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It is shown that if the electromagnetic zero-point field (ZPF) of quantum electrodynamics (QED)
is taken in the realistic sense, at least within the nonrelativistic approximation of QED, free uncon-

fined e1ectromagnetically interacting particles increase their translational kinetic energies when ex-

clusively submitted to the action of the ZPF. This prediction is assessed and compared with other
well-known difficulties associated with a realistic version of the ZPF concept. A parallel with an
analogous acceleration phenomenon predicted in stochastic electrodynamics (SED) is given and pos-
sible astrophysical applications are suggested. It is shown 'that neither QED, with ZPF, nor SED
lead to the Schrodinger equation (SE) of ordinary quantum mechanics, despite interesting arguments
to the contrary, due precisely to this acceleration prediction.

I. INTRODUCTION

The zero-point field (ZPF) results from quantizing the
electromagnetic cavity modes in the "hohlraum. " It leads
to experimentally confirmed predictions like the Casimir
effect' and several others well known in quantum optics.
Despite these results, when the ZPF is taken in a realistic
sense, unsurmounted gravitational and thermodynamica1
difficulties ensue that historically have led to the denial
of any reality for the ZPF which since then has been tak-
en merely as a virtual field. Here we study an additional
difficulty that results from taking the ZPF as a real back-
ground field within quantum electrodynamics (QED) (at
least in its nonrelativistic approximation). This effect is
that free electromagnetically interacting particles (mono-
polar or polarizable) when exclusively left to the action of
the ZPF background are seen to spontaneously increase
their translational kinetic energy. This acceleration
phenomenon is known to occur in classical electrodynam-
ics with a classical electromagnetic ZPF ' also called
random, or more commonly, stochastic electrodynamics
(SED)." Intuitively we can see this happening in a classi-
cal sense because due to the Lorentz invariance of the en-

ergy density spectrum of the ZPF ' ' there is no possi-
ble Einstein-Hopf drag force on a particle moving
through the ZPF. This cancellation seems to occur for all
possible internal configurations of the particle. ' On the
other hand, the combined effect of the electric and mag-
netic fields of the ZPF background on the particle pro-
duce a fluctuating impulsive effect that in its turn gen-
erates a now unchecked energy growth. The impulse re-
sults from the action of forces somewhat reminiscent of
those producing the radiation pressure on the electrons of
a metallic surface. The energy growth is unchecked only
for the ZPF background due in this case to the cancella-
tion of the compensating Einstein-Hopf dissipation men-
tioned above.

Only two effects have so far been considered that par-
tially quench the ZPF acceleration effect of SED. The
first is collisions (with the walls ' "of a containing cavity
and interparticle collisions). The second' is more funda-
mental. It refers to the internal structure of the accelerat-
ed particle: if the center of charge and the center of mass
of the particle are not coincident but admit relative dis-

placements and if the coupling between the two centers al-

lows for a ZPF-induced relativistic motion of the center
of charge around the center of mass, we have a model that
amounts to a classical version of the Zitterbewegung' of
ordinary QED. This Zitterbewegung quenches partially
or totally the acceleration. ' This quenching effect may
easily be extended to other than simple monopolar parti-
cles, e.g.', the partial quenching in polarizable particles. '

In this paper we consider both monopolar and polarizable
particles, but as the treatment is nonrelativistic we omit
any Zitterbewegung considerations and hence any possible
resulting partial quenching of the acceleration effect.

