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Electron-pair-production cross section in the tip region of the positron spectrum
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The radial integrals for electron-pair production in a point Coulomb potential have been expressed

by Sud, Sharma, and Sud in terms of the matrix generalization of the I function. Two new partial

differential equations in photon energy satisfied by the matrix I function are obtained. We have ob-

tained, on integrating the partial differential equations, accurate radial integrals as a function of
photon energy for the pair production by intermediate-energy photons. The cross section in the tip

region of the spectrum are calculated for photons of energy 5.0 to 10.0 MeV for U. The new tech-

nique results in extensive saving in computer time as the basic radial integrals in terms of the hyper-

geometric function I'2 are computed at one photon energy for each pair of partial waves. The re-

sults of our calculations are compared with plane-wave Born-approximation results and with the

calculations of Dugne and of Deck, Moroi, and Ailing.

I. INTRODUCTION

The distorted-wave Born approximation (DWBA) cal-
culation of the electron-pair-production cross section in
the point Coulomb field of the atomic nucleus has been
performed by a number of workers. ' Jaeger and
Hulme' have expressed the DWBA radial integrals in
terms of Appell's hypergeometric function F2, which is a
doubly infinite series, and is defined as

Fz(a, bi, bz, ci,c2,'x,y)

(a) (bi) (hz) xm yn

c~ c2„m!n! '

where (z)„—:I (z+n)/I (z), with (z)o——1, is the Pochham-
mer symbol. The condition for convergence for the Fz
function is

~

x
i
+ ~y ~

(1. The explicit DWBA expres-
sion for the pair-production cross section in terms of F2
functions is given in literature. ' Sverbai et al. have cal-
culated the pair-production cross section for a large num-
ber of atomic numbers and for photon energies up to 5.0
MeV. It has not been possible to extend the DWBA cal-
culation for photon energy greater than 5 MeV as the
number of partial waves required increases with increas-
ing photon energy and, furtherinore, the Fz functions be-
come very slowly convergent series. A new technique has
been developed to handle the radial integrals involving the
product of the Dirac-Coulomb functions. ' In this
method the radial integrals are extracted from the ele-
ments of the matrix gamma function which is a matrix
generalization of the mathematical I function. The re-
currence relation and the partial differential equation sa-
tisfied by the matrix I function reduces the number of
the radial matrix elements to be evaluated. Sud et al. '

have expressed the radial integrals for the pair-production

cross section in terms of the elements of the matrix I"
function. They have also obtained a partial differential
equation in lepton energy satisfied by the matrix I func-
tion. We present in Sec. II two new partial differential
equations satisfied by the. matrix I function. The partial
differential equation for I matrix in photon energy has
been derived for a fixed electron energy, which can be in-

tegrated numerically to obtain the matrix I function for
different values of the photon energies [given the matrix
I function at some initial value, i.e., electron energy E
(a fixed value), positron energy E+, and photon energy
k]. The second partial differential equation for the I ma-

trix is variable in energy, which can be integrated to ob-
tain the accurate radial integrals for the physical value of
the photon energy [given the inatrix I' function for fixed
values of E and E+, and arbitrary energy parameter
w]. The large value of w improves the convergence of the
F2 functions used to form the initial I matrix. We
present in Sec. III results of the calculation of the
electron-pair-production cross section in the tip region
(E =1.008trtc ), of the positron spectrum for photon
energies of 5.0—10.0 MeV using the differential equations
(11) and (13). We have compared the results of our calcu-
lation with the PWBA calculations, the calculations of
Deck et al. ,

' and for a few energy points with the
DWBA results of Dugne. ' In Sec. IV we discuss the util-

ity of the theoretical formalism for the computation of
the pair-production cross section for the photon in the in-
termediate energy range.

II. THE PARTIAL-DIFFERENTIAL EQUATIONS
OF THE MATRIX I.' FUNCTION

IN PHOTON ENERGIES

The DWBA expression for the differential cross section
for the pair-production cross section can be found in the
literature and the reader is referred for details to Refs. 5
and 12. The DWBA radial integrals can be expressed in
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terms of the elements of the matrix I function. Here we
give an outline of the steps leading to the definition of the
matrix I function, and the derivation of the two new par-
tial differential equations satisfied by it.

The radial Dirac-Coulomb functions for a lepton in a
point Coulomb field of the atomic nucleus satisfies a
first-order matrix differential equation of the form'

d 1
U+(x) = —A + —B+ U+(x)

x

where x =p+r and the constant matrices 3 and B in a
representation in which B is a diagonal matrix are given
as

ly+

/++ ly+

y+ —ly+
—ly+

(2)

B + =p+B'=p+

where + ( —) corresponds to positron (electron). The
other parameters in Eqs. (1) and (2) are y+ =+aZE+ /p+,
y+ ——[K+—(aZ) ]', where a is the eigenvalue of the
Dirac operator K=P(cr I.+. 1), a is the fine-structure
constant, Z is the charge of the atomic nucleus, and E
and p are the energy and momentum of the lepton.

