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Radiative processes in light-ion collisions are all-inclusively formulated and discussed. Produc-

tion cross sections of the radiations are calculated in terms of the second Born approximation. The
cross sections of atomic bremsstrahlung production and radiative ionization have been estimated

and compared with experimental results of continuum x rays from an Al target bombarded with

few-MeV protons. It is found that atomic bremsstrahlung is the most predominant component in

the region of x-ray energy %co & T, where T is the maximum energy transferred from a projectile
-to a free electron at rest, and the disagreement between the theory and experiment, which had previ-

ously been seen in this energy region, was clearly resolved.

I. INTRODUCTION

Several kinds of processes have been studied for pro-
duction of continuum x rays in ion-atom collisions;
secondary-electron bremsstrahlung' (SEB) and quasi-
free-electron bremsstrahlung (QFEB) are characterized,
respectively, by the energies T~ and T„(= —,

'
m, uz

=T~ /4, where m, is the electron mass and uz is the pro-
jectile velocity). These radiations are remarkable for
light-ion bombardments, especially SEB is a main factor
for determination of the detection limit of particle-
induced x-ray emission (PIXE), where few-MeV protons
are usually used. On the other hand, molecular-orbital x
rays and radiative electron capture (REC) are predom-
inant processes in cases of heavy-ion —atom collisions.
However, yields and spectra of continuum x rays pro-
duced in ion-atom collisions cannot fully be understood

by taking account of only these processes. Two-collision
molecu1ar-orbital x rays, quasimolecular bremsstrah-

lung, and radiative ionizations have been considered to
explain the continuum x-ray spectrum induced by heavy-
ion impact. In a case of light-ion impact at low energies,
it has been found that the experimental cross sections for
production of continuum x rays exceed considerably the
prediction of the SEB theory, while SEB has been con-
sidered to be the most predominant process in this energy
region. Recently, Amusia' has estimated the production
cross section of bremsstrahlung coming from atomic
structure of the target atom —named "atomic bremsstrah-
lung" (AB)—for impact with electrons, positrons, and
ions. He has calculated the production cross section of
AB for the x-ray energy nearly equal to the ionization po-

tential and found that AB is a predominant process in this
photon-energy region.

In this paper we discuss a systein of a bare-ion projec-
tile, a target nucleus, and target orbital electrons interact-
ing with the radiation field and in accordance with the
second Born approximation, introduce a basic formula for
calculating the cross section of one-photon emission in-
cluding the processes of nuclear bremsstrahlung, radiative
ionization, and atomic bremsstrahlung for light-ion iin-
pact, in contrast to the former papers on ion-atom col-
lisions, where each process has been separately treated.
The cross sections calculated for AB production and radi-
ative ionization (RI) are compared with our previous data
obtained for an Al target bombarded with few-MeV pro-
tons, and good agreement is obtained. It is shown that
AB is predominant even for high-energy x rays
(fico) T ), not only for low-energy x rays as was found by
Amusia. '0

II. THEORY

We consider here a system of a bare ion and an atom,
which are interacting with the radiation field. The basic
formula of the Hainiltonian for such a system is given in
many texts, e.g., that of Heitler. " In accordance with a
point transformation, ' the Hamiltonian describing the
motion of the center of mass and the relative motion of
the particles can be nonrelativistically expressed by

Pc
Htot= +Ho+ Vc+ VR+H (l)

with

M—:mr+mp+Xme ~

(mz +m z')P
H, =

2mp mz-

N 1 N ] N N Zyp+ gP+ QP + QP P —g +
me ) my. k l =1 rl'

N 2

t)J Iri —rjI
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i=1
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and HI( is the Hamiltonian of the radiation field. " Fur-
ther,

