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Perturbation theory is shown to be one of the most powerful tools in calculating rotational
eigenenergies of molecules in electric and magnetic fields, provided that the rigid-rotator approxima-
tion holds. The energy shifts for the Stark effect in symmetric-top molecules and for the hydrogen
molecular ion in a magnetic field are accurately calculated in the whole range of field intensities.

I. INTRODUCTION

Recently, there has been a great interest in obtaining the
energy shifts for the Stark effect in diatomic and
symmetric-top molecules by perturbation theory (PT).!—3
_Though the rigid-rotator approximation invoked in those

calculations is somewhat rough, results are supposed to be
useful in the interpretation of molecular-beam resonance

and electrical level crossing experiments,’ in the calcula-

tion of permanent dipole moment and polarizability aniso-

troples 129,10 and even in the study of the dynamic Stark

effect in symmetric-top molecules.!"!> A PT calculation
has also proved to be suitable in a theoretical study of the
hydrogen molecular ion in a uniform magnetic field'3
which has been motivated by recent experiments on semi-
conductors.

When dealing with PT, two problems always arise: the
calculation of the perturbation corrections and the sum-
mation of the Taylor expansions. Since the usual
Rayleigh-Schrodinger PT leads to too-cumbersome expres-
sions,! =3 appropriate techniques have been recently
developed in order to obtain large-order corrections.*~%14

The second difficulty is due to the well-known fact that
most problems of physical interest lead to divergent power
series. Fortunately, the perturbation series for the models
we consider in this paper are found to have finite conver-
gence radii. But even in such favorable cases a difficulty
still remains, since a perturbation expansion has to include
a very large number of terms in order to yield accurate
enough results when the perturbation parameter ap-
proaches the convergence radius closely. Moreover, the
convergence radius is sometimes so small that the physi-
cal value of the perturbation parameter lies beyond it.
These obstacles in PT calculations made other approxi-
mate methods preferable.

The purpose of this paper is to show that PT is a
powerful tool in calculating rotational energies of mole-
cules in electric or magnetic fields, provided that the
rigid-rotator approximation holds. In Sec. II we develop
quite general hypervirial relationships which will prove to
be useful in Secs. III and IV when obtaining the perturba-
tion series for the small- and large-field cases, respective-
ly. In Sec. V we show how to rearrange a power series so
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that both its convergence rate and convergence radius are
largely increased. Results are discussed in Sec. VI, where
the perturbation series for the small- and large-field cases
are shown to match smoothly in the intermediate region,
thereby yielding very accurate and reliable energies in the
whole range of field strengths. Besides, the method
developed in Sec. V will prove to improve markedly the
matching as well as the results that can be obtained from
only one of the above-mentioned perturbation expansions.

II. GENERAL HYPERVIRIAL RELATIONSHIPS

In order to obtain the energy perturbation corrections in
both the small- and large-field cases we will use a general-
ized Swenson and Danforth procedure!>!® which from
now on will be called the hypervirial perturbative method
(HPM)'7— " and that we will briefly discuss to make the
paper self-contained. In this section we develop quite gen-
eral hypervirial relationships that, together with the
Hellmann-Feynman theorem, are the main ingredient of
the HPM.

All of the quantum-mechanical models studied in this
paper can be represented by the following general eigen-
value equation:

Lp(x)=ER(x)(x) , a<x<b ; (1)
L being a self-adjoint operator,”® with
d d ‘
=2 p(x)L : 2
L de(x)dx +Q(x) (2)

By a straightforward manipulation it is very easy to show
that

[L, f(d/dx)]=(1/P)2Pf —fP')(L —Q)
+[L, Y]+ (PY') —fQ', 3)

where f=f(x) is any differentiable function (f'=df /dx,
etc.) and [A4,B]=AB —BA is the commutator of the
operators A and B. The function Y (x) is a solution of