The solution of Eq. (1) for the pair of matrices given in
Eq. (2) is given as

M i(2,y r (2ip+r)
1

U+ ——

(2ip+ r)'~ M i/2 ry+, r+ (2—ip+ r)

(y+ —
ty+ )

i/z —yr ('2ip r)
j ++ly+

Min ~y+, ,+(2ip+r)

where M is the Whittaker function. We define a matrix
function W(A, B;r) which is a matrix direct product of
lepton wave functions and other r-dependent terms in the
matrix elements

8 00r=Bk— U (p r)s U
Bp+

Bp+

e —ikr

(rk)n+1

—ikr

—+ + (k )n+i8'(A, B;r)=U (p r)I3 U+(p+ r) (4)
+ U (p r)e U+(p+r)

where k is the photon energy and denotes the matrix
direct product. The matrix function W(A, B;r) satisfies a
4&&4 matrix differential equation (1), with the following
A and B matrices:

e
—rkr

)n+i (7)

We have used the following relations to express the right-
hand side of the Eq. (7) in a closed form:

A =A SIz+I2A + (n+1)I4, —

B=p B'I 2+p+I 2B'+ikI 4,

where I is a unit matrix of the dimension of the subscript
level and A +,B' are as given in Eq. (2). The integral of
such an integrand [Eq. (4)j is defined as a matrix I func-
tion (for details see Sud et al. )

p+ 8
U+(p+r)=r

8
U+(p+r)

Bp+ Br

(obtained by assuming that A + and B' are constant), in-
tegrand 8'(A, B;r) satisfying the relation (Sud et al. )

r'e "W(A,B;r)= W(A+aI, B+bI;r),
and the recurrence relation satisfied by the matrix I func-
tion

r(A+I, B)= J W(A, B;r)dr, (6)
B r(A+I, B)=A r(A, B) . (10)

where it is assumed that the integral is convergent at the
upper limit and the (0) indicates that any simple pole
present at the origin has been removed. The elements of
the matrix I function in Eq. (6) for the A and B matrices
of Eq. (5) are Appell's hypergeometric function I'i,

We obtain a partial differential equation in photon en-
ergy by treating the energy of one of the leptons a fixed
value and the photon energy as a variable (k =E++E )

in Eq. (6). The partial differential equation in photon en-
ergy (electron energy constant) is given as

We can express Eq. (7) as
T

T++Tk I
p+

1 I &g A + (I2eB')B '(A+I)—T+-
p+

Tk —— I 4 iI 4B (A+I) . —(n+1)
(12)
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I iI 4B '(—A + I ) I
w

(13)

This equation can be integrated to obtain the matrix I
function of the desired value of the photon energy k. The
parameter w is taken as m =k +k', where k is the photon
energy and k' is the additonal arbitrary energy. The con-

The A and B matrices are given in Eq. (5) and A + and
B' are as given in Eq. (2). In the derivation of Eq. (11) we
have made an implicit assumption that the matrices 2 +
and B' are independent of the momentum variable p+.
However, the A+ matrix depends on the momentum
variable through the parameter y+ —— aZ—E+/p+. In
the region where E+ &&m the parameter y+ can be ex-
pressed as y+- —aZ(1+m /2p+ ) and may be treated
as constant. In Eq. (12), aside from the explicit appear-
ance of k, the only function of k is the matrix B which is
homogeneous and linear in k. So the equation. is evidently
homogeneous in k. Equation (11) can be integrated nu-

merically [given the matrix I function at some initial
value, i.e., for E (fixed value), E+, and k] to obtain the
matrix I function for a different value of the photon en-

ergy. The radial integrals obtained by integrating Eq. (11)
are very accurate for intermediate energy photons except
at the lower end of the spectrum where E+-m. We have
used this equation to calculate the radial integrals in the
tip region where the approximation is valid. It may be
mentioned that an equation [similar to the Eq. (11)] ob-
tained for E+ ——const will be valid for the lower end of
the spectrum.

A very useful partial differential equation in energy (a
free parameter) is obtained by keeping the energies of the
electron and the positron fixed. In the definition of the
matrix I function [Eq. (6)] the photon energy k is re-
placed by a paraineter w. The partial differential equa-
tion in w is obtained by following the procedure followed
in deriving Eq. (11)and the required equation is given as

vergence of the F2 functions required to form the I (w) is
improved due to the reduction in its arguments
[x+ ——2p+ /(p+ +p +w) ].