A(rp)=)v 4mc g(aieie +aieie ),

(2)

where Zp(Zz ) and mp(mT) are the atomic number and
the mass of the projectile (target nucleus), respectively, N
is the number of electrons, a (at) is the annihilation
(creation) operator of the photon with a wave vector Ki
and polarization e~-, and P, is the momentum operator
for the coordinate of the center of mass, and P and p;

are, respectively, those for r p and r;, which are the posi-
tion vectors with respect to the target nucleus. The coor-

s

dinates r 'T, rp, and r,' are position vectors of the target
nucleus, the projectile, and the electrons in the frame of
the center of mass, respectively, and are related to r p and
r; by

N

mprp+m, g r;
~lr T=—

rp fp+ r T and r,' =r;+ r T

We can easily find the eigenfunction of the Hamiltonian
Ho as expressed by

m,
(P; =exP i K; r p

— g r k
m T++my

P(( r i, . . . , r)v ) .

The functions )I(; and f; satisfy the following equations: N l N
H„= g P,'+

2me i =1 2mT

N

+ g U(r;)

Ho%,.=
2mp(m T+Nm, ) with

and

Hg li);( r i, . . . , r ~ )=e(Pg ( r (, . . . , r)v ),
U(r;)=—ZTe e+—2.

g(~()
~
r; —rj

~

where Hz is the total Hamiltonian of target electrons and
is expressed by

If V, and Vs are smaller than the other terms in Eq. (1),
we can obtain the T-matrix element Tf; from the pertur-
bation theory, "

Tg;=(Vy((V, +V~)(%;)y )im Vf (V,+V~), (V, yV„) 4;)y
1

a~0+ i HO+ R +le (4)

where
~

)I(;) (
~
)pf )) and E; (Ef) represent the initial (fi-

nal) state which are the solutions for the Hamiltonian
(Ho+HI() and its energy in the center-of-mass system.
Equation (4) should be valid for the case of Zz &&Zp, that
is, light-ion impact. We calculate now the matrix element
T~; for one-photon emission. The first term in Eq. (4)
vanishes because of the conservation of energy and
momentum, as we do not consider the transition of a tar-

get electron from the target frame to the projectile frame
differently from the case of the REC process considered
by Jakubassa and Kleber. ' If the wavelength of the emit-
ted photon is large enough in comparison with radii of the
collision region and of the target atom, we can apply the
dipole approximation" to the interaction Vz. From the
uncertainty principle for the collision radius and for the
radius of target atom, we can express the above condition
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and
qc

for the dipole approximation by where irido and fiq are the energy of the emitted photon and
the transfer momentum of the projectile, respectively, Rz
is the Rydberg constant, and u is the fine-structure con-
stant. From Eqs. (2)—(5), T~ for one-photon emission
can be calculated by

(e q ) 4m 2m%'

q CO

1/2

Ze' Z
P

mp mT

ZT
+

mT+Xm, (Pf If(r i ' r N)
I A &+

4m 2M
q CO

' 1/2

ZT
X Zpe + lim

m mT e 0+

N

&&half&»i, . . . , »~&l& &(0» XA &&)
i=1

E.—E —fuu+iE

with

Ef+ACO —Em+LE

f(r i, . . . , r~)= Zz. —g e' '''
exp i—

By using the relation

7?le

mT+Xme
q gr;

l 1 1V=V + (Hp, V)
1

Ho ~ -IIo A —ao ~ -Ho

where 2 is a c number and Vis a function of r;, Eq. (6) can be rewritten by

Ze Z4w 2vrh p @~~) p
2

E'q
q a) ~ mp

ZT Nm,
1+

mT mT+Nm,
x&fy l«r i ~ ~ ~ ~ r~)

I 4)

m,
N ' ')i=1

ZT N .-+ ~—A'(e q) + Py ge 'exp i-
me mT i=1
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me mT e~O+

N
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i=1

E'. —E' —ACO+l E'

(
N

Kp, egp;
i=1

4.)&P. If&» i,

Ef +AQ7 —E'm +l E'

The first term can be understood as nuclear brernsstrah-
lung and gives a more precise expression than that of Ald-
er et aI. ' on the projectile-charge dependence, i.e., the
nuclear bremsstrahlung (dipole radiation) does not com-
pletely vanish for Zp/mp ZT/mT The second and the
third terms show contribution from the target electrons.
When the potential U(r;) is assumed to be constant or
negligible, that is, Ho can be approximated to a Hamil-

tonian of a free electron, contribution of the third term

may be neglected

N
because Hp, e g p; =0 . .

