(az}
I(to) =

n= —m (co eop+nQ) —+ 4 ~
(9)

which is equal to Eq. (5) because for a Rayleigh distribu-
tion (a') =zai'r.

The phase of the vibration is irrelevant in this argu-
ment. There may be a distribution of phases ranging
from a uniform one to a 5 function, and the phase distri-
bution may be correlated with the amplitude distribution
or not.

The assumption that the distribution of the amplitudes
is a Rayleigh distribution is an ad hoc assumption, which
is justified by the fact that it is a simple distribution func-
tion for a variable that can take only positive values and
that many experimental sideband spectra agree with Eqs.
(5) or (9). In these cases, the vibrational energy of the
source is probably shared by many modes. The com-
ponent of the vibration amplitude in the direction of the
y-ray detector may therefore vary as a function of the po-
sition of the emitters on the source or as a function of
time.

In general the width of the amplitude distribution may
be smaller than that of a Rayleigh distribution. A good
choice is then the Rice distribution

a aacP(a}= 2 Ip 2 exp
ag ag

2a +ac
2a~2

(10)

In the limit a, ~0 the Rice distribution is equal to the
Rayleigh distribution. For R=a, /az »1 we find an
average value for a, (a)=a, and a standard deviation
=-az. We will call R the amplitude sharpness of the
source. For az —+0 we get the delta function 5(a —a, ).

B. The quantum-beat spectrum

Monahan and Perlow derived the following formula
for the quantum-beat spectrum, using classical optical
theory:

I(t)=1+ g g Jn(a)Jt(a)Gni(b'ro)
n =—oo 1=—00

Xexp[i(n —l)Qt] .

If we assume that the probability function for the am-
plitudes is a Rayleigh distribution

'I

a aP(a)= 2 exp
ag 2ag
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The complex function G„f is given by Eq. (2.16') in Ref.
5 and depends on the isomer shift hem between source and
absorber, the thickness of the absorber, the vibration fre-
quency 0, the natural linewidth A, , and the width A,

' of a
Lorentzian distribution of isomer shifts in source and/or
absorber. We assume a distribution of modulation index
P(a) and a distribution of phases that are uncorrelated.
The effect of the phase distribution is an attenuation of
the amplitudes of the beat components in the quantum-
beat spectrum F~. &hen the phase distribution is Gauss-
ian with standard deviation o, the attenuation coefficients
are

—5
rnrn

conducting
epoxy resin

implanted
o

FJ =exp[ ——,'(jcr) ] .

We define the degree of coherence C as follows:

(12)
FIG. 1. Mounting of the source.

n

C= —g FJ,
j=1

(13)

+ g 2
( DJ(a„aR,pro)

~

j=I

x cos[j Qt +p, (a„aR, b,co ) ]

(14)

with

DJ(a„aR,pro) = g J P(a, a„aR)J/+f(a)Jf(a)da
I=—00

XF,G, +f i(&co)

Pi(a„aR, pro) =argDJ(a„aR, b, ro) .

The spectrum consists of a constant background and a
series of beat components with frequencies equal to the vi-
bration frequency and its harmonics. If the time is not
measured we must average Eq. (14) over t and we find a
constant 1+Do(a„aR,b,ro). The term Do(a,„aR,pro) is a
real negative number which describes the resonant absorp-
tion. In a normal Mossbauer transmission experiment,
4m is artifically varied by means of the Doppler effect,
and for (a )&0 we find the sideband spectrum.

where the summation is made for the most relevant com-
ponents.

We rewrite (11) as

I(t,a„aR,pro) = 1+Do(a„aR,pro)

vibrating
source ~ slow

() ~[ war
fast Apple

done with a thick Na4 Fe(CN)6 10H20 absorber
(t, =6.4). The isomer shift with respect to CoCu is
—0,2919(7) mm/s (Ref. 19). The y rays were detected
with a O. 1-inm-thick NaI(T1) crystal. The block diagram
is given in Fig. 2. The time-to-ainplitude converter (TAC)
is started by the fast signal from the detector. A signal
that has a constant phase with respect to the driving elec-
tric field in the piezoelectric crystal stops the TAC. Only
one out of eight pulses is admitted, enabling the observa-
tion of eight periods in the time spectra.