Y'(x)=3[(fP'/P)~f"]. 4)
When P[¢(fy') —fy' 2] vanishes at the points a and b,
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it immediately follows from Eq. (3) that
((fP'—2Pf')(Q —ER)/PR)+{(PY')/R)
+((ER—Q)f/R)=0, (5)
where
(A)= [ pAyR dx ©)

" holds for the expectation value of the operator 4 provided
1 is real and normalized to unity:

b
[ PR (x)dx =1 )

Let us now suppose that Q also depends upon a real pa-
rameter A [i.e., Q=Q(A,x)]. In such a case, the rate of
change of the eigenvalue E with A is given by the well-
known Hellmann-Feynman theorem:

dE /OA=((3Q/0N)) . ‘ (8)

Both the hypervirial relationships (5) and the Hellmann-
Feynman theorem (8) will prove to be useful in calculating
the energy perturbation corrections in Secs. IIT and IV.

III. SMALL-FIELD CASE

As said before, in this paper we study only linear and
symmetric-top molecules under the rigid-rotator (and, of
course, under the Born-Oppenheimer) approximation.
Therefore, it is sufficient to consider the latter and more
general problem that includes the former, as will be brief-
ly discussed below.

The stationary Schrodinger equation describing the ro-
tational motion of a rigid symmetric-top molecule that
bears the influence of a potential U(A,0) is

[ —sin~'6(d /d0)sin6(d /d0) + (M?*+ K ?)sin—20
—2KM cotfsin~ '+ U(A,0)](0)=W(8) , (9a)
"MK =0,+1,+2,...,+J, J=0,1,2,..., (9b)

where 0 is the angle between the z and molecular symme-
try axes, W is the adimensional energy, and J,K,M are the
quantum numbers related to the total angular momentum
and its projections onto the above-mentioned axes, respec-
tively. The total wave function can be written as
Y(p,X,0)=exp[i (M¢+KX)]P(6), where as usual ¢ and X
are the remaining Euler angles.> When K =0, Eq. (9) be-
comes the Schrodinger equation for the hindered rotation-
al motion of a rigid diatomic molecule.

When U(A,0)=AV(0), V(0) being a periodic, bounded
function of 6, Kato’s theorem?! states that the perturba-
tion expansions

W= %W,-A", Wo=J*=J(J +1), $= %p,-x", (10)

have a finite, non-null convergence radius.

In order to simplify notation, we will write W and ¢ in-
stead of Wk, and ¥k throughout this paper, except in
those cases where it may be misleading.

It will be sufficient for us to consider only the quite
general potential function

U(A,0)= 3, c;Mcos/6 , (11)
j=1

where the perturbation parameter A (related to the field
intensity) and the coefficients c¢; depend on the problem
studied. For example, the shifts of the rotational energy
levels of a polar, symmetric-top molecule in a uniform
electric field of intensity € are given by Eq. (9) with
(throughout this paper, field directions are supposed to
coincide with the z axis)?

U(A,0)=c A cosf+c A cos?0 , (12a)
cy=-—1, 02=(4IB,u2)_1ﬁ2(axx'—'azz) ’
(12b)
A=2uelg /%,
W =2I4E /#*+Ic—1Ip)K?/I
+(4Ipu?) " W, Al (120

where E is the energy, u is the molecular dipole moment,
I is the moment of inertia about the symmetry axis, I
is the remaining (twofold degenerate) principal moment of
inertia, and a, and a,, =a,, are the components of the
diagonal polarizability tensor.

To deal with the rotational motion of the hydrogen
molecular ion H,*, in a magnetic field, we can also use
Eq. (9) with K =0. Larsen!® showed that the interaction
potential for this problem is given approximately by

U(0)=mrX( Ag + Bgsin®0)sin®6 , (13a)

where m is the reduced mass of the system, r, is the
equilibrium value of the internuclear separation, and
Ag,Br (| Ag | > | Bg | ) are constants depending on an
adimensional form of the magnetic field intensity.!®> In
this case the rotational energy E is related to W by

W= mrezE . (13b)

Obviously, Eq. (13a) can be easily rewritten as in Eq. (11),
with ¢; =0 if j > 4, by a proper definition of A and c;.

