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This paper presents an alternative form of the method of continued fractions proposed by the au-

thors recently. The present form is based on a subtraction of a separable operator from an appropri-
ate Green function and shows faster convergence than the original method. The method is again ap-
plied to the elastic scattering of the electron from the hydrogen atom. The relation to certain varia-

tional principles with functionals of a fractional form is discussed.
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In a previous paper, ' hereafter referred to as I, we have
proposed the method of continued fraction (MCF) for
solving the Lippmann-Schwinger scattering equation for a
local or a nonlocal potential. In this method, with the in-
crease in the number of iterations, a series of potentials
are successively defined by subtracting a separable term
from the previously given potential. These potentials be-
come weaker and weaker. We have demonstrated that the
method is very efficient, yielding a very accurate result
after a few iterations. This method works surprisingly
well not only for atomic scattering problems, but also for
the nuclear scattering where the interaction potential is
very strong at short distances. In the present paper we
propose an alternative form of the MCF which is based
on a subtraction of a separable term from the Green func-
tion and which is, to some extent, superior to the method
proposed in I. In order to distinguish between these two
methods, we call the method based on a subtraction froin
the potential MCFV and the newly proposed method
MCFG.

We describe the new method in Sec. II. A comparison
between MCFV and MCFG in application to the elastic
scattering of the electron from the hydrogen atom in the
static-exchange approximation is made in Sec. III. A re-
lation between MCF and some variational principles is
discussed in Sec. IV. Concluding remarks are given in
Sec. V. A practical method for calculating the wave func-
tion and amplitude by MCF is written in the Appendix.

II. METHOD OF CONTINUED FRACTIONS —MCFG

For any local, nonlocal, energy dependent, etc., interac-
tion V, we want to solve the Lippmann-Schwinger equa-
tion
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Owing to the definition of G;, the operator G; Vis orthog-
onal to the function u;, namely,
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I uj ) =0 for j=0,1, . . . , i —1,
where
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Thus, the operator G;V becomes weaker and weaker as
the number of iterations increases.

The function (u;
I

V
I P;) (i =1,2, . . . ) that appears in

Eq. (6) is calculated as continued fractions. We define the
matrix elements t; for i =0, 1,2, . . . by

t, =(u,
I VIy, ) .

Tile quantity tp ls Ole usual t-matrix element. If we put
Eq. (6) in Eq. (11) and make use of Eq. (10), we obtain
continued fractions

Equation (3), which is the same type as the original equa-
tion (1), is solved similarly. Thus, we continue with a set
of equations for i = 1,2, . . . ,
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As in I, but with the introduction of Gl in place of Vi in
MCFV, the MCFG is based on the following set of four
equations:
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with

qz; ——(u; & ~

V
~
u;), i =1,2, . . . ,

TABLE I. The phase shift for the triplet static-exchange e-H
scattering computed by MCFG (MCFV) is shown in the left
(right} column.

qu+i ——(u; i
V

i u;), t=0, 1,2, . . . .
5MCFG 5MCFV

In calculating the continued fractions, we stop them if
G~+ & V and, consequently, t~+, are sufficiently small.

The MCFG has the following important properties.

(1) It is convergent for all interactions, independently of
their strength, provided that Go Vis a compact operator.

(2) For an N-term separable interaction V,
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Let us compare this result with-that of MCFV. With
the definitions
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the iteration scheme of MCFV is given by'
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(The definition of u; for MCFV is given by

ui+1= Go Vi u
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This is different from the definition of u; in MCFG. ) As
we have stated in I, the ¹hterm of MCFV is correct at
least up to the (2N)th-order term in the Neumann series.
For instance, the first approximation is now

2 2
(1) ~P1 2 3P2t' '= Ap +Xp +k +

P1Pi —P2

the Ãth step of the MCFG yields the exact result.
(3) All functions u; are regular at the origin.
(4) If the interaction is written as A, V, where A. denotes a

complex parameter, then the Nth term of the MCFG is
correct at least to the (2N+1)th order. For instance, the
first approximation of t ( = to) in the MCFG is

2 2
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If we expand Eq. (13) in the ascending power of A, , we get

t =Aq~+A, qz+A, q3+
= A(u
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Thus the first approximation of MCFG is correct up to
the third-order term in A, .