The output pulses from the linear gate were processed
in two different ways. (1) During the quantum-beat mea-
surements the absorber was at rest and the digital infor-
mation from the analog-to-digital converter (ADC) was
processed by the multichannel counter (MCC) interface. ~o

(2) During the sideband measurements the absorber was
moving at constant acceleration and all pulses were count-
ed as a function of velocity.

The time resolution of the system was determined by
measuring the y —x-ray coincidences from a Y source
with the help of an extra plastic scintillation detector,
which is connected ta the system at the point in the black
diagram indicated by V, . The full width at half max-
imum of the measured prompt time peak was 8.4 ns.
With the aid of the measured time spectrum attenuation
factors T~ were calculated numerically for each harmonic
component in the quantum-beat spectrum. The results
are T& ——0.879, T2 ——0.682, T3 ——O. S29, and T4 ——0.422.
The dependence of these numbers on the frequency will be
neglected in Sec. III B.

The quantum-beat spectra were analyzed with the func-
tion

IH. MEASUREMENTS AND CALCULATIONS

A 0.3-rnm-thick X-cut quartz crystal was covered on
both sides with a 1.0- and a 0.3-pm-thick copper elec-
trode. Into the thick electrode I12-keV Co ions were
implanted up to a source strength of 5 pCi; see Fig. 1. No
annealing was done. The linewidth, measured with a thin

Fetch absorber, was 0.30 mm/s. All measurements were

Vc

Iv
Vg

'-

discr,

discr.

SCA
14 keV

0-1000 ns
start
TAt.
stop

(in
gate

FIG. 2. Block diagram.

inter face

fttetttory

counts
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I(t')=C' 1+ g Ajcos(j Qt'+PJ)
j=l

(15)
1.0

with O' A and P.PJ as ree parameters. The experimental
amplitudes are reduced with respect to the theoretical am-

p itudes 2
~
DJ

~

for two reasons. (1) Only a fraction f of
the photons is recoillessly emitted, and (2) the oscillations
are attenuated due to the finite time resolution of the
detection system. Taking these effects into account, we
find from Eqs. (14) and (15)

2fTJ II DJ.
[

1+fDO
(16)

The shape of the Mossbauer spectrum becomes

I(a„aR,hco) =1+fDo(a„a~, he@), (17)

where hco is artifically varied by means of the Doppler ef-
fect.

The time scale in Eq. (14) was chosen such that at t =0
the source is at equilibrium position. The laboratory time
scale t' di fers from t:

CX

t = —t'+ —+—+Et0 Q
(18)

or

in which n is the phase of the mechanical vibration of the
source with respect to the phase of the electric field acting

to V (Fi . 2
on the piezoelectric crystal, p the phase of V 'th, wi respecto, ig. }, and ht an unknown electronic time delay
which is assumed to be constant throughout the measure-
ment. From Eqs. (14), (15), and (18) we find for the
corrected phases of the components in the quantum-beat
spectrum:

P.J „=PJ+jp= —
QJ j(a+Qht)+—n~2m.

( n~ integer) (19)

0.8

0.6

p(a)

0.4

0.2

0
0

FIG. 4.. Distribution function of the modulation index for the
same rf frequencies as in Fig. 3.

least-squares fits are obtained for R' da ice istri ution of
modulation indices. The R is strongly dependent » the
frequency, its maximum value lies at 9.795 MH h

e intensity of the carrier is still significantly larger than
it would have been for a unique value of the modulation
in ex [Fig. 3(a)]. In Fig. 4 Rice distribution functio

the ar
) of the modulation index are drawn [E . (10)

e parameters a, and a~ as they are determined from the
least-squares fits to the spectra.

