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Photoionization in the presence of a probe electromagnetic wave is studied. A continuum wave
function is obtained in a weak-field, low-frequency limit for low-energy photoelectrons. When the
electron and photon energies are comparable, the absorption and stimulated-emission angular distri-
butions show a significant departure from results based on a much-used on-shell approximation of

Kroll and Watson.

I. INTRODUCTION

There has been recent work! on the effect of a strong
radiation field on autoionizing levels embedded in the
photoelectron continuum. The emphasis of this work is
on the laser coupling of the autoionizing level with the
continuum and the resulting modification of the Fano line
profile,> which, in the absence of the radiation field, is
characteristic of photoabsorption near one of these levels.
It is the purpose of this paper to examine the effect of a
strong field on the photoelectron continuum wave func-
tion in the absence of an autoionizing level.

The strong field is produced by a second, low-frequency
laser which probes a target which is being ionized by a
weak source. At the power levels used here, the second
laser has a negligible effect on the initial orbital (demon-
strated below). There has already been some work® on
laser modulation of photoionization; however, this work is
for energetic ionizing photons which produce fast pho-
toelectrons. The latter are described by a wave function
which is calculated in the well-known on-shell approxima-
tion studied by Kroll and Watson* for electron scattering
(or, more appropriately, in an on-shell approximation as
modified for a Coulomb field by Fiordilino and Mittle-
man®).

The present work is motivated by the thought that
“resonant” continuum wave functions (whether of the
many-body? or shape®’ type) can have their resonant
behavior confined to a single partial wave which is strong-
ly varying with energy through the resonance. The radia-
tion field, on the other hand, destroys / as a good quan-
tum number. For example, a CO, laser with intensity of
about 6 MW cm~2 produces an oscillating dipolar field
whose dipole moment is about 1.7 D. Thus a theory
should be formulated in which the photoelectron partial
waves are coupled by the field (in analogy to the theory of
photoionization of a polar molecule). The oscillation of
the dipolar field means that the principal effect is absorp-
tion and stimulated emission by the photoelectron.’
Furthermore, for low-energy photoelectrons, such that the
low-frequency probe photon and photoelectron energies
are comparable, the cross section is found to deviate signi-
ficantly from the on-shell result of Kroll and Watson.>*
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II. THEORY

Photoionization by the weak source is treated perturba-
tively, such that the probability amplitude for the final
state is
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where for the jth source F; is the flux, o; the frequency,
p; the unit vector in the direction of polarization, and
where o, is the frequency of the initial level. The intense
source has the interaction Hamiltonian,

V2 =ﬁQZCOS( Cl)zt) N (2)

where we have dropped the quadratic term e24%/(2mc?)
since it does not affect the results. Note also that we as-
sume that both sources have sufficiently low frequencies
that the photon momentum I'c\]ﬁco /¢ is negligible.

First we show that (for the second laser power levels en-
visioned here) the distortion of the initial state can be ig-
nored (provided w, is small compared to target internal
frequencies), such that 1; can be replaced by the unper-
turbed, time-independent wave function v;;. The first-
order correction to ¥;q is
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where the sum runs over the complete set of unperturbed
states and we consider only the absorptive term in the in-
teraction. We estimate the size of the first-order correc-
tion (for a hydrogenic atom) by assuming that w,—w; is
small compared to @, Using closure, we find that
uFya/w,) % (2a0/Z) or  1.114Xx10~Y(F,/E,)!/?
(where E, is the second-laser photon energy in a.u.) must
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be small compared to one for ¥;; to be small compared to
;0. For the CO, laser (0.117-eV photons), this number is
1.7 10~ 16F1/2, ‘

On the other hand, the first-order correction to the con-
tinuum wave function is
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where the k ’ integration is over the unperturbed continu-
|
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ous set. Using plane waves for the continuum wave func-
tions, the integrations over T’ and K/ are carried out giv-
ing the result that (27F,a/w,)/*(#ik/mw,) or (using
k=0.1ag! for low-energy photoelectron) 5.571
X 10~ 1°F}2 /E3* must be small compared to one for
1/)E. | tobe small compared to 1/JT<.O. For CO, photons this

number is 2.0X 10~1*F}/2 In this calculation, the max-
imum F, is about 0.36X 10%® cm~2s~!, such that the ra-
tio of the continuum to bound validity criteria is 0.12 to
0.01, respectively. The correction to the continuum is
more than an order of magnitude greater under these cir-
cumstances since the denominator in Eq. (4) reduces to w,
when the integrations over T’ and K’ are performed.

In Eq. (1a) the continuum wave function has the in-
tegral equation,*

YoAT0=Xo(F0)+ [dT" [ iwdt'Go(?,?',t,z')V(?')1/;1.(?',:') : | (5a)

”?2

Go=(if)~'(2m)~3 fdﬁ'exp[i?"(?‘?"]exp

ik-T l'ﬁk2 i %R sin(o,t)
(i) _ ¢ exp[' 2t
2m

Xo=¢€xp exp

"’T{ exactly solves the Schrodinger equation,
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where V is a local,® electron-target potential of shorter
range than r~! (restricting the theory to the photodetach-
ment of negative ions). The second term in Eq. (6b) may
be more transparent if it is reexpressed,

V, =ifiw,cos(wyt) RV , (7a)
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in terms of a dipole moment eR due to the second radia-
tion field. This form emphasizes that dipolar coupling of
the photoelectron partial waves should be considered in a
low-energy theory of photoionization. That 1/1? solves Eq.