We call this process "free electron approximation. " The
third term has some poles which correspond to photon
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emission from an excited or ionized atom and is con-
sidered to be a radiative process reflecting the atomic
structure. Although the mass ratio m, /mT is very small,
it gives a delicate effect on the energy conservation and
cannot be neglected for a huge transfer momentum q [see
Eq. (7)]. Under the condition

qa Qg
mT

me

where a is the orbital radius of the target electron, Eq. (8)
can be approximated by

4m
fi

meq

2M Zpe
(Fq)(gf ge '

te;)

lim
@~0+ m

f &
6' VkU Ik

e —e —Acu+ie

f ~ E VpU rk m m i

—6m +1K' + l 6'
(10)

For the case where the final state of the target electron is
the same as the initial one, Eq. (10) gives the amplitude of
atomic bremsstrahlung, ' whereas, taking an ionized state
for the final state, Eq. (10) corresponds to the radiative
ionization. On the basis of the formula (10), we estimate
the cross sections of atomic bremsstrahlung and of radia-
tive ionizations produced by light-ion impact.

N
(1/2mT) g Pk

2

is neglected. Using this wave function, the matrix Tf; for
~ P;) =

~ Pf ) can easily be calculated and the first term
[—:Fi(q )] in Eq. (10) is given by

1/2 Z
F, ( )= 4' 2rri% ~e—

( )
m, q CO

X 2 g (X„r ~e"' ~X„r )
n, l, m

A. Atomic bremsstrahluns

Amusia' has calculated the cross section of the
atomic-bremsstrahlung production for the case of qa «1
and fun-I, where I is the ionization potential. We esti-
mate here the production cross section of the atomic
bremsstrahlung on the basis of Eq. (10).

For the calculation of Tf;, we assume the wave func-
tion of the target electrons to be a single product of the
solution' of Hz, where U( r; ) is replaced by the effective
potential and the term

where X„l is the hydrogenlike wave function with the
principal quantum number n, azimuthal quantum number
l, and magnetic quantum number m, and the factor of 2
results from the electron spin. The term

(X„r~
~

e' q ' '
~
X„r~ ) [—=Si (q) ] can be analytically

calculated and we obtain

16 (2Qz —1)(Qp —1) (1—Qp )
S,(q)=,+, +3

(Qi+4)' (Qz+1)' (Q, +1)'

16 (Q3 74 (Q3 zv )(Q3 Q3/9+ egg )

+27 (Q3+ —', )'

+ ~ ~ ~ (12a)

with

fPq

where Z„means the effective nuclear charge'5 for the or-
bital electron of the principal quantum number n which
has been calculated by Slater, ' and the summation should
be taken over the number of electrons N. For a large
transfer momentum, Si(q) is approximated by

2,R
Si(q)=16

Aq

2 2
2 Z2 Z3

Z1+ + +
23 33

(12b)

Since the minimum transfer momentum q;„(Ref. 17) is
estimated to be co/uz, Eq. (12b) is valid for the case of
(co/uz) (ao/Zi) [=(A' q;„/2m, zrR~)] &&1.

