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Interactions of charged particles in the presence of a chaotic laser field are considered for the case
where the quadratic A term in the Volkov solution must be retained. This is necessary whenever

the kinematics are relativistic or the masses of the particles involved change during the interaction,

such as in a decay, even though the kinematics might be nonrelativistic. Spin terms of the Volkov

solution are also considered. The problem reduces to the solution of a stationary Gaussian stochastic

process. This allows for an explicit evaluation if the two-time correlation function of the laser field

is exponential with an arbitrary correlation time, i.e., for an Ornstein-Uhlenbeck process. The
evaluation is performed by two alternative methods, one relying on path integrals and the other one

on functional methods. Various limiting cases are discussed, notably that of an infinite correlation

time. In the latter case, a cross section in a chaotic field is obtained from that in a coherent field by

integrating the latter over the intensity with an exponential weight function. This prescription was

already known to hold in the nonrelativistic case. As an application, we discuss high-intensity

Compton scattering. A specialization of the present results yields an ensemble average, which is

needed in the evaluation of a recent g —2 experiment for the anomalous magnetic moment of the

electron.

I. INTRODUCTION

There has been continuous interest over the last two de-

cades in the influence of a very intense laser field on de-

cays or scattering processes of elementary particles. ' In
all of these investigations the laser field has been
represented by a classical coherent field with definite am-

plitude and phase. The wave functions of the charged
particles were then given by Volkov solutions correspond-
ing to this specific field. The classical description of the
laser field is very well justified for the extremely high in-

tensities which are necessary in order to yield sensible ef-
fects. However, high-power multimode lasers tend to pro-
duce chaotic rather than coherent fields. Laser photon
statistics is known to play a vital role in laser-induced
multiphoton processes in atomic and molecular physics,
where the rates for a nonresonant n-photon transition can
differ by as much as a factor of n! for a chaotic versus a
coherent laser field. Formally, in the case of a chaotic
field, its rapid amplitude and phase fluctuations must be
accounted for by an appropriate ensemble average. When
this is carried out, the A term in the particle-field in-

teraction, which gives rise to an effective mass, is usually
neglected. This is only justified if two assumptions are

met. (1) The kinematics of all particles must be nonrela-
tivistic. If the field is strong enough, the situation will al-

ways be relativistic, no matter how nonrelativistic it was
in the absence of the field. (2) The process considered
must be a pure scattering process, i.e., the masses of the
particles in the initial and final state must be identical.
Hence, for example, for a decay process the A term is of
vital importance even for a field which is sufficiently
weak in order to allow for nonrelativistic kinematics. On
the other hand, for electron scattering in the presence of a
not too strong laser field the A term can be neglected; in
fact, it cancels in the nonrelativistic limit.

In this paper we will carry out the above-mentioned en-
semble average for the case of the fully relativistic Volkov
solution, keeping track of the relativistic A term. The
laser field will be described by a circularly polarized
plane-wave field that satisfies a stationary Gaussian sto-
chastic process. The outline of this paper is as follows:
In Sec. II we formulate the problem and set up the basic
notation, in Sec. III we calculate the ensemble average of
the decay rate or the cross section by means of functional
methods. ' This procedure yields immediately the struc-
ture of the result for an arbitrary field correlation func-
tion. In order to obtain an explicit answer the latter must
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be specified. We assume an Ornstein-Uhlenbeck process,
i.e., the field correlation function decreases exponentially
with the absolute time difference between the two fields
on the scale of an arbitrary correlation time. In Sec. IV
we rederive the same results by using a different method
which has bmn applied previously to the solution of a
nonlinear Langevin equation with driving fields of the
same type considered here. The method relies on a path-
integral representation of the coherent state propagator.
Sec. V deals with various limits of the general result,
which are of particular interest. (1) The limit of an infin-
ite correlation time. In this case, a cross section can be
represented as an integral with respect to intensity with a
certain weight function over the cross section for a
coherent field. This result has already been known to
hold in the nonrelativistic case. We have now proved
that it applies as well to the fully relativistic situation,
where the quadratic effective mass term and spin terms
are essential. (2) The nonrelativistic limit when the quad-
ratic A term is neglected, both for a finite and an infinite
correlation time. In this case we can make contact with
previously published results. * In conclusion, we point
out qualitatively the physical consequences of applying a
chaotic instead of a coherent field to the processes of in-
terest.

This paper is formulated within the physical context of
charged particles interacting with each other in the pres-
ence of an intense chaotic laser field. However, the for-
mal task to be solved, namely, to carry out the ensemble
average of the exponential of a stochastic quadratic form,
might show up in entirely different physical problems.
An example is provided by the analysis of the g —2 exper-
iment for the determination of the anomalous magnetic
moment of the electron. ' In this experiment the electron
is subject to a large constant magnetic field plus a super-
imposed small one, which varies quadratieally with the
axial position. Hence, the cyclotron frequency includes a
small term which depends quadratically on the axial posi-
tion of the electron. The detailed analysis of the experi-
ment requires that an ensemble average be carried out
over the axial position of the electron, which fluctuates
due to Brownian motion. The solution of this problem is
a special ease of the results presented in this paper; see
also Refs. 7 and 11.