The results of the measurements are summarized by
Fig. 5. The resonance curve (a)/V, has a corn li t d
sha e in

'
comp icate

between
p, '

dicating that there exist many vibrati
e ween 9.7 and 9.9 MHz. The maximum vibration am-

plitude occurs at 9.8075 MHz. An
' t t' fn in cresting eature is

100—

PJ.+$J nj. 2m
+p+ nest (20)

The sie sideband spectra were analyzed with Eqs. (7) and
(10},using the following free parameters: the Rice param-
eters a, and aR, the intensity of the absorption integral,
the isomer shift, the distance between the sidebands 0,
and the effective width of the separate lines. From a, and
az t e average value of the modulation index and the am-

p itude sharpness R =a, /aa was calculated.

80—

vc
60—

(v)
40—

20-

44
4

A.. Sideband spectra as a function of rf frequency

On the asis
~ ~

e asis o a preliminary measurement th len e vo tage

aev
e signa, „was chosen to correspond to an

g value of the modulation index of about 2.4. For this
value, the central line (carrier) in the sideband spectrum

isappears in the case of a delta function P( ) =5(

the
or e modulation index (R=oo) so th

' ' ' i= oo, o e sensitivity ror
t e etermination of the amplitude shs arpness is large.
n ig. 3 sideband spectra are shown for three different rf

frequencies and (a ) =2.2—2.4. In all cases the best

0 I is i I I I i I

974 976 9.78 9.80 9.82 9.84 9.86
frequency IMHz)

FIG. 5. Res nesonance curve of the source (top), amplitude
sharpness as a function of frequency (bottom).
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the behavior of the amplitude sharpness R as a function
of frequenc . Thi f
9.795 MHZ, at which frequency we find only a small
shoulder in the resonance curve. Th t f he op o t eresonance
curve is at a much higher frequency.

B. Quantum-beat spectra as a function f rf fo requency

30—

20—
A

I

(%)

1
0

D
0

=&.00

The value V of the d
' '

driving rf voltage was chosen such
that the average modulation index ( }ex a was equal to 1.
At this value the amplitude of the fundamental com-
ponent Ai has its maximum value (see F g. 11). The pro-

III C.
portionality between V, and (a) was check d

'
Sec e in ec.

Figure 6 gives a quantum-beat spectrum at 9.795 MHz
and a = 1.00. T=1.00. The spectrum was analyzed with E (1 )

e ollowing results: A i ——0.278(1), A2 ——0.054(1),
Pi ——3.209(5) rad, and P2 ——5.77(2) rad.

The theoretical amplitudes and phases were calculated
with the Monahan theory [Eqs. (10), (14), and (16) for

calculate the coefficients G„i was fixed at the value where

sha e as
Do 0,0,b,co}, calculated as a function of Leo has theco, as e same

A, '=0. 152 m
s ape as the Mossbauer dip of the nonvib t'nvi ra ing source:

=0.642 of
mm/s. An effective recoill fess ract1on

f= . o the source was determined from the
M- ' ', e eoretical value ofMossbauer absorption maximum the th

A =0.298
, and Eq. 17). The theoretical amplitudes are

and A2 ——0.060. A comparison with the ex-

perimental values shows that the source is not 1e is no comp etely

= —1.878 r
co erent. The theoretical phases are: P = —1.276

rad. According to Eq. (20) x=(PJ. +PI)/J'
and

should be independent of j. We find x=1.933(5) for
j=l and x=1.944(10) for j=2, values which are in ood
agreement.

ic are sn goo

The re
7. The

su ts o the measurement are sum
he structure in the curves giving the theoretical am-

p itudes is caused by the variation of the amplitude sharp-

of the
ness R with frequency (Fig. 5). Th d fe egree o coherence

in e requencyo t e source has a maximum value in th f
range where the amplitude sharpness has a peak, although
the coherence peak is much broader. So there s

a ion between the amplitude sharpness and the de-

gree of coherence.