We now show how to apply PT to the general model
given in Eqgs. (9) and (11). To begin with, we notice that
Eq. (9) is a particular case of Egs. (1) and (2) with

x=60, P(0)=R(0)=sin0, (a,b)=(0,7), (14a)
Q(A,0)=(M?+K?)/sinf
—2KM cotf+ U(A,0)sin0 . (14b)

Therefore, the general hypervirial relationship (5) must
hold in the present case. If we choose f in Eq. (5) to be
any function in the set {f;(0)},

fs(6)=sinfBcos’0, s=0,1,2,... (15)

we will straightforwardly obtain the following recursion
relationship:
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[2(s + DWW —5(52/2+435/2+1)]GE D 45 [s2—2W +2(M?*+K?)]G*—V
—(s/2)s —1)(s —Z)G(S—”-—ZKM(ZS + I)G(s)_ il-ci)\_i[G(s+i+1)_G(s+i—l)]

23 [(s + 1DeAGE++D _seAiGU+i-D] =0,

i=1

among the expectation values

G®={(cos*9), s=0,1,.... (16b)

We then apply PT by expanding W and every G in
powers of A [cf. Eq. (10)]:

W = i VVi}"i’ G = iG,-(S)ki . a7
i=0 i=0

Though in this way we do not get the wave function expli-
citly, we obtain all of the expectation values G'* that are
closely related to many physical properties of the system.

i—1

i=1

(16a)

If we expand W and each G in Eq. (16) in powers of
A and make use of the Hellmann-Feynman theorem [cf.
Eq. (8)],

aw /or= 3 ic,GOAI~1,
i=1
' (18)

t=1 )
tW,=3 (j+1)c; 11G/EL,
j=0
to eliminate each W; in the resulting equation, we obtain,
after equating to zero the coefficient of A, the following
recursion relationship:

t i1 .
[206s + 17" —s(3s2+ 35 +1167*V+26 + D T ;16501644

i=1j=0

t i—1; .
+s[s?—20* +2M>+K)]IGF V-2 S L—:_Ll ¢ +1GIFGET — Ss(s —1)(s —2)G*

i=1j=0
t—1 . ;
—2KM (25 + )G+ 3, [(2s +j +1)¢j 1G4 (25 +j +3)e; 11 GEH 4P ]1=0. (19)
j=0
T
Any perturbation correction W},G}‘) can be obtained U(A,0)=—AcosO . 20

from Egs. (18) and (19) through a recursive calculation
starting off with the normalization condition [cf. Egs. (7)
and (14a)] G”=8,,. Of course, G/*'=0if  <0.

In two previous papers®!* we have used the HPM to
obtain approximate analytical expressions for the energy
levels of problems (12) and (13) in terms of the quantum
number J, K, and M. Since Eq. (19) is very easy to solve
with a computer, we have also obtained the eigenvalues
very accurately.®'* However, due to the fact that the
Taylor series (17) have a finite convergence radius and
that they must be truncated to carry out any calculation,
results obtained in this way are reliable only when A is
small enough. In the next sections we will show how to
get PT energies valid in the entire range of A values.

IV. LARGE-FIELD CASE

The aim of this section is to supplement the A power
series obtained in Sec. III, which is reliable only when A is
small enough, with another one valid for large enough A
values. If both perturbation expansions were found to
match smoothly in the intermediate region, we would then
have quite accurate results in the whole range of field in-
tensities.

If we neglect polarization effects, the interaction poten-
tial (12) becomes

This simple model proved to be useful when dealing with
the static® and dynamic'"!? Stark effect and we will use it
as an illustrative example here.