The second term [—:Fq( q )] in Eq. (10) for
~ P; ) =

~ gf ) is simplified by
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F2(q)=
meV

2' Zpe

N CO

iZ.e'&&.i~ le"' I&.i~ &&&ni~ l(e. r )~ 'I&ni~&
&(2 lirn

0+ I ' I' 6'„—6~ —AN + g 5
7

Z.e'&&aim I(e'r )r 'I &'r~ &&&'i~
~

e"' ~&.g~ &

+ 6'„—6'~ +Aco+l 6'
(13)

where we assume the wave function of the intermediate state
~
p„&~ & to be a solution for the same effective potential as

that of ~X„I~ &. The matrix

~e"' ~&. I &&x„i ~(e r )~-'~x„g &,
m I', m'

after some integrals over the angle, becomes

&&num I

e' '
I&n'I m'&&&n'~m'

I

(e'r (2l+1)(e q ) zn

m I', m' 1' q ao
(14)

with

r

l +l'+ 1 ao

S„,„., (q)= . 2 Z„
0 for 1'&l+1

'2

fdr R„~(r)R„p(r)fdr r R„~(r)J'&(qr)R„~(r) for l'=1+1

where R„I(r) is the normalized radial wave function (see p. 15 of Ref. 15),j;(qr) is the spherical Bessel function, and ao
is the Bohr radius. Using Eq. (14), Eq. (13) can be rewritten by

F2(q ) =
meq

2M pe
1/2 z

X2(e q )S2(q), (15)

Z„e (2l+1) 2(e„—e„) 2(k T„E„)—
S (, ), (~), .I. ~ q+ („,T,"), "(~),S . ()+ dk S ( )

1+ &~ g [Sn, l;k, l'(q)/2klk=+(~+p„)/T„
T~ I'

with

Pl 2m, ao
(16)

The third tenn of Eq. (16) vanishes in the case of fico+@„&0. By using the integral formula' of hypergeometric func-
tion, we can calculate the term S„~.„~(q) and obtain
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1
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1 1 1

Q, n' n'
—n+I

2
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1 1
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1 1n' Qn+
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2 1
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e
—2u/k n

' —n+1
1 2 i 1Q„k k

exp ——tan (nk) —t—an

n Q„—k+2 1

n

x, +(k —QQ„)2

' —n/2 —n/2

, +(k+QQ„)'
n

&(sin n tan
2V'Q.

n Q„—k 2 1

n

, +(k+QQ„)'
-+ ln

1 n

, +(k —V'Q„)'

For some values of n and l, the function f„~.„~(q) are given by

fi 0.„&(q)=—24

r

f2,0;n', 1(q)=2 1—
&2

1 1
Q, + n'

1 1 1f2, 1; ',0('q)
6

3Q + (19)

4 1
f2,i,2(q) =——

n'

16 1
f30' ' l(q)=—

27 n &2

7
27 &2

Q. + Q. —+,, + ——,, — Q. +1 1 1 1 4 1 1

n

and f„i.k ~ (q) can be obtained by replacing 1ln' with —k in Eq. (19).
The production cross section of atomic bremsstrahlung is expressed by

doAB 1 (~)2 g2 oo 2n

4 'A' (2 Ac)' V'

and from Eqs. (11),(12), and (16),
2 5 2

Z
«0 2 C ~ dq 1—
WSa& V&

"/"p q
I

qvp
+ 3 co

2 qvp
sin Oco .

~
S&(q)—S2(q)

~2
(20)
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FIG. 1. Partial cross sections of atomic bremsstrahlung. The
dashed, the short-dash —long-dash, and the solid curves stand
for calculations of Sl(q), S2(q), and both of them in Eq. (20),
respectively, for the case of the Al target bombarded with 1-
MeV protons.

The notation g means summation over the polarity of
the emitted photon and 8„ is the emission angle of the
photon with respect to the direction of the incident parti-
cle. Observed values of ionization potential must be used
for e„ in Eq. (16).