A final point to make is that the existence of the ac-
celeration effect, both in QED (at least in nonrelativistic
QED) with a ZPF and in SED, establishes a connection
between these theories as well as a separation of both of
them from ordinary quantum mechanics (QM). In partic-
ular, we claim that the acceleration effect is foreign to the
behavior predicted by the Schrodinger equation (SE) for a
free particle, because the SE predicts that the free particle
remains in its original energy eigenstate. There have been
several interesting attempts at deriving the SE from ordi-
nary SED.' ' Inspection of those attempts, however,
shows that the authors have in a nonrelativistic approxi-
mation neglected the effect of the magnetic field in the
Lorentz force. Nevertheless, as pointed out above, it is
precisely the cross effect of the electric and the magnetic
fields of the ZPF in the expression for the Lorentz force
on the particle that gives the forces that produce the ac-
celeration effect.
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II. TRANSLATIONAL ENERCx Y CxROWTH

The particle acceleration of SED has been
studied by means of the Abraham-Lorentz equation. One
considers a frame where the particle is moving slowly or
where it is instantaneously at rest. The extension to rela-
tivistic speeds comes easily because the rate of translation-
al energ'y growth 0,:dE—/dt is an invariant. Thus, in or-
der to check if there is also an acceleration under the ZPF
of QED it is easier than attempting the standard perturba-
tive approach to look for the natural Abraham-Lorentz
extension to QED of the classical Abraham-Lorentz equa-
tion and proceed from there by means of analogous
techniques to those used in SED to prove the acceleration
effect. A Heisenberg-representation operator equation
that corresponds to the generalized classical Abraham-
Lorentz equation has recently been proposed, which
presupposes a nonrelativistic charged particle of mechani-
cal mass mp with spherically symmetric charge distribu-
tion. If there is a subset of states in the Hilbert space of
the problem such that the matrix elements of the square

of the velocity operator (m
~

R /c
~

n ) are negligible, we
can obtain the operator equation

where I —=2e /3mc is the Abraham-Lorentz time param-
eter and where the E field in the dipole approximation
can be written in the form E=E++E, with E
=[E+]t. The symbol f signifies Hermitian conjugation
and

E+=i g 2V

1/2
—lY/COI i

R =l g Rl~&(col)e
l, o,g

Replacing in (2) we obtain
' 1/2

.f(n~t) eR l~&(COl ) = —l ~lcr lcrg &

geol m 2V

(4)

with the commutation relations on the at~a's given in Ref.
24. The g, rt=+ I, is introduced in the phases for con-
venience because after the dipole approximation we like to
distinguish between incoming and outgoing waves for a
given point ( kl and —kl). Accordingly, the particle's po-
sition operator R is written as R=R +R +,R—:[R+],where

~ ~

m, R(t)= eE+ [RXB—BXR]
2c I

2e ~
( —1)" d" + R(t)

3c p n!c" dt" +

where

l YjCOlf (rtcoi ) = i geol -1+cI
n=1 c

where R is the position operator, R:dR/dt, —and
~ ~

R=d R/dt . The E and B field operators represent only
the incoming fields (not the self-fields). The A„are rath-
er complicated functions of the charged-particle Compton
wavelength k, =Pi/moc, which we do not need to write in
full generality. Equation (1) is formally very similar to
the generalized Abraham-Lorentz equation of classical
electrodynamics. This approach is called nonrelativistic
QED. As the electrostatic self-energy of a point charge
is found to be zero (Ao ——0), we can identify the mechan-
ical mass mp with the observed mass m, mp ——m in Eq.
(1) above. In a first approximation we neglect the effect
of the magnetic field and have

( —1)" d" + R(t)R(t)+cr g A„„=—E,n!c" dt" +

and thus expressions for R+ and R+ and their conju-
gates follow immediately. We know then the particle

velocity R=R ++R . The magnetic field B, within the~+
dipole approximation, is B=B++B,B =[B ] and

' 1/2

B+=i g (kl X&lcr)ala&e2V

We proceed to estimate the force due to the magnetic field

(e/2c)[RXB —BXR]. It is a factor R/c "smaller" than
the force due to the electric field, i.e., in the subset of the
Hilbert space we are interested in, its contribution is much
smaller than that of the electric field:

One obtains then

1/2 1/2

[RXB —BXR]=
2c 2mc (1) (2) 2V 2V

—
& ('g)co)+YJ2co2)i —i (g]a)]—/2602)iX&i X(k2Xe2)[ f,e (aia2+a2ai) fle (aia2 +—az ai)