2.61846
2.677 73
2.679 14
2.679 15

k =0.2
2.602 73
2.676 83
2.679 14
2.679 15

1.10701
1.387 29
1.390 51
1.390 52

k =1.0
1.302 86
1.387 11
1.390 50
1.390 52

atom in the static-exchange approximation. In order to
compare these two methods we apply the method MCFG
to the same problem. The interaction of the static-
exchange approximation consists of two terms, the static
local interaction

1
VL ———2 1+—e

r

TABLE II. The same as in Table I, but for the singlet
scattering.

5MCFG

k =0.2
1.856 659
1.869 583
1.870 158

1.856000
1.866 280
1.870 158

and the nonlocal exchange interaction

V~ —— 2$~, (r—)P~, (r')Ir& —(1+k )P»(r)P»(r') .

Here r & is the larger one of r and r', and P» denotes the
normalized wave function of the hydrogen ground state.
For the numerical example in the present section we have
used the real standing-wave Green function instead of the
complex propagating Green function for Go. As a result,
the quantity t stands for the on-shell K-matrix elements.
The results of the computation of the static-exchange
phase shift are given in Table I (Table II) for the triplet
(singlet) scattering.

From these tables we see that for all energies the con-
vergence is so fast that already the fourth approximation
leads to the results which are correct at least to six signifi-
cant digits. Both forms work equally well in this case.
This is because the interaction between electrons and
atoms is not very strong.

which is correct up to the second-order term-.

III. APPLICATION

In the previous paper' we have applied the MCFV to
the elastic scattering of the electron from the hydrogen

1

2
3
4

0.503 366 3
0.542 726 3
0.542 893 9
0.542 894 6

k =1.0
0.510 141 3
0.541 182 2
0.542 893 3
0.542 894 6
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IV. RELATION TO VARIATIONAL PRINCIPLES

Pi =u i+Go Viki (19)

Here V& and all other quantities were defined in I. The
Schwinger variational principle states that the functional
F
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is stationary under variation of VT about its exact value
Here P is a solution of the Lippmann-Schwinger equa-

tion

f=u+Govp .

The first iteration of the MCFV is
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which coincides with the Schwinger variational principle,
if one sets

%'~ ——u .

The second iteration of the MCFV is
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which coincides with the Schwinger variational principle
for Eq. (19), ui being taken as the trial function. Similar-
ly at the ¹hstep of the MCFV we calculate the quantity
F~ given by

We have demonstrated that both forins of MCF work
surprisingly well for atomic collisions. This is partly be-
cause there exists a close relationship between the MCF
and a certain class of variational principles using func-
tionals of fractional form. We show this relation for the
MCFV. According to I, the E matrix is given by
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cussed recently by Gross and Runge. The required func-
tional is
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In conclusion, at each step the MCF generates one
equation of the Lipprnann-Schwinger type and computes
the value of the corresponding variational functional us-
ing the leading term of the equation as the trial function.
Such repeated use of the variational principle results in
the high effectivity of the MCF. As discussed in the Ap-
pendix, the MCF is simply related to the [N,N] Pade ap-
proxim ant.

Here we note the difference between the MCF and the
iterative Schwinger method, which is also related to the
Fade approximant. In the MCFV, we successively intro-
duce partially separable potentials Vi, V2, . . . [which are
equal to U"', U' ', . . . of Eqs. (5) and (15) of Ref. 1]. The
potential V; operates to a function u;. Since V& is
orthogonal to u; (i =0, 1, . . . , N 1) as sh—own by Eq. (22)
of Ref. 1, V& becomes weaker and weaker as N increases
and at last the equality P& ——u& practically holds. In the
iterative Schwinger method, using a set of Cartesian-
Gaussian functions we first construct a separable approxi-
mation to the original potential. The exact solution to the
approximate potential is used in the Schwinger variational
expression of the t matrix. This process is repeated until
we get a convergent value of t. Technically, in this
method, we have to deal with n-scattering equations at
each step, if we choose n-trial functions in the beginning,
and also we should perform a matrix inversion at each
step. In the MCF, for instance in the MCFV, we have
only one equation to handle, u;=GOV; ~u; ~, at each
step and we do not need any matrix inversion.