As the field strength increases, the hindered rotation be-
comes an oscillation about 6=0, which is where U(A,0)
attains its minimum value. The larger A, the larger the
force constant of the oscillation and the smaller the am-
plitude of the motion. It is then possible to apply PT and
to expand the energy and the wave function in powers of
AT1/22-24 QOpviously, these perturbation series become
increasingly accurate as A— o and thus they are an ap-
propriate supplement for those series in Sec. III. More-
over, the large-field expansions proved to be useful by
themselves in calculating physical properties of molecular
systems in strong electric> 12 and magnetic fields.!?

In order to apply PT when A— w0, we must first rewrite
the stationary Schrodinger equation (9) as

[—d?/d6*+(M*+K*— +)/sin%0
—2KM cot/sin0—U(A,0)— W — +10=0,
21

where ®=sin!/20y. We then define x =6*/0,
o=(2/A)'"2, and expand sind and cosf in powers of 0
having®2*
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4> 1d _a _x_ o
o2 T 4+16
— > (yd; —KMD, /2)0* *1x*
s=0
+1 Lt o=y D, (222)
5s=0
where
a=[4M —K)*—1]/16, y=[4M*+K?)—1]/16,
(22b)

W =—o(W+A)/4,

LN =1D[2a— 2N —1)2N 31X~ 24 TNXV 4+ (2N —

+ 2 (2N 45 —1)(yA; —KMD, /)X +s 7V —
s=0

where

XV=(xMy =3 xMo/, X{V=8;0, N=0,1,..., (242)
j=0

W= W0 ¥Wo=—752J—|M+K|+1). (24b)

j=0

To carry out any calculation we must relate both sets of
perturbation corrections { #7;} and {X; ‘M3 This 1s done
via the Hellman-Feynman theorem whlch results in®
k—1
KV =180k _1— 3 (s +1)y4; —KMD /XSy
© 5=0
+7 2(s+1>L XEH2 (25)
- §=0

Using Egs. (23)—(25) we have obtained an analytical
third-order perturbation expression for the energy W [up
to £(A~3/2)] valid for sufficiently large A values.® In this
paper we obtain more accurate results by solving these
equations numerically with a computer. Though we do
not know whether the power series (24b) is convergent, we
may still be sure about the accuracy of our calculation
whenever the A and A~!/2 power series match smoothly.

The procedure just sketched applies easily to any model
with a potential U (A,0) provided the depth of the poten-
tial well tends to infinity as A— o. In fact, we have suc-
cessfully treated the problem posed by the hydrogen
molecular ion in a uniform magnetlc field.'*

V. RENORMALIZED PERTURBATION SERIES

As will be seen in Sec. VI the A power series converges
quickly enough and matches the large-A expansion
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s—1

A; _2c+}‘,ccs i1, 40=2C,
=0
_ (22¢)
C,=2(2%+1_1)| By 5 | /(25 +2),
S .
Dy=(—10%1/(2s 421+ 3 (—1VA4;_; /(2)),
j=0
(22d)

Li=(—1)'/(2s +4)!,

and B, are the Bernoulli numbers. By multiplying Eq.
(22) by x /2 we obtain a self-adjoint equation which is
easily shown to be a particular case of Egs. (1) and (2)
with (a,b)=(— w0, 0), P(x)=x2, R(x)=x"12, and
Q (x) the remaining polynomial.

After applying the procedure of Sec. III we obtain®

(N 1)

DI XN V2N -1)x¥ 7V /16

2(2N+s+1)1;X,iAL;“iT"+(2N—1)27// xNoV=o0,

s=0 s=1

(23)

T

smoothly. We can, however, increase the accuracy of the
computed energy by rearranging both power series proper-
ly. Although we are not able to prove rigorously that our
renormalized series really converge, we can show, by a nu-
merical calculation, that such a rearrangement results in a
remarkable improvement.

In this section we will show a new way of renormaliz-
ing perturbation series which has recently proved to be
successful in dealing with the asymptotic expansions for
the eigenvalues of the anharmonic oscillator and confin-
ing potential models.?> This procedure is closely related
with the functional method?*=?? that is really known to
sum several divergent power series.