Now we will study the contribution of Si(q) and S2(q).
Figure 1 shows the production cross sections o.(Ace) of
atomic bremsstrahlung for an Al target bombarded with
1-MeV protons in the x-ray energy region %co=2.0—6.0
keV. In this figure the dashed curve represents the pre-
diction from only the term S,(q) in Eq. (20), the short-
dash —long-dash curve is from Sz(q), and the solid curve
shows the total of Eq. (20). It is seen from Fig. 1 that
Si(q) is a main component in this x-ray energy region,
but the contribution of S2(q) cannot be neglected because
of the interference effect between S,(q) and Sz(q). For
the case of atomic bremsstrahlung accompanied by a large
transfer momentum such as the example shown in Fig. 1,
Si(q) given by Eq. (12b) can be used for calculating the
cross sections. The cross section of atomic bremsstrah-
lung, therefore, increases with the target atomic number
Zr under the condition of (coop/v&Zr) ))1.

We calculate the cross section of atomic-
bremsstrahlung production using the hydrogenlike wave
function, which is expected to describe well the behavior
of orbital electrons in a central region of the atom. As
seen in Eqs. (11) and (12a), Si(q) represents the Fourier
coefficient of the electron density and gives the contribu-
tion of electrons in the central region for a large q. The
present calculation is therefore valid for the case of large
momentum transfer (coop/v&ZT ) » 1. On the other

IO I 5 km(keV)

FIG. 2. Cross sections of radiative ionization for the Al tar-
get bombarded with 20-MeV protons. The solid, the dashed,
and the short-dash —long-dash curves represent the calculations
of, respectively, RI from Eq. (21), the simple theory' of QFEB,
and an impulse approximation by Jakubassa and Kleber. '

hand, it may be necessary to calculate the cross section of
atomic-bremsstrahlung production using an exact solution
of Hz(e. g., Hart'ree-Fock wave function) for the case of
small momentum transfer (coZ&/v&Zz ) « 1.

B. Radiative ionization

We consider now an ionized state for the final state of
the target electrons in Eq. (10). The matrix element Tf;
for such a transition represents the ionization accom-
panied by radiation emission, that is, radiative ionization
(RI). Jakubassa and Kleber' have calculated the cross
section of RI for the case of radiative electron capture to a
continuum state of the projectile. On the other hand,
Anholt and Saylor have estimated the cross section of RI
for the case of V~ && Vx, where Vx is the velocity of the
E electron, on the basis of binary-encounter approxima-
tion (BEA).

Calculation of the second term in Eq. (10) is very com-
plicated for RI in comparison with the case of atomic
bremsstrahlung. We calculate the cross section of RI on
the basis of "the free electron approximation, " in which
the second term of Eq. (10) is neglected. As the calcula-
tion of (ff 1e'q''1P;) has been done by many work-
ers, ' ' ' we obtain the cross sections of RI as expressed
by

RI

dna) dQ

2 52Q p(x z
m-%co ~

UP

2

g J dIVJ F„(Q) 1—
e/n2 &, Q

"'
Q 2 Q

1 2sin 8M (21)
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and

( JVZ„R& + irico )

2 ZRme Up n y

(22)

III. COMPARISON %'ITH EXPERIMENTS

Figures 3 and 4 show comparison of the present theory
with our previous data for the continuum x-ray produc-
tion cross section cr(fico) from the Al target bombarded

Ag

E& = l.OMeV

IO
L

CO

where 0„ is the screening factors, and the form factors
F„ ii (Q) have been calculated in Refs. 17, 19, and 20. If
the discriminant of ( IVZ„+~+~) =2m, U~~Z„+~8'
8' is positive in Eq. (22), that is, fico & —,m, u~, the Bethe
ridge ' of F„~(Q) is included in the integral region of W
and Q, and this results in an increase of the cross section.
This fact agrees with our previous result of QFEB calcu-
lated from an impulse approximation. Figure 2 shows the
calculations of RI cross section o(trito) for the Al target
bombarded with 20-MeV protons. The solid and the
dashed curves represent the calculations from Eq. (21) and
a simple theory of QFEB, respectively. The short-
dash —long-dash curve is the prediction from the impulse
approximation by Jakubassa and Kleber. ' It is seen from
this figure that the present calculation for radiative ioni-
zation agrees with QFEB in the energy region of irico (T„
and behaves like inner breinsstrahlung in P decay for the
%co & T„. Though the cross section of RI should be calcu-
lated from Eq. (10), Eq. (21) might be valid for estimation
of the order of magnitude.