II. BASIC NOTATION

(A(ui} A(u„)A*(ui) A'(u' ))
n=5„+g h(u;, u~. ), (2.4)

P i=1

where we introduced the abbreviation

h(u, u')=(A(u)A*(u'}) . (2.5)

For the time being we will not specify h(u, u') but only
note that it satisfies

b.'(u, u') =b.(u', u) . (2.6)

The sum in Eq. (2.4) extends over all permutations P of
the variables u . Averages with an unequal number of
A's and A*'s vanish due to phase fluctuations. Equations
(2.3)—(2.5) describe a complex stationary Gaussian sto-
chastic process.

The Volkov solution for a Dirac particle with asymp-
totic four-momentum p=(E/c, p) in the presence of the
plane-wave field (2.1}is'2

Pp(x) =e '~'"~"V~(u)D~(u )u~,

where

(2.7)

V~(u) =exp f dr[2cp A(r} eA (r)—)
Zp. nkvd

(2.8)

D~(u) =1-
2cp 'pl

(2.9)

and uz is a free Dirac spinor so that (p —mc)uz ——0. The
four-vector n=(1,0,0,1) is the propagation vector of the
field (2.1). For the Klein-Gordon wave function, the spi-
nor part Dzuz in Eq. (2.6} is missing.

We shall consider a situation where n particles with
charges e; and initial asymptotic momenta p; (i= l, . . ,n}.
are due to a pointlike interaction, possibly mediated by a
potential V(x), scattered into n particles with charges eJ
and final asymptotic momenta pi (j= l,. . , n) in th.e pres-
ence of a laser field as specified by Eq. (2.1). For n&n
this includes particle creation and decay processes. The
corresponding matrix element is

M- f d x exp i gp; —gpj. x/A—'

1

We assume that the laser field propagates in the posi-
tive z direction with circular polarization, so that it is
represented by the vector potential (2.10)

u =t —z/c . (2.2)

The amplitude a (u) and phase P(u) are stochastic quanti-
ties such that for

A„(u) iA~(u) =A(u)e'—"", (2.3)

A=(A„(u), Ay(u), 0)

=a(u)(eos[cou+(I()(u )], —sin[cou+p(u)], 0) (2.1)

with

x+v (u)) (u') 1i v-'(u))'-(u')) (2.11)

The matrix 6 couples the various Dirac spinors and in-
cludes the potential V(x); it also depends on the potential
A(u), if Klein-Gordon particles take part in the process.
The cross section or decay rate is proportional to

~
M

~

Hence, in order to account for the field fluctuations, field
averages like

[A(u)] [A (u)]'[A(u')] [A*(u'}]'
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will have to be evaluated. The explicit powers of A(u)
and A(u') in the quantity (2.11) originate from the Dirac
spinors (2.9) and possibly from the coupling G. The pro-
cess (. . . ) is defined by Eqs. (2.4) and (2.5).

Henceforth, we will be concerned with the ensemble
average of the quantity

Q

I(u, u') =exp i f,dr[ f(r)A (r)+f'(r)A*(r)

+QA(r)A*(r)], (2.12)

i.e., (I(u, u')). We will leave the function f(r) arbitrary,
so that the powers of A(u), A'(u), A(u'), and A'(u') in
the expression (2.11) can be generated from Eq. (2.11) by
functional differentiation with respect to f(u), f*(u),
f(u'), and f'(u'), respectively. After all functional
derivatives have been carried out we will have to make the
substitution

exp h E[g] =F[g+h],
g

(3.4)

or explicitly

e"p fdx "(x},P[g(x)]=P'[g(x)+h(x)],5g(x')

so as to obtain

( I(u, u') ) =exp( ig —'f'f)
r

)( exp A exp
5, 5

5f 5f

(I(u, u') }=exp( —ig 'f'f)
X ( exP[ig(A+f*g ')(A +fQ )]) (3 3)

we can apply the functional shift operator,

f(r)~P+e' ', f (r)~P e

where

(2.13) )&exp(ig 'f'f ) . (3.5)

(p;. )+ip;,2}';
P+ ——

2(ri,. p;.n

F~,, )+ip, ,2}.~,

p~ n

The ensemble average can now be carried out easily: Be-
cause of the Gaussian character of the stochastic process
considered here, as it is expressed in Eq. (2.4), we have

(2.14) ( ee~ea'~' ) esas' (3.6)

and

(2.15)

where b is the correlation function of the process as de-
fined in Eq. (2.5}. Hence,

(I(u, u')) =exp( ig 'f'f—)exp Q, b,

We notice that for a scattering process (n=n, e;=e;,
m; =m;, where m; and m; denote the mass of the ith in-
cident and scattered particle, respectively) we have in the
limit of nonrelativistic kinematics p; n=p; n=m;c, so
that Q=0. This holds no longer true in the relativistic
case. Even for nonrelativistic kinematics the quantity Q
is nonzero if we consider a decay process, e.g., neutron
bet'a decay in the presence of a laser field. In this case, it
is of vital importance, ' and dropping it would lead to en-
tirely misleading results such as the prediction of field-
induced enhancements of the decay which are nonexistent.