(6a) is readily verified by substituting Eq. (5a) into the

left-hand side of Eq. (6a).
The formal properties of Eq. (5a) have been studied bj
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Kroll and Watson* for electron scattering. For large 7 the
exact scattering amplitude is given. These authors then
use stationary phase arguments to derive the widely used’
on-shell approximation for the amplitude. Photoeffect
studies to date>> use an appropriate on-shell approxima-
tion for the photoionization amplitude. These approxima-
tions are not valid for comparable electron-photon ener-
gies, which is the situation for the production of low-
energy photoelectrons by the first source. Much progress
has been made recently'® in the numerical solution of cou-
pled integral equations in field-free low-energy photoioni-
zation studies; thus it would appear worthwhile to at-
tempt the numerical solution of Eq. (Sa).
The expansions
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are substituted into Egs. (5). From Eq. (8a) it is clear that
|p| photons are absorbed (p <0) or emitted (p >O0)
[where it is assumed that (#%k2/2m —pw,)>0]. It is
straightforward to derive the set of coupled time-
independent equations,
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where we have specialized to incoming boundary conditions for use of Eqgs. (8a) and (9) in Eq. (1a). When R =0, only
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To ) exists, and Eq. (9) reduces to the familiar integral equation of field-free photoionization.

It would be an arduous task to obtain the general solution to Eq. (9). For the present, power levels and electron ener-
gies are chosen such that small argument expansions can be used for the Bessel functions and terms retained through or-
der kR. The elastic (p =0) wave function is affected at order (kR )? and higher, so that the field-free 1/;( ) is calculated.

On the other hand, for p =+ 1 the following coupled, integral radial equation (all of whose terms are of order kR) are ob-

tained for the inelastic wave function (assuming that V is spherically symmetric and that R, in the direction of P2 is
along the laboratory-frame z axis):
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where ¥ >7' and r <7’ in the first and second terms of
Eq. (10b), respectively, and where the expansion
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lem
has been used. In Eq. (1a) it is assumed that ¥; =, is an

S state, such that, for p; parallel to the laboratory-frame z
axis (and therefore to p,), only the m =0 components of
Eq. (11) contribute to the matrix element. Using Egs. (1),
(8a), and (11), it is straightforward to obtain the angular
distributions of photoelectrons for the p = *1 processes,
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We estimate the size of this term by replacing U(r') by a
constant Uo for 0<r'<a and by zero for r’'>a and by
evaluating vp at r =0, for small ka, and for an assumed
plane wave for ™). To order ka, Eq. (15) is of order
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suggesting that, for small kR and ka, the expansion of the
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From Eq. (12c¢) electrons are ejected with energy

k%,/2=k2?/2FE, [see Eq. (100)]. 'In Eqs (10) when
ki1i—k, R{FV=+(kR/2V3)d,, and R3"=+(kR/
\/_S)dl, where d; is the radial amplitudes for a field-free
D Wave,

di= [ dr Pt r,k)[ ]wr) (13)
Then Eq. (12a) reduces to the on-shell result,>>
d
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It remains to show that the expansions in powers of kR
are convergent ones. As an example, consider the second
term on the right-hand side (rhs) of Eq. (9) for p=1,
n =0, ¢’=0, in which J, (k “R)~(+k'R cos6;.). Taking
the limit and carrying out the K’ integration, the rhs con-
tributes terms of the form

T’ |)]1P,(cosb, _,)U (15)

[
integrand in Eq. (9) in powers of k'R and the evaluation
of the k'’ and T’ integrals produce a convergent series in

kR (or k+;R provided this term is also small).
III. NUMERICAL RESULTS AND DISCUSSION

Equation (10a) is solved iteratively for U(r') equal to a
constant U, for 0<r’<a and equal to zero for 7'>a.
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FIG. 1. Solid line, p =1 result; dashed line, on-shell approxi-
mation; dashed-dotted line, p = — 1 result.

For ka =0.7 and V,=—3.530 a.u., a shape resonance
occurs'! in the p wave. Figure 1 shows results for the
photoelectron angular distributions [Eqs. (12a) and (14),
where ;0 is the 1S level in this potential with energy
Ey=—2.8645 a.u.]. The parameter R (where eR =1.86
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D) is chosen such that k_;R =0.2 (for a given flux
F,=3.43%10%* cm~2s~! of the CO, laser), and
k41=0.24aqy ! is chosen as the electron momentum (in
a.u.) where the field-free, resonant photoelectron cross
section approaches its maximum value (1.48 Mb). For
CO, photons (0.117 eV), Eq. (10c) requires a maximum of
ten iterations to coverage.

Note that Eq. (12a) gives results which deviate signifi-
cantly from the on-shell result of Eq. (14). These devia-
tions are the result of the dipolar coupling of the p wave
to s and d waves in the last two terms of Eq. (10a). The
uncoupled p wave is resonant; thus the resonance can
spread to the other partial waves through this coupling, in
analogy to a molecular field effect which has received
study.’? By k =0.5a5"', however, Egs. (12a) and (14)
nearly agree. These results suggest that the angular distri-
bution maybe the best measurement of the effect of the
probe radiation field on photoionization dynamics. The
p==1 cross sections are small, however, as a result of
our small-kR criterion for the solution of Eq. (9). It
would appear worthwhile to obtain a more general solu-
tion to this equation.
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