I
0-'-

~ ~ %

gq ~

Ep =4.0 MeV

8 =90

Vl

E IO
U

3 +TOTAL
~SEB

I
0-'-

L„
2.0 3.0

I

4.0
I

5.0
I

6.0 Wm(keV)

FIG. 4. Same as Fig. 3 except for 4-MeV protons.

with 1- and 4-MeV protons measured at the angle of 90'
with respect to the incident beam. The solid curve
represents the prediction for atomic bremsstrahlung calcu-
lated from Eq. (20), the short-dash —long-dash curve is
that for RI from Eq. (21), and the dashed curve is the pro-
duction cross section of SEB calculated from our previous
formula, where the observed ionization energy is used for
the binding energy of the orbital electron in contrast to
the previous calculation where the ideal ionization ener-

gy, which increases the cross section, has been used. The
double-short-dash —long-dash curve in Fig. 4 represents
the total cross section. It is seen from Figs. 3 and 4 that
the experimental cross sections of continuum x-ray pro-
duction agree well with the present theoretical predictions;
atomic bremsstrahlung is the most predominant process
in the photon-energy region of fico & T (see Fig. 3). On

E lo~-
CJ

3
I
0-4-

Tm

2.0 3.0

AB

XRi

SEB
I I

4.0 5.0 6.0 5~(kev)

1.0

0.9-

0.8-
O

0.7.
b

0.6-

b 0.5

0.4.

E =1.5MeV b~ = 5.18-5.67kev
P

30 45 60 75 90 105 120 135

eL (deg)
FIG. 3. Comparison between theory and experiment on the

Al target bombarded with 1-MeV protons. The solid, short-
dash —long-dash, and the dashed curves represent the produc-
tion cross sections of AB, RI, and SEB, respectively, at the 90'
emission angle. AB, RI, and SEB are estimated from Eqs. (20)
and (21) and our formula previously obtained. The data points
are taken from Ref. 2

FIG. S. Angular distribution of continuum x rays. The data
points are for x rays of fico=5. 18—5.67 keV from the Al tar-
get bombarded with 1.5-MeV protons and show the ratios of the
cross section to that of the 90' emission angle. The prediction is
the calculation for AB, since AB is predominant in the region of
this x-ray energy.
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the other hand, SEB is predominant in the region of
fico& T =4T„(see Fig. 4}. The angular distribution of
continuum x rays, calculated from the present theory, is
compared in Fig. 5 with our previous experimental re-
sult obtained for x rays of fun=5. 18—5.69 keV from the
Al target bombarded with 1.5-MeV protons. In this fig-
ure the vertical axis represents the cross section normal-
ized to that obtained at 90'. We find that the theory
reproduces well the experimental results. The angular
dependence of atomic bremsstrahlung seems to be the
same as that of SEB (see Fig. 3 in Ref. 22).

IV. CONCLUSION

Starting from the total Hamiltonian for a system con-
sisting of a bare light-ion projectile, a target nucleus, and
target electrons, we obtained a formula, Eq. (8), for calcu-
lating the cross sections of radiative processes including
the nuclear bremsstrahlung, atomic bremsstrahlung, and
radiative ionization. It is seen easily that the nuclear

bremsstrahlung can be neglected for the case of
qa «mrlm„' this condition is satisfied in the x-ray ener-

gy region normally discussed in atomic-collision physics.
By comparing the results of the calculation with our pre-
vious experiment on the Al target, it was found that
atomic bremsstrahlung is the most predominant process
in the x-ray energy region of fico & T, and it was conclud-
ed that AB, SEB, and QFEB (RI}play a predominant role
in the regions of %co& T, T &%co& T„and T, &Aco,
respectively, and these three are the main processes for
continuum x-ray production in the case of light-ion —atom
collisions.
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