The next two sections will deal with the evaluation of
(I(u, u')) via functional or, alternatively, path-integral
methods.

III. ENSEMBLE AVERAGE:
FUNCTIONAL APPROACH

(3.1}

(I(u, u')}=(exp[i(fA+f*A +QA A)]} . (3.2)

If we rewrite this expression as

We will in what follows make use of a condensed opera-
tor notation, viz. ,

fA = f, drf( r)A( r),

f'~f= J,drdr'f'(r)b(r, r')f(r'),

f ~ f= f, d«r' d r"f (r )b (r, r') b (r') r"}f(r"),
etc., so that the quantity to be evaluated reads

Xexp(ig 'f'f) . (3.7)

This can be further evaluated with the help of the func-
tional formula

exp B, exp(g Cg) =exp[g*C(1 —BC) 'g]
5g 5g'

&& exp[ —Tr ln(1 —BC)] .

=e e
—Tr 1n(1—igh, ) —f h(1 —igb ) f (3.9)

Equation (3.9) is exact and applies for any Gaussian pro-
cess with an arbitrary correlation function h. It must be
emphasized, however, that the representation (3.9) is high-
ly implicit since it contains functions of operators and
inverses. In some special cases, which will be discussed in

(3.8)

Here B and C are arbitrary Hermitian operators [for the
application to Eq. (3.7) C will be proportional to the unit
operator], and the trace of an operator is defined by

Tr B=, ~B ~,r
For a proof of Eq. (3.8) see Appendix A. We then obtain

(I(u ui)) e iQ )f+fei—g )f+(1—i{?4) (fe —Trln(1 —iga)
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Sec. V, e.g. , for an infinite correlation time or for g =0, it
can be trivially evaluated. In general, without specifica-
tion further evaluation of Eq. (3.9) is impossible.

Henceforth, w'e shall concentrate on the particular field
correlation function

(3.10)

which is real and symmetric. The qnantity 2I measores
the variance of the field fluctuations and v; denotes the
(retarded) coherence time of the field. In this case, which

I

should suffice for all applications, Eq. (3.9) can be expli-
citly evaluated. We shall make use of the notation
B(r,r') = {r

~

B
~

r') to denote the matrix elements of an
operator B (this should not be confused with the ensemble
average {.. . )). The quantity of interest is then

L(r,7')= f ", «"&(r,r"){'r"
~

(1 ~ Q'&) '
~

r')

=L (v', r), (3.11)

where the symmetry of L is a consequence of the symme-
try of b, . In Appendix B we show that

L(r, v') = e ' '
( '+

z (C—l)e '" " ' 'cosh[(r z')/—r] — cosh[(u+u' r r'—)/r—] (3.12)

where

+=cp( u, u ) =cosh[ ( u —u ) / 'T) +C slllh [ ( u —u ) / 7 ]

r=(1—4igr)-'"r, ,

(3.13)

(3.14)

C=r(1 2igI —)/r, .

Furthermore,

Trln(1 —igh) =lnp —(u u')/r, —.

(3.15)

(3.16)

As mentioned at the end of Sec. II, obtaining the averages of the type (2.11) still requires performing various function-
al differentiations on {I(u,u') ). In order to given an example,

A(u)A*(u') g V, (u) V*, (u') g V-" (u) V- (u')j j

6
5f(u)

5
( )J

L(u, u') —f,dr'L(u', r')f(r') f,

deaf'(

)Lr( ur) {I(u,u'))

f(~)]=P p'~ f (,~)=P
(3.17)

and in the end the functions f and f have to be replaced according to Eq. (2.13). In this process various integrals will
be encountered, all of which can be carried out owing to the simple exponential form of L(r, r ) as given in Eq. (3.12)
and of f(r) as given in Eq. (2.13). We shall here be content with writing down the explicit form of L(r,r ) after the sub-
stitution (2.13) has been made:

f,drdr'f'(r)L(r, r')f(r'), , ; &.. . , ,=b(u, u')

4I & u —u'
2 2p+p +

'r, }+8 7. ( 1 +S 1- ) 7;(p

&&
— (1 —co r, )(cosh[(u —u')/r] —cos[co(u u')])—

—(1—co r )sinh[(u —u')/r] —2co7sin[~(u —u')] (3.18)

Hence, after the substitution (2.13) has been made, the fi-
nal answer is

(3.19)

1

where we have compiled Eqs. (3.9), (3.11)—(3.13), and
(3.16).

An even simpler, though less explicit derivation of the
result (3.9) starts from the observation that the ensemble
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average is generated by

(I(u, u')) =exp 5, I(u, u')
5A A=A =0

(3.20)

G&(u) =P+e'""+P e

Gz(u ) =i (P+e'"" P—e '""),
Hi ( u) =Hp(u) =g .