Let F(g,A) be a real, unknown function of the real vari-
ables g and A (0<g,A < ) so that the first N + 1 coeffi-
cients F; in the Taylor expansion

F(1 x)_zm'

i=0

(26)

are known. Suppose we are mterested in calculating
F(1,)A) as accurately as possible in the whole range of A
values even though the convergence radius of (26) may be
small or even null.

We can rewrite (26) in a more convenient way provided
F(g,A) satisifies

F(g,A)=g°F(1,Ag?) , 27)

where a and b are real numbers and b <0. Our method
consists of defining

F(Z,)=F(Z(1-B),B) ,

where both Z and B are real numbers, too. It immediately
follows from Egs. (27) and (28) that

(28)
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F(z,B)=Z%1—B)°F(1,A), (29)
where
=Z%B(1-pB)° . (30)

Since b <0, this last equation maps O0<A < o onto
0<B<1.

Equatlons (26), (29), and (30) enable us to expand
F(Z,B) in powers of B:

F(zZ,B)= zﬁi(zm" . 31
i=0
A straightforward algebraic manipulation shows that the
new Taylor coefficients F;(Z) are related to the original
ones F; as follows:
a
—t

where ({)=u(u —1)---(u—i+1)/il.
to calculate F(1,A) approximately as

bi
-1 a +bi
F(Z)_i 2(_1), _i |2, 3

t=0i= d

We are then able

v ,
SN(Z,B)=Z(1-B) S F(Z)8 . (33)
i=0

Since B is a bounded parameter we expect that Sy(Z,B)
will approach F(1,A) more closely than a sum of the first
N +1 terms in Eq. (26) does.

It only remains to obtain a proper Z value. This pa-
rameter has been introduced to improve convergence, as it
can be easily shown. Let B,(Z) be the distance from the
origin to the nearest singularity of F(Z,) in the complex
B plane. Therefore, the B power series, Eq. (31), converges
for any |B| <B,(Z). If we were able to choose Z so that
Bs(Z)> 1, then Sy(Z,B) would converge towards F(1,A)
for any B (0< B < 1) and, thereby, for any A (0<A < o0 ).

Though we do not actually know ;(Z), we can, howev-
er, take advantage of the following argument to obtain Z.
If Sy(Z,B) converged towards F(1,A) (A fixed) as
N— w0, the plot Sy(Z,B) versus Z would exhibit a pla-
teau whose extension should increase as N increases. We
thus need a good plateau criterion to determine Z. In this
paper we will choose Z to be the inflection point Zy
[(3%Sy /0Z*)(Z =Zy)=0, A fixed] with the smallest slope

[(OSN/RZNZ =Zy) |.
Sometimes we do not have any scaling law like Eq. (27)

but we know that F(1,A) obeys a large-A expansion. In -

such cases we can also obtain a and b as follows. Equa-
tion (27) tells us that

F(1L,A)=A"%F(A1/01) . (34)

Therefore, we may argue that F(1,A) can be expanded in
powers of A!”? according to

F(I,K)=7U_a/bifiki/b . (35)
i=0

We are thus able to obtain a and b from a power series
like (35) even though a scaling law like Eq. (27). does not
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hold. This is exactly what occurs in our present case, as
we will see below.

If fo is known, in addition to the first N 41 coeffi-
cients F;, we will be able to improve results by forcing Sy
to behave like F(1,A) when A— «o; that is to say

Alim [SN(Z,B)/F(1,M)]=Sy(Z,1)/fo=1. (36)
This equation leads to

N—1
Fy(2D)=fo—~ 3 Fi(Z) . 37
i=1
We can thus calculate the first N coefficients F (Z) via
Eq. (32) and then determine Fy(Z) according to Eq (37)
so that Eq. (36) is obeyed.