V. CONCLUDING REMARKS

So far we have confined our demonstrations to the on-
energy-shell quantities. The treatment is extended to an
off-shell quantity. For instance, the off-shell t inatrix
(p I

t(E)
I
p'), where (fP/2M)p &E&(fP/2M)p', is cal-

culated in the following manner. We take u(p', r) for u
and Go(r, r';E) for Go in Eq. (1). Then we calculate the
off-shell function P(p', E;r) by the MCFG. This is relat-
ed to the wave matrix Q(E) by
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which is the value of the Schwinger variational functional
applied to the Lippmann-Schwinger-type equation
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The off-shell t matrix is then given by
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when the function u~ is taken as the trial function. At
the last iteration, we can practically take P& ——u~ or
Go V~/~ ——0. Here the function P~ satisfies the
Schwinger variational principle.

The situation is similar in the case of the MCFG. The
only difference is that instead of the Schwinger variation-
al principle, we have to use the variational principle dis-

Having calculated the off-shell t matrix, we may find ap-
plications in various many-body problems.

To summarize, we have proposed a method for treating
the scattering integral equations. This method, MCFG, is
a better alternative to the MCFV proposed in I. The
method is iterative, very efficient, simple, and accurate,
and is especially suitable to the treatment of complicated
nonlocal interactions. In the present paper we have ap-
plied the MCFG to the same physical problem as in I, i.e.,
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to the elastic scattering of the electron from the hydrogen
atom in the static-exchange approximation. It turned out
that the MCFG yields excellent results in all cases that we
have studied. %'e have also discussed the relationship be-
tween the MCF and the variational principles with func-
tionals of fractional forms. This explains why the MCF
is so efficient.

APPENDIX

In this appendix we first discuss the relation between
MCF and the Pade approximant and then demonstrate
the procedure for calculating the amplitude and the wave
function. We define f; and a; (i =1,2, 3, . . .) for MCFG
by

tion for MCFG. The procedure for MCFV is then clear.

P; =u;+P;+12);+1, (A4)

(1) We calculate u 1 and u2 by Eq. (S). We store u 1 and
uz in the memory space. Using u~ and u2, we calculate
q2, q3, q4, and q5, according to the equations below Eq.
(12). Then we calculate ai by Eq. (Al).

(2) We calculate u3 and store it. Using u2 and u3, we
calculate q6 and q7. Then we calculate a2.

(3) This process is repeated until a; becomes negligibly
small at I =N.

(4) By Eq. (A3) we obtain fN ——1, fN 1 1+aN——
fN 2 I+ctN——2/fN 1, . . ., fi ——I+t21/f2. Now, we ex-
press Eq. (6) for i =1,2, . . . in the form
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The amplitude g& is given by
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Then both Eqs. (12) and (14) for i = 1,2, . . . take a form

f, = I+a;/f, +1, (A3)

where a; is supposed to become negligibly small at i=¹
Equation (A3) is simply related to the Pade approximant. s

If we put f„' '=P„/Q„, n =1,2, . . . the reduction formu-
la is given by Pn+i=~n++n n —i~ Qn+ =1Qn +ntrQn —1

with Po= 1 Qo=0 Pi =Qi =1.
However, since a; are simple numbers, we need not

resort to the Pade approximant. Here we demonstrate the
procedure of calculating the amplitude and the wave func-

4 =it+It) ini . (A7)

(5) We calculate g; (i =N, N 1, . . . , 2)—and qi by us-

ing Eqs. (A5) and (A6).
(6) The wave function is then calculated as

uN

4N —1 ttN —1+itN gN ~

(AS)

N=ti+Pini .

(7) Finally, the amplitude t is calculated by Eq. (11) for
i =0.
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