(4.4a)

(4.4b)

(4.4c)

IV. ENSEMBLE AVERAGE:
PATH-INTEGRAL APPROACH

In this section we will give an alternative derivation of
Eq. (3.18) using path integrals instead of functional
methods. The derivation vg11 rely heavily on previously
published material. We will restrict ourselves to the case
of the field correlation function (3.10). Also, for simplici-
ty, we will let u'=0 and assume u )0. The results of the
preceding section will then be recovered by replacing u by
u —u in the end. We will also ignore spin terms in this
section.

It follows from Eqs. (2.3) and (3.10) that the real and
imaginary parts A& and Az of A(u) are statistically in-
dependent and their correlation functions are given by
(i =1,2)

(4.1)

It can then be shown from Eq. (3.2) that

( I(u, O) ) = (Ii(u, O) ) (Iq(u, O) ), (4.2)

and I|(u,O) and Iq(u, O) satisfy the following nonlinear
Langevin equations (i =1,2; no summation over repeated
indices):

(I;(u,O) )=i [A;(u)6;(u)+A; (u)H;(u)]
8Q

where A and A are set equal to zero after all functional
derivatives have been carried out. The functional operator

exp[(5I&A')&(&I&A )]

when applied to a function of A and A' performs all pos-
sible two-time "contractions" as prescribed by Eq. (2.4).
This is done by picking in all possible ways one A(r) and
one A "(r') and replacing them by b,(r, r'). The exponen-
tial prevents multiple counting of identical contributions.
This is completely analogous to the functional form of
Wick's theorem, see, e.g., Ref. 5. Since I(u, u') is quadra-
tic in A and A', Eq. (3.20) can be immediately evaluated
with the help of a trivial generalization of Eq. (3.8), viz. ,
Eq. (A8) of Appendix A. This gives again Eq. (3.9). The
form (3.20) will turn out to be useful later.

Here we have substituted for f(u) and f*(u) from Eq.
(2.13).

An exact solution of the Langevin equations of the
form (4.3) with the correlation functions of the Gaussian
driving fields Ai and Az given by Eq. (4.1) was given in
Ref. 7 using a path-integral representation of the coherent
state propagator:

(I;(u,O)) =exp f drR;(r)
where

(4.5)

R;(u) = —2iH~(u)X~(u) —iH~(u)Z; (u)

+6;(u)Z;(u)+i H;(u)
. I

+C
(4.6)

and the functions X~(u) and Z;(u) (i=1,2) satisfy the fol-
lowing differential equations with the initial values
X;(0)=Z;(0)=0:
dX; 2

[—1+2il H;(u)]X; 4iH;(u—)X; — H;(u),

dz
cL

(4.7a)

1 2) I . I+ H;(u) 4iH;(u)X—; Z; — 6;(u)
7Cc +c

126;(u)X; . (4.7b)

The set of nonlinear differential equations (4.7a) and
(4.7b) can be solved for the given values of 6;(u) and
H;(u) from Eqs. (4 4a)—(4.4c). On substituting these
solutions in Eqs. (4.5) and (4.6) we obtain an exact solu-
tion for (I;(u,O)) (i= 1,2). The solution for (I(u, O)) is
then given by Eq. (4.2). The calculations are rather
lengthy but straightforward. The details are given in Ap-
pendix C. The expression for (I(u, O) ) is identical to that
given by Eq. (3.19).

V. SPECIAL CASES

We will now consider various special cases of the gen-
eral result of the preceding sections. If the A term in the
Volkov solution is neglected, i.e., for Q =0, we can make
contact with previously published results. ' In this case
we have r=r„C =1, and the Trln of Eq. (3.9) vanishes.
Hence, the general result reduces to

&& (I,(u, O) ), (4.3)
(5.1)

where and [cf. Eq. (3.18)]

4I ~+8—zc 1 2 i 22 —(u —u') vc 2 2b(u, u')= (1+co r, )(u u')+co r, ——1+e '((1 co r, )cos[co—(u —u')] —2cor, sin[co(u —u')] j(1+co r, )
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The additional limit of an infinite correlation time when
w, ~oo, I ~ oo such that

21"/~, ~a
is finite, leaves the simple result

4a P+P
Z(u, u') = sinz[co(u —u') l2] .2

(5.3)

(5.4)

In the presence of the quadratic term the limit (5.3) of an
infinite correlation time is still fairly simple. It follows
from the definitions (3.14) and (3.15) that in this limit
7~ oo, C—+ «, 7/~, -+0, whereas C/7 —+ —iga and
c7/~, —+ —,

' are finite. As a consequence we have

)& exp i —g p; —g p~ (x —x')/A'
J

X(I(, ')) gdp;gdp, . (5.10)

ence of a fluctuating field with infinite correlation time,
where h(~, r')=2I /~, =a . The simple relation (5.9) be-
tween the two quantities is known to hold for a nonrela-
tivistic situation where the quadratic term gA'A in the
Volkov solution is absent. We shall now prove that it still
holds in the presence of the quadratic term.