I ( —I(co) + I2m2) +)—J 1e (a1 a2+a2a1

(8)
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where the subscript i, i =1,2, under the summation sign
replaces l;, o;, rl; and the subscript i under the letters re-
places the subindices l;, o.;, rl; (or just l; in the case of the

wave vectors kt. and the frequencies cot). Next we esti-
r/2

mate the impulses 6 = A 8+ hz, where b E =— eE dt

and ZE = (e j2c) f [RX8—BX R]dt . Next we—r/2
should square and average over the vacuum state

I
0) =—

I
nt~„O——, Vl, cr, rl). It is a simple matter to show.

that after quantum mechanical averaging, 6 E gives a
constant contribution very similar to that of the jiggling
motion of SED ' and that we identified with the trans-
verse self-energy of the electron under the electromag-
netic fluctuations of the vacuum. ' The average
(0

I
ZE. ZE

I
0) vanishes. We proceed then to estimate

ZE= f [RXB—BXR]dt
' 1/2 1/2

e I 2

Xe(X(k2xe'2) [(a&a3+a2a&)f&+(a& az +a&a+, )f ) ]

'g 1CO1+ 'g 2CO2
sin 7

2

'Q 1CO1+ 'g2CO2

2
7

—[(a)a2 +a3ag)fg+(a( a2+a3a+, )f(]

'91CO1 —'92CO2
Sln

2
'T

'g 1CO1 —'g 2CO2

2
7

Next we estimate the rate of energy growth Q=dE/dt. We have to square the Z operator and find the expectation value
with the vacuum field. The rate of energy growth is (2m') '(0

I
4 5

I
0) which when the jiggling motion due to b E is

removed, boils down to

Q= 1

2&i 7
(oI Z, Z, Io)

2

2mc

1/2 1/2 1/2 ' ' 1/2
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2
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2

where we used the fact that

(OI(u, a, +u, ~, )(u34t4+u4u3) I0) —4(5]3524+5\4523)

and observe that all other expectations give identically
zero or involve the factor 5&2534 which when multiplied

by e~ X (kz X~3).e3 X (k4 Xe4) yield e~ X (k~ X &~).e3

X(k3X&3) =k~ k3 ——kt, , kt, , that cancels after adding

over the indices because of symmetry. This can also be
seen by passing to the continuum:

p" 2 f 13kI
(2~)

f co de f dQ„-I .

From this we also obtain the angle integrations
2 2

f dQ~ f dQ2 g g Ie'(k~, o~)x[k2xe(k, ,o,)]I'
o)—1 a2 —1

= —,
' (4m), (11)

where the change in notation is self-explanatory, and

2 2f dQ) f dQ3 g g e(k), cr))
a) ——1 cr2 ——1

x [kp x e(kp, cr2)].e(k2, cr, ) x [k ) x e(k (,o, ))=0
(12)

because of symmetry in the integrations. We obtain then
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eQ=--
(2mr) 2mc

2 2 I

V
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2
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2
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00

Now we use the identity (,sinP/P) dP=m whose ar-

gument around P=O behaves approximately as a 5 func-
tion. According to this only the terms in (13) where

g1 ———g2 give a substantial contribution. We obtain then
20=, f (I co)(fico)

i
cof (co)

i
dco, (14)

2m o mc

~ ~

MR+mco, R=mco, r, (15)

m r+mco, r = mco, R+eE+ (r XB—BXr)
2c

2e ~ ( —1)" d" + r(t)
3c 0 n!c" dt" +

where a=e /fic and I =2e /3mc . So a monopolar
particle is seen to increase its translational kinetic energy.
It remains to be seen if a fully relativistic calculation still
gives the energizing property, in particular, because of our
discussion on Zitterbewegung, as there are reasons to
think that the acceleration may be quenched for electrons.
However, this is not the case for polarizable particles, for
which the rate of kinetic-energy growth is only decreased.
It is interesting then to give the expression for 0 in the
case of a polarizable particle moving through the ZPF of
QED. The analysis is very siinilar to the one that leads to
(14). We consider a polarizable particle composed of two
subparticles of equal and opposite charges +e and of
masses M and m, respectively, but with M »m. A har-
monic binding is assumed. The effect of the magnetic
field of the ZPF on the big mass may be neglected and if
we are not interested in the electric-field-induced jiggling
motion on the particle as a whole, we may also neglect the
action of the E field on the large mass. We are left with