III. RESULTS AND DISCUSSION

We present here the results (Table I) of the calculation
of the cross section in the tip region (E =1.008mc ) of
the positron spectrum for photons of energy 5.0—10.0
MeV in steps of 0.5 MeV for U. We elucidate here the
important features of our calculation. The matrix 1(w)
is formed for each partial-wave combination for E
=1.008mc, E+ (7.5——E)—MeV, and w=12.5 MeV
by calculating Appell's hypergeometric functions with the
improved convergence due to the parameter w. The dif-
ferential equation [Eq. (13)] is integrated and I (w) is used
as the initial value to obtain the I matrix for the physical
value of the photon energy k (in our case k=7.5 MeV).
There is an agreement up to eight significant figures be-

tween the results obtained by integrating Eq. (13) and by
directly summing the F2 series. Therefore the new tech-
nique [i.e., the use of Eq. (13)] gives results for the cross
section as accurate as those obtained with the existing
techniques. The differential equation [Eq. (11)] is in-

tegrated both upward as well as downward in photon en-

ergy by using the Runge-Kutta-Gill method, with the ini-
tial I matrix for E =1.008mc, k=7.5 MeV, and

E+ ——k —E, to obtain the I matrix for photon energies
between 5.0 and 10.0 MeV. The variation of parameter

y+ [treated as a constant in the derivation of Eq. (11)] is
of the order of 1 part in 10 over one integration step used
in the calculation and is asymmetric around the initial
photon energy k=7.5 MeV. However, the slowly varying
parameter y+ changes by 0.4%, at k=5.0 MeV, and by
0.12%%uo, at k=10 MeV, of its value at the initial photon
energy. Therefore the approximation is better when Eq.
(11) is integrated in the upward direction. The error in
our calculation af the matrix I function varies with the

TABLE I. (1/Z )tea. /dE+) differential cross section for pair production for electron energy

E =1.008mc and for different photon energy k. (1/Z )(do.Dw/dE+), (1/Z )tdo.pw/dE+), and

(1/Z )(doD„/dE+ ) are the results of the present, PWBA, and Dugne (Ref. 14) calculations, respective-

ly.

(MeV)

5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

doow
Z2 dE+

(10 b/Nlc )

1.0516
0.9732
0.9118
0.8582
0.8135
0.7737
0.7310
0.7056
0.6720
0.6543
0.6363

1 dopw
Z~ dE+

(10 ' b/mc~)

1.1296
1.0578
0.9933
0,9353
0.8832
0.8362
0.7937
0.7552
0.7201
0.6879
0.6584

1 «Du
Z~ dE+

(10 b/mc )

1.1264

0.7885

0.6337

'Dugne's calculations are for photon energies of 10mc, 15mc, and 20mc . The values shown in the
table are interpolated to the energies for which we have performed the calculations.
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photon energy due to the variation of parameter y+ and
is estimated to be of the order of 1 part in 10 at the pho-
ton energy k= 10 MeV and of the order of 1 part in 10 at
the photon energy k=5 MeV. (We estimate the error in
the calculation of the I function by comparing our results
with the directly evaluated I matrix calculated by sum-
ming the F2 series. ) The error associated with the
Runge-Kutta-Gill integration procedure causes no prob-
lem as the matrix I' function is a smooth function of pho-
ton energy. Therefore the error estimated in the cross sec-
tion due to the use of Eq. (11) is less than 10% at k=5.0
MeV and less than 1% at k=10.0 MeV. The use of the
new technique results in considerable saving in computer
time, as we compute the radial integrals for 11 different
photon energies (E fixed, E+ ——k E)—by calculating
Appell's hypergeometric series F2 only once. Wc have
written a computer code to calculate the positron spec-
trum [for an expression of der/dE+ see Eq. (5.8) of Ref.
5] for 11 different energies simultaneously. In the com-
puter code developed by us the radial integrals are ob-
tained by integrating the partial differential equation and
the recurrence relation satisfied by the I' function is used
to reduce further the computational work. In Fig. 1 we
have shown Tqp

Tq
1 do

q Z dE+

105

4X IO

Ol
EJ
E
C
I
D

10'

4X IO

(with q =
I
~

I
+

I
lr+

I

—I )

as a function of q for three different energies. We have
calculated the partial contribution Tq for q „=48 and
log Tq is quadratically extrapolated to 2qm, „. In Fig. 2
the convergence of g Tz is shown as a function q for one
photon energy and the limit is obtained by using the pro-
jection techniques. ' We give in Table I the results of our
DWBA calculation, a PWBA calculation' for photon en-
ergies of 5.0—10.0 MeV, and Dugne's calculation, avail-
able for a few energy points. It can be seen from Table I
that the effect of the Coulomb distortion is quite signifi-
cant in the tip region of the positron spectrum. It is also