The differential transition rate for the chaotic field is

do;„,(a)= f d'xd'x'

QL(r, ~') =
1 —iga (u —u')

4P+P a
Z(u, u') =

z z sin [(o(Q —u')/2],
o)i[1 ig—a z(u —u ') ]

(5.5) It is convenient to transform

d4x d4x'=du du'dv dv'd x; d x
(5.6) =d(u —u')d[ —,'(u+u')]du dv'd x;d x, (5.11)

and

Trln(1 —igh) =in[1 —iga (u —u')] . (5.7)

We notice in passing that Eqs. (5.5)—(5.7) can be obtained
immediately from Eq. (3.9) since for an infinite correla-
tion time the correlation function is just a constant, viz. ,
b, (r,r')=a, so that all the integrations implicit in Eq.
(3.9) are trivial. .

Another case, where we can relate our present results to
independently obtained ones, is when the ensemble aver-
age does not contain the linear terms, i.e., P+ ——P =0.
The general result (3.19) then reduces to

where u =t z lc, v =—ct +z, x; = (x,y), and analogously
for the primed variables. The expression for do.«),(a)
differs from Eq. (5.10) in that (I(u, u')) is replaced by
I(u, u') as given in Eq. (2.12) with fixed values a (u) =a,
P(u)=$ for amplitude and phase of the field. Carrying
out the integral in Eq. (2.12) with (2.13) and expanding in
terms of Bessel functions yields

I(u, u') = gi Jk (P++P )sin —(u —u')2Q . Ct)

k, I

)&J& (P P)sin ——(u —u')2lQ . N

co 2
(I(u, u') ) =exp[(u —u')/~, ]qr (5.8)

where q& is defined in Eq. (3.13). This expression is needed
for the improved analysis of the g —2 experiment for the
anomalous magnetic moment of the electron, 'o i.e., in~the
context of a physical problem completely different from
that one considered in this paper. Equation (5.8) leads to
the expression that is given in Ref. 10, if our constants r,
and 7 are identified with y

' and y' ', respectively, of
Ref. 10.

In what follows we shall be concerned with the limit of
the infinite correlation time. In this case there is a simple
recipe for how to obtain cross sections and decay rates if
they are known for a coherent field, viz. ,

2'

do;„,(a) = d — e ' ' do«), (a) . (5.9)
a

Here do«b(a ) denotes a differential transition rate in the
presence of a coherent field (2.1) with a (u) =a and a con-
stant phase P(u)=P [do«b(a) is independent of {()], and
do;„,(a) is the corresponding transition rate in the pres-

4a . cd
)&J{) sin —(u —u ') QP+ P

2
(5.13)

where

T„=fd[ —,'(u+u')]

is an (infinite) constant, which cancels, when a transition
rate per unit time is calculated. With the help of the in-
tegral

dx x'+'e J„(Px)=(8"(2a) " 'e ~ ~ (5.14)
0

we obtain

+ei(k —l)(u(u+u'/2+$)eiga (u —u')
(5 12)

If this is integrated over (u+u')/2, the terms with k&1
vanish and the remaining sum can be evaluated so that

f d[ —,
' (u+u')]I(u, u')

iga ~(u —u')
Tu

—2 I

f d e ' f d I(u u')=T [1—iga (u —u')] exp
0 2 2

4a P+P sin [ , {o(Q—u')]-
{o [1—iga (u —u')]
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In the last line of Eq. (5.15) we have written down the re-
lation to the case of the chaotic field, using Eqs. (3.19),
(5.6), and (5.7). This establishes the validity of Eq. (5.9).

This derivation ignored possible explicit powers of A

and A' as exhibited in Eq. (2.11) which will invariably be
present whenever particles with spin take part in the pro-
cess, due to the spin terms (2.9) in the Volkov solution.
The preceding proof can be generalized so as to include
this case. In Appendix D, we shall give a slightly dif-
ferent argument based on Eq. (3.20). The conclusion will
be that Eq. (5.9) still applies in the presence of spin terms.
Hence, whenever the field coherence time is long com-
pared with all other characteristic times in a particular
problem, Eq. (5.9) can be used to infer the transition rate
in the presence of a chaotic field from the corresponding
one in the presence of a coherent field.

VI. CONCLUSIONS

The main results of this paper are the following. We
have obtained all ingredients which are necessary in order
to recalculate cross sections and decay rates of charged
particles in the presence of an intense circularly polarized
plane wave which is chaotic rather, than coherent.
Presently available high-energy lasers produce chaotic
fields to a good approximation. Our calculation is fully
relativistic, i.e., it incorporates the quadratic effective
mass term in the Volkov solution as well as spin terms.
Both effects are vital in a relativistic situation. We as-
sumed a field correlation function which decreases ex-

ponentially in time on the scale of an arbitrary coherence
time. The results are summarized in Eqs. (3.9),
(3.12)—(3.16), and (3.18).

For most practical applications to cross sections and
decays of elementary particles and nuclei, the coherence
time of the field will be long in comparison with all other
characteristic times. In this case the limit of an infinite
correlation time can be invoked which simplifies things
considerably: the transition rate in the presence of the
chaotic field with average intensity I can then be obtained
from the rate in a coherent field with intensity I by in-

tegrating the latter over the intensity with a weight func-
tion exp(I/I), viz. , Eq. (5.9). This result was known for
the nonrelativistic case: here we have extended it to the
relativistic case where both the fluctuations of the effec-
tive mass and spin terms become important.