In what follows we will show how to apply the method
just developed to the problems presented in the previous
sections. Let us consider the simple model in Eq. (20) as
an illustrative example. From the results in Secs. III and
IV we know that W must obey

W +A=A+ i WAl
i=0

(38)
W+k=_ll/Ziz(i-f-S)/ZWik—iﬂ ,
i=0
or
A—I/Z(W+A,)=—223/2Wi0’i,
i=0 :
(39)
ATVHW 4 0)=0 320 VW0,
i=0
Therefore, in the first case we have a =+, b= —7, and
[F(LA)=W +A]
Fi=W; (i#1), Fi=W,;+1,
fi=—20+3729p (40)
while in the second one we must use @ =—b =2 and
[F(1,0)=A"YYW +1)] ‘
Fi_____23/2W-i’ fi=2(1—1)/2u/i . 41)

Both cases are easily treated since either set of coefficients
{W;} or { #7;} can be obtained without any difficulty via
Egs. (19), and (23) and (25), respectively. In the Sec. VI
we will show that the rearrangement of the power series
just discussed improves results greatly.

VI. RESULTS AND DISCUSSION

We will now attempt to prove that PT is actually a very
powerful tool in calculating rotational molecular energies.
To this end, we will obtain very accurate results for all
field intensities using at most 15th-order PT.

Let us begin with the model in Eq. (20). It has been nu-
merically shown that the convergence radius of the A
power series for the Stark effect in diatomic molecules in-
creases as the quantum numbers increase.* This is also
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TABLE 1. Rotational energy of the state K =M =J =1 of the model given in Eq. (20). W'®, 15th-
order PT, small-A case; W®, 15th-order PT, large-A case; W'®, numerical calculation (Ref. 9); W9,
Egs. (33), (36) (N =16), and (40); W), Egs. (33), (36) (N =16), and (41).

A W w® W(c) wd we
1 1.465 50 1.46550 1.465 50 1.463 57
2 0.8729 0.873 0.8729 0.8730
3 0.2355 0.236 0.2355 0.2368
3.5 —0.096 6 —0.1072 —0.0970 —0.0959
4 —0.4363 —0.4406 —0.437 —0.4366 —0.4364
4.5 —0.7816 —0.7849 —0.7833 —0.7833
5 —1.1274 —1.1368 —1.136 —1.1362 —1.1363
5.5 —1.4555 —1.4948 —1.4946
10 —4.901 —4.901 —4.9013 —4.901
14 —8.106 —8.106 —8.1066 —8.106
18 —11.412 —11.412 —11.418 —11.412
20 —13.093 —13.092 —13.082 —13.093
100 —85.3 —85.3 —85.1 —85.3

expected to occur in all of the problems studied in this pa-
per since analytical calculations performed earlier®'* sug-
gest that the ratios W;,/W; must decrease as the quan-
tum numbers grow. In the present work we compare re-
sults for the state K =M =J =1 and K =M =J =4 only,
but any other state may be treated in the same way.

In Tables I and II we compare our results with those
obtained by Shirley’ using continued fractions. Since this
technique is nonperturbative, we will suppose that
Shirley’s eigenvalues are accurate up to the last decimal
place reported.

In Table I (K =M =J =1) we notice that the small-
and large-A expansions do not cross but approach most
closely about A=4.5. We may therefore suppose that
w® and W' should be used for A <4.5 and A >4.5,
respectively. This yields very accurate results in the
whole range of A values.

When considering W® and W'® in Table I (A=4.5 be-
ing the matching point), one immediately concludes that
the method of Sec. V improves results remarkably. In ad-
dition to this, both W'¥ and W'®) are themselves accurate
enough in the whole range of A values. This fact confirms

our previous assumption that the method of Sec. V actual-
ly improves convergence.