I

where R and r are the position operators for the large and
the small masses, respectively. The coupled operator
equations can easily be reduced to a single equation for
the r operator and an analogous procedure to that
presented for the monopolar particle can be followed. We
obtain again an Q given by (14) but where I ~ instead of
being written with m is written with M, I M

——2e /3Mc
and f (co) is given by

lNf (co) = i co 1 —5+cI
n=1 C

An

n!

3(s + 1)(2s +3)

A2, ——0, (18b)

where s =0, 1, . . . and k, =c/co, =A'/mc is the Cornpton
wavelength associated with a particle of mass m. From
(14},(18a), and (18b) we obtain

where 5=co, (co —mco, /M) ' and I =2e /3mc is the
Abraham-Lorentz time constant for the subparticle of
mass m. One interesting feature of Eq. (14) and its coun-
terpart for a polarizable particle is that we obtain a con-
vergent expression even in the joint-particle limit. Moniz
and Sharp have obtained a closed-form solution for the
terms of the series A„ in the point-charge limit

Q= f dco (I co)(fico) (1—5) +(I co)—
2~ 2 3

2$ 2' —1

(8s+9) (4s+1)!!
(s + 1)(2s +3) (2s)!

(19)

where we have written the expression for the case of a po-
larizable particle with 5 as defined above and I M&1
The case of a monopolar particle, Eq. (14), is recovered by
setting 5=0 and I ~——I ~=2e /3mc where I is the
mass of the monopolar particle itself. In the classical case
it was found that in the point-charge limit (co ~oo) 0
diverges, but this was due to the fact that we did not use
the full-radiation-reaction equation which, as in Eq. (1),
contains a series that ultimately guarantees the conver-
gence.

III. DISCUSSION

From the argument in Sec. I it is clear that ordinary
SED cannot lead to the Schrodinger equation and hence

I

that ordinary SED is not a theory that necessarily implies
QM. When, on the grounds of a nonrelativistic approxi-
mation, the magnetic field is dismissed in the equation of
Abraham-Lorentz in SED, one does not obtain the ac-
celeration prediction but only a jiggling motion. The en-
suing nonaccelerative scheme is what permits one, after
reasonable approximations, to derive a Schrodinger-type
equation within SED." This is reminiscent of the
Fenyes-Nelson derivation of the Schrodinger equation in
stochastic mechanics (SM) where only a random field is
considered, which produces a random motion that ulti-
mately leads to the "nonclassical" behavior of the particle.
The random field of SM is very general. It does not even
need to be electromagnetic. In this sense one usually sees
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SM as a more general theory than SED. In SED the ran-

dom field is very special. It has the unique Lorentz-
invariant spectral energy density for a random elec-
tromagnetic (EM) field and thence it lacks the usual dissi-
pative feature of the Einstein-Hopf' drag force. ' The only
dissipation left, to compensate for the induced ZPF fluc-
tuations, is that due to the radiation reaction. In QED
there also is acceleration when the QED-predicted vacu-
um fluctuations of the EM field are considered in the real
sense and are included as a random background field in
the problem of the free particle. So, QED with its ZPF
not dismissed is not consistent with QM. This incon-
sistency is just another difficulty that adds itself up to
other divergencies so common in QED.

The ZPF acceleration presents some thermodynamic
difficulties. A free particle is seen to accelerate spontane-
ously. This seems to violate the first law, but indeed it
does not, as the ZPF, when taken as real, has an infinite
amount of energy. The no violation of