For the case where the limit of the infinite correlation
time applies we can draw the following conclusions re-

garding the difference in the effects caused by a chaotic
versus a coherent field. (1) It is known that total cross
sections and decay rates of charged particles in the pres-
ence of a coherent field are unaffected by the field as long
as its field strength is, loosely speaking, small compared
with the (quantum-mechanical) critical field strength
E, =m c /(eh'). ' Consequently, the same holds true in
the presence of a chaotic field, as long as its average in-
tensity is small compared with the critical intensity. (2)
Differential transition rates are significantly distorted
even by fields which are well below the critical field. This
effect will be noticeably enhanced by a chaotic field, since
its actual intensity can be much larger than its average in-

co„=neo 1+ v +2n sin (5/2)Ae . z

. pp1c
(6.1)

where V=ea/mc and 8 is the angle between the incident
and the emitted photons. The partial cross section for
emission of the nth harmonic is for v «1 proportional
to

J„(2nvsin(8/2)cos(8/2)[1+v sin (0/2)] ') . (6.2)

The so-called intensity-dependent frequency shift, i.e., the
term proportional to 7 in Eq. (6.1), can be traced back to
the quadratic term Q in the Volkov solution.

In order to obtain the corresponding results for the
chaotic field with infinite coherence time the integration
indicated in Eq. (5.9) need to be carried out. Because of
the ubiquitous dependence of O'0'gpss on v this cannot be
done in closed form. Two features, however, will certain-

ly evolve: (1) since J„(z) is proportional, z " its leading
term will pick up the factor of n!, so that higher harmonic
emission will be enhanced; and (2) in the coherent case,
the frequencies co„emitted at a fixed angle 5 are sharp.
Because of their intensity dependence, this will no longer
be true in the chaotic case. Indeed, for ever more increas-
ing intensity of the stimulating field, the line shapes of the
individual harmonics will for 8&0 become broader and
broader until they will finally overlap so that a separation
becomes impossible.

tensity. (3) When, for a coherent field, its field strength E
approaches the critical field, total rates are modified
(most often enhanced) by intensity-dependent contribu-
tions which normally are proportional to (E/E, ) .'
Again, in view of Eq. (D8), there is no difference between
.the chaotic and the coherent field. (4) If, however, the
intensity-dependent contribution starts with (E/E, )

" and
n p1 or when, for E-E„higher-order contributions
modify the leading (E/E, ) behavior, a glance at Eq. (D8)
makes clear that the notorious factors of n!, well known
from multiphoton ionization, show up. (5) Spectacular
enhancements can only be expected when the leading term
is proportional to (E/E, )

" with n »1. This would be
the case, e.g., in nuclear beta decay for a nucleus where
the decay is energetically forbidden in the absence of the
field but becomes energetically possible after absorption of
n photons from the laser field. The decay rate will then
be enhanced by the factor of nf. Because of the factor of
(E/E, )i", however, fields very close to the critical one are
required. Also, if just the minimum nuinber of photons
which is necessary in order to render the decay energeti-
cally possible, is absorbed from the field, the available

phase space is extremely small.
Finally, we will briefly discuss high-intensity Compton

scattering' for a chaotic incident field. For a coherent
incident field, the cross section is a sum over partial cross
sections for emission into (approximately) the stimulating
frequency and harmonics thereof. If a denotes the ampli-
tude of the vector potential of the stimulating field and co

its frequency, the emitted frequencies are (n & 1)
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and

X'(&) =X(A, )BX(A,) (A4)

derivative with respect to A, directly of the ansatz (A3) and
comparing it with the same quantity calculated from Eq.
(A2) we obtain the two differential equations

APPENDIX A: PROOF OF EQ. (3.8)
g'(A, ) =Tr [BX(A,)] . (A5)

F(A.) =exp A, B „exp(g*Cg),5 6

Qg Qg4'

so that

(Al)

F'(A, ) = B „F(A) .
5g"

(A2)

We make the ansatz

F(g) eg x(A.)gePi, ) (A3)

where @(A,) and X(A, ) are independent of g. Taking the

For the reader's convenience we shall here reproduce
the standard proof ' of Eq. (3.S). Consider the quantity

X(A.) =C(1 —XBC)-' =(1—XCB)-'C,

and consequently

i)'j(A, ) = —Trln(1 —ABC) .