Table II shows the results for the state K =M =J =4.
As expected, the convergence radius of the small-A expan-
sion is much larger than that of the state K =M =J =1.
On the other hand, when comparing both A~!/2 power
series we find that the results for the state K =M =J =4
are much worse (cf. W in Tables I and II). However, if
we choose A=18 as the matching point for the state
K =M =J =4, we obtain results that are as accurate as
Shirley’s.’ Therefore, we do not need to resort to the
method of Sec. V because the use of both PT series yields
sufficiently accurate results in the whole range of A
values.

It is worth comparing W® (A~1/2 PT series) with W'¢)
(rearranged large-A expansion) in Table II to see once
more how greatly the method given in Sec. V increases the
accuracy of the computed eigenvalues.

Let us now study the problem posed by the hydrogen
molecular ion Hy in a magnetic field.'>!* Following Lar-
sen!® we assume Bg =0 in Eq. (13a) and write simply

TABLE II. Rotational energy of the state K =M =J =4 of the model given in Eq. (20). W, 15th-
order PT, small-A case; W®), 15th-order PT, large-A case; W'®, numerical calculation (Ref. 9); W',

Egs. (33), (36) (N =16), and (41).

A W(a) W(b) W(c) W(e)
0.2 19.83987 19.839 87 19.83997
0.6 19.518 84 19.518 84 19.51908
0.8 19.35795 19.35795 19.358 24
1.0 19.196 81 19.196 81 19.197 14
2.0 18.3876 18.388 18.3880
3.0 17.5727 17.573 17.573 1
4.0 16.7527 16.753 16.7530
5.0 15.9278 15.928 15.9281
6.0 15.0983 15.098 15.0985
8.0 13.4271 14.0 13.427 13.4271
10.0 11.7410 11.9 11.741 11.7409
14.0 8.3303 8.34 8.330 8.3302
18.0 4.8773 4.878 4.877 4.8771
20.0 3.138 3.137 3.137 3.1370
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U(A,0)=Acos?0 . (42)

The small- and large-A expansions can be easily obtained
as shown in Secs. III and IV. A detailed dlscussmn a?
pears in Ref. 14, from which we obtain a = 4, b=—

It must be kept in mind that in this case we have to use
K =0 since the rotation about the internuclear axis is
meaningless. Figure 1 shows that the renormalized power
series (circles) are valid far beyond what seems to be the
convergence radius of the small-A expansion (dashed line).

Summarizing, we have already proved that PT is very
powerful in calculating rotational energies of molecular
systems in electric and magnetic fields, provided that the
rigid-rotator approximation holds. One may reasonably
argue that, as A— o, the field strength may become too
large for such an approach to remain valid. We do not
discuss this point in this paper and we assume, as other
authors did before,”>~?* that the rigid-rotator approxima-
tion is still useful when A— . Though this limit may
seem unphysical, it proved to be useful”!!? and its con-
sideration allowed us to improve results even in. the
small-field case.

The two problems that arise in any PT calculation have
been already overcome in the case of rotational molecular
systems. In Secs. II—V we have shown how to calculate
the perturbation corrections in both the small- and large-
field cases and how to sum the resulting power series for
any value of the field intensity.

The results in Tables I and II show that PT may be
even more accurate than some usually nonperturbative ap-
proaches like the continued fraction technique’ and the
Rayleigh-Ritz variational method.*'* The main advan-
tage of PT is that knowing how the spectrum changes
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FIG. 1. Ground-state energy of the model in Egs. (9) (k =0)
and (42). , Rayleigh-Ritz variational method (Ref. 14).
— — —, l4th-order PT. Small-A case. @, Eqgs. (33), (36)
(N =15), and (40).

when the field strength is modified requires little effort
after having built the perturbation polynomial. On the
other hand, most nonperturbative approaches require an
entire calculation for each value of the field intensity.

Recently, two of us?® developed a more general version
of the HPM that applies to multidimensional quantum-
mechanical systems having nonseparable degrees of free-
dom. We hope that this method, together with the resum-
mation technique of Sec. V, will enable us to deal with the
problem posed by the interaction between the rotational
and vibrational motions in molecules.

*To whom correspondence should be addressed.
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