10 — '

I I

9.74 9.76

~ ~ ~,
~++ ~

A2
~ ~

I I I

9.78 990
frequency (MHz j

~ ~

~ ~

9.82 9.84 9.86

FIG. 7. Experimental and theoretical amplitudes of uantum

beats as a function of fre

'
u es o quantum

i n o requency. Solid curve, theoretical A ~,

sume .
dashed curve, theoretical Aq. No distribution of phases was as-

The phase difference a of the mechanical vib
the source an

anica vi raiaon o
and the driving field was calculated (except for

a constant) with Eq. (20} (see Fig. 8). The phase jump
over the whole region is m, as it should be with a mechani-
ca vibrator. e see a nice correlation bet h

'
n e ween p ase and

mp i u e: where the phase decreases most ra 'dl

fre uencq y we find peaks or shoulders in the resonance

0-3—

C. Sideband spectra as a function of rf voltage

The measurasurements were performed at 9.795 MHz,

The s ectra
where the amplitude sharpness R hs as its maximum value.

e spectra were analyzed with a Rice distribution of
modulation in

''
n in ices. The amplitude sharpness turned out

to be constant for (a ) & 1.5. For lower values of (a }the

in the lea
error in R became too large and th R ke was ept constant
in e east-squares fits to the spectra. The modulation-

1.3—
m-4

1.2

+y +
tb

0

0$
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9.74 9.76 978 9 80
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m-beat spectrum, solid curve: fit
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drivin rf, e

source vibration with respect t tho e
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quency (j= 1); crosses, derived from th

(j =2).
m e second harmonic
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and a turn out to be proportional toin
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2

0 I

3

FIG. 13. Corrected phases of the components in the
quantum-beat spectra as a function of modulation index. The
curves are the result of one fit with y as a free parameter.

IV. DISCUSSION

The high-frequency properties of the source can be
summarized as follows. At the optimum frequency, 9.795

=0.729(11), and F4 ——0.628(12). The degree of coherence
[Eq. (13)] calculated from the first and second harmonic
is C&2 ——0.97 and calculated from all components
C]g ——0.87.

The phases of the components in the quantum-beat
spectra, corrected for the phase angle P between V, and
V„are plotted in Fig. 13. All points were fitted simul-
taneously to Eq. (19) [and Eqs. (10) and (14)] with
y= —a —Qht as the only free parameter. The agreement
between experiment and theory is good, except for a small
reduction of the peak-to-valley ratio P& „and a shift of
about 0.3 rad for P4„.

MHz, the amplitude sharpness is R=5.9 (which means a
relative FWHM of the modulation-index distribution of
30%, see Fig. 4). The degree of coherence for the first
and second harmonics is 97%. The quantity of this
source is much better than any other high-frequency
source reported up to now. This is probably caused by the
mounting of the crystal, which is the same as the mount-
ing of commercial AT-cut crystals used for frequency
control, and the method which is applied to attach the ra-
dioactive material to the quartz crystal. In our earlier
work the crystal was mounted in the same way, but a dif-
fusion process at 900'C was necessary, which probably
spoiled the crystal.

A thorough test was made of the optical theory of
Monahan and Perlow. When we restrict ourselves for the
moment to the first and second harmonics in the
quantum-beat spectra, the amplitudes are correctly repro-
duced by the theory within an accuracy of 5%. The
phases are reproduced very well, with the electronic delay
at ht as the only free parameter for the whole measure-
ment. At extreme. values of the amplitudes and phases
there is a discrepancy between theory and experiment. We
think that it is caused by a variation in modulation indices
which is somewhat larger than the variation according to
the Rice distribution. Although the Rice distribution is
an elegant way to describe the distribution function of the
modulation indices, it is only a model which works
reasonably for the description of sideband spectra, but
may deviate from reality. So the discrepancy at the ex-
treme values is probably no indication of failure of the
theory.

The large attenuation factors for the third and fourth
harmonics do not allow a statement about the validity of
the theory concerning these harmonics, although the
phases are in reasonable agreement with the theory.
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