(A6)

(A7)

If we insert this into Eq. (A3) and let k be equal to one,
we recover Eq. (3.S). A trivial generalization of Eq. (3.S)
which is needed for the evaluation of Eq. (3.20) is ob-
tained by letting g~g+ C 'h, where we now assume that
C is Hermitian, viz. , C*(r,r')=C(r', r). It reads

A comparison of Eq. (A3) with (Al) yields the initial con-
ditions X(0)=C and f(0)=0. Hence, Eq. (A4) is solved
by

exp B „exp(g*Cg+ h*g +g'h ) =exp[g*C(1—BC) 'g]exp[h'(1 BC ) 'Bh—]
Qg

)&exp[h*(1 BC) 'g+—g*(1 CB) 'h]—

)& exp[ —Tr ln(1 —BC)] . {AS)

APPENDIX 8: EXPLICIT EVALUATION OF {1(u,u ') )
FOR THE FIELD CORRELATION FUNCTION (3.IO)

We start by noticing that the derivatives of

2I —~~—~~ r~,
e

C

32L 1 4I
aH -2 L = — 5(r r'), —

where

The general solution of Eq. (85) is

(85)

(86)

are

and

Bb,(r, r') 1 e(r v')b, (r,r')—ar r,
(82)

L( i)
) 2ic

+y, sinh(r/r)+y, cosh(r/r), (87)

(83)

where the distribution e(r) is defined by e(r)=+1 for

r &0 so that de/dr=25(r) Consequent. ly, we have

"r) L(rr') 1 (,)
4I

(
~
(1 .Q~) i, )

dT

where the constants y; may depend on ~', u, and u'. In-
corporating the symmetry of L we may write

L(r, r') =
2 e ~' ' '+a sinh(r/r)sinh(r'/r)2'

jc

+Pcosh(r/r)cosh(sir)

With the help of the relation +y sinh[(r+ r') /r], (BS)

1 —iQb, 1 iQE—
we obtain the differential equation

(84) where the constants a, P, and y still depend on u and u'.
In ord.er to determine them we need initial conditions.

For this purpose we will consider the functions
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M(u)=L(u, u), M(u')=L(u', u'), N(u)=L(u, u') .

(89)
5(1—iQE) 'b, = .

~

u &&u
~

. (812)
u 1 —iQb, 1 —iQb.

Note that L(r, v') depends implicitly on u and u' via the
limits of the integrations. Hence, contrary to appearance,
M(u) also depends on u', and M(u') also depends on u.
In order to derive a differential equation for M it is con-
venient to rewrite it with the help of Eq. (84) as

M(u)=h(u, u)+iQ&u
~

b(1 iQb—) '6
~

u &

=b(u, u)+iQ f drdv'b(u, r)&r
~
(1 iQb, )—

dM
cL

M — + QM'

with the initial condition

M(u) „g ——21'/r, .

Hence, we obtain the differential equation
r

(813)

(814)

Because of Eq. (Bl),

b, (u, u) =2I /r,

X&(r', u) . (810)

(811)
and

Similarly we find

dM 2 — 2I'
du rq 1q

i QM— (815)

is independent of u. In differentiating Eq. (810) with
respect to u we encounter two types of contributions.
Differentiating h(u, ~) just provides a factor of —1/r,
[see Eq. (82) and notice that u & r for all r in the integra-
tion interval]. Apart from the explicit dependence on
u, M(u ) depends on u via the limits of the integrations in
the definition of the operator products. By means of a
power series expansion it can easily be established that

I

N+i QMN
du

with the initial conditions

M(u') „, =N(u), =2I /r, .

The solution of Eq. (813) with (814) is

(816)

(817)

21 r sinh[(u —u')/r]+(r, /r)cosh[(u —u')/x]
M(u)=

cosh[(u —u')/r]+ C sinh[(u —u')/r]

where r is defined in Eq. (86) and

C=r(1 2iQI )/—r, .

It is immediately obvious that the solution of Eq. (815) with (817) is

M(u')=M(u) .

Finally, if we note that the function M(u ) can be written as a total derivative, viz. ,

M(u ) =— in[ cosh[(u —u')/r]+ C sinh[(u —u')/r] ]-l d 1

cL C

we can integrate Eq. (816) with (817). The result is

2I 1

cosh[(u —u')/r]+C sinh[(u —u')/r]

(818)

(819)

(820)

(821)

(822)

With explicit expressions for the three functions (89) now at hand we can determine the three constants a, P, and y in

Eq. (88). A rather tedious but straightforward calculation then yields Eq. (3.12).
In order to complete evaluation of I(u, u') [Eq. (3.9)] the function Tr ln(1 —iQb, ) still has to be computed. We expand

the logarithm into a power series and take advantage of the cyclic property of the trace, writing

Trln(1 iQE) =—Tr[ —iQ& ——'(iQ)2&2 —'(iQ)3g3 . . . ]

=T'[ —iQ~
I

u & & u
I

—(i Q)'~'
I

u & & u
I

—(iQ)'a'
~

u & & u
~

— ]

= —iQ & u
~

4(1 iQb, )
'

~
u &

= iQM(u—) . — (823)

Hence, in view of Eq. (821), we obtain the result (3.16).
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APPENDIX C: DETAILS OF THE PATH-INTEGRAL APPROACH

In the present problem [cf. Eqs. (4.4a)—(4.4c)], Eqs. (4.7a) and (4.7b) reduce to (i = 1,2)

dX;

du

dZl'

du

p2
( —1+2iQI )Xl —4iQX; —i Q,

+C C

1 2iQI . I"
+ —4iQXl Z; —G;(u) —2X,

C C 7C

(Cl)