-410—

4X IO

PROJECTED
LIMIT

C

10

!hi

4X IO

10
20 40 60 80 100

FIG. 2. The convergence of do/dE+ ——g & Tq, the dif-
ferential cross section for the pair production for photon energy
k=7.5 MeV and electron energy E =1.008mc, shown as a
function of q =

~

x
~
+

~
x+

~

—1. The projected limit using the
techniques of Ref. 15 is shown.

observed that Dugne's' results, interpolated to our calcu-
lated energy points, are in good agreement with our re-
sults. There are also available a number of expressions in
the literature for the positron spectrum using the
Sommerfeld-Maue wave functions, e.g., Davies et al. ,

'

Fink and Pratt, ' Roche et al. ,
' and Deck et al. ' The

Davies et al. ' calculation is not vahd in this energy range
(as it gives a negative Coulomb correction to the Bethe-
Heitler results). Boric has done calculations using the
methods of Fink and Pratt, and Roche et al. which give
correct behavior of the Coulomb correction. But we have
not used it to compare with our results as calculations are
not available for U for the energy range of interest. We
have also compared our results with the calculation using
the Deck-Moroi-Ailing (referred to hereafter as DMA) ex-
pression which has been derived using the modified
Sommerfeld-Maue continuum lepton wave functions. In
this approximation a correction term to the Bethe-Heitler
formula of the order of aZ is obtained for the limit

p =0. We have shown in Fig. 3 the DMA calculation
for 92U [performed by using Eq. (37) of Ref. 13 and by
avoiding the very high energy approximation]. It may be
mentioned that our calculation for E = 1.008mc
amounts to the parameter [ Y =(E+ —1)/(k —2))
Y=0.9998=1 for k=50 MeV whereas the DMA result is
for Y=1.

We have attempted to fit the calculated points by fit-
ting the following semiempirical curves which has an en-

ergy dependence like that of the DMA (see Eq. 37, Ref.
13):

10 20 40 50

term1. The Tq
——g'f„~ i (1/Z )(do/

dE+ ~
I I e —

I I + & shown as a function of q for

E = 1.008 mc and for three different photon energies k.

a b cO~=0 1+—+ 2+k k' k'

where

(14)
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f(Z) =(aZ) f [1+(aZ) ] '+0.202 —0.0369(aZ)

+0.0083(aZ) —0.002(aZ) I .

The extrapolated curve [Eq. (14)] lies lower than the
DMA results for energies between 12 and 50 MeV (see
Fig. 3}. The DMA results are expected to be correct for
high-energy calculations, as Sommerfeld-Maue wave
functions have validity in that region. We expect the ex-
act calculation to be in between the extrapolated and the
DMA curves and it should be a smooth curve joining the
10.0-MeV DWBA point with the 50.0-MeV DMA point.
However, this can only be settled by extending the calcu-
lation to high-energy points.
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IV. CONCLUSIONS
02—

We have calculated the positron spectrum in the tip re-
gion for photons of energies 5.0—10.0 MeV by using the
new technique for calculating the accurate radial integral
and its photon-energy dependence in approximately one-
tenth of the computational time required for the existing
DWBA calculations. The useful feature of Eq. (13) is
that it has been derived for constant values of the param-
eters y+, thus no approximations are involved in its
derivation. Therefore we can use Eq. (13) to calculate ac-
curate radial integrals even for photons of much higher
energies. We would like -to emphasize that the approxi-
mation involved in the differential equation (11) improves
further with the increase of the photon energy. We would
like to conclude, with the following remark: with our new
and efficient technique one can extend the DWBA pair-
production cross-section calculation into the intermedi-
ate-energy range.

l l l I

200 300 400 600 80000 50
l

IO0
k (Mev)

FIG. 3. (1/Z )(do/dE+) the differential cross section fear

pair production shown as a function of the photon energy k.
DWBA results of our calculations is shown by the solid line.
This calculation is in the tip region for electron energy
E = 1.008mc . The calculation using the Deck-Moroi-Ailing
method (Ref. 13) is shown by the dotted dashed line, the dashed
line is the extrapolated curve using the semiempirical fit of Eq.
(14).

a =8.8591&(10',

b = —2.8401X 102,

c =6.6838& 10
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where Z is atomic number, ro is classical electron radius,
a is fine-structure constant, and m is electron mass. The
Z-dependent function f(Z) is given by'
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