(C2)

The solutions of Eqs. (Cl) and (C2), subject to the initial conditions X;(0)=Z;(0)=0, Are

Xl(u) =X2(u) =
4ig y 4lgr

' (C3)

Z;(u)=—
—2 G;

2-22igy(1+co r ) rc

G;y
jC

2igl+G;j+ G;(0)—
+C C

(C4)

where p(u, O) and r are given by Eqs. (3.13), (3.14), and (3.15), respectively. Substituting Eqs. (C3) and (C4) into Eq. (4.6)
we obtain

R(u)=Rl+R2

= —2lg(Xl+Xq) —tg(Z)+Z2)+GtZ)+G2Z2+2 2 2igl
ic

d 4I'+I' QI r r—(1 ~ rc) d cos(cou) d sin(eau )in'(u, O)+ +2N +1
du r, (1+~ r ) r, (1+to r ) du q(u, O) du qr(u, O)

2igI r (1+co r, )
+ +

p (u, O)H(1+co r )

Finally, in order to evaluate
Q

(I(u, O)&=exp I dr[Re(r)+R2(r)]

we need to integrate R (t). This can be done in a straightforward way. The resulting solution agrees with Eq. (3.19).

(C5)

(C6)

APPENDIX D: PROOF OF EQ. (5.12) FOR THE CASE WHERE SPIN TERMS ARE PRESENT

In the most general case we will have to evaluate the average of quantities like (2.11), i.e.,

Gkl k t
——[A(u)]"[A*(u)]'[A(u')]" [A'(u')]'I(u, u')expIito[(k —l)u+(k' —l')u']I, (Dl)

where we have included the appropriate phases. If we notice that Eq. (3.20) does not just apply to I(u, u') but to any
function of A and A* we may write

5
( Gkl, k'l' & =exp ~ Gkl, k'I'

5A
(D2)

The functional I(u, u') can be expanded into a power series so that

Gkl k l
——[A(u)]"[A'(u)]'[A(u')]" [A*(u')]' exp[iso(k —l)u+(k' —l')u')]

X g I dr( ~ ~ ~ dr~ dr'l ~ ~ ~ dr„,g(r)~ ~ r~;rI~ ~ r„,)
n, n'

XA(rl) A(r„)A(rl) . . A(r'„) . (D3)

Since spin terms are explicitly taken care of we are free to replace the functions f and f* which are inherent in I(u, u')
according to (2.13). As a consequence the frequency dependence of the function g in Eq. (D3) is given by

g(r~, . . . , r'„)=exp[iso(rl+ . +r„—rq — —r'„)]g(rl, . . . , r„' ) .

Since owing to Eq. (D2) we shall finally let A =A' =0, only those terms in Eq. (D3) with

(D4)
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k+k'+n =1+1'+n'

will contribute. Because of the infinite correlation time we have

5 5 z 5, 5, =az dr d~'
5A 5A' 5A (r) 5A*(~')

If we expand the exponential in Eq. (D2),

5 5 1 5
exp

5A 5A" „v! 5A

(D5)

(D6)

and apply it to Eq. (D3) letting finally A =A*=0, only the term with v= k+ k'+ n will contribute. Without loss of gen-
erality the function g(r, , . . . , r„' ) can be symmetrized with respect to permutations of the variables r; and r,' among
each other. Then, the net effect of carrying out the functional derivatives is the following: in view of Eq. (D6) the
derivatives (5/5A )"and (5/5A*)" introduce a factor of v! each, and all A's and A "s are replaced by a. Hence,

( Gkl, k'I' ) y v'" f,«i «v k k'd&—1 — d&v —!—I'exp[leo(&1+ + rv k k' r—l — &v—I —I') ]

)&exp[leo[(k —l)u+(O' —I')u']Ig(~&. . .,~,' I I ) . (D7)

The function g depends on r; and ~,' only in as much as it may contain products of 5 functions 5(r; r,'), each—of which
leads to the cancellation of the corresponding exponentials in Eq. (D7) and in turn to a factor of u —u after integration
over r; and ri . It can then be readily shown that ( Gkl k I ) depends only on the difference u —u '.

Now, if we repeat the same procedure for a coherent field, i.e., choose a particular field (2.1) with a definite amplitude
a(u)=a and phase 4(u) =4, and calculate fd(u+u')/2Gki k I this will reproduce Eq. (D7) with the only difference
that a is replaced by a and the factor of v. is missing. Since

'2

e (a/a' a &"=v!a2v (DS)
a

we have again the relation
r 2 r

f ~
—(a/a) d +

Q 2
9 +9

Gkl, k'I'(a ) = d
2

( Gkl, k'I') (D9)

analogous to Eq. (5.15) but now shown to hold for arbitrary spin terms. This finishes the proof of the general validity of
Eq. (5.9). The precaiing argument also should have made clear that a relation like Eq. (5.9) only holds in the case of an
infinite correlation time when A(r, ~') is independent of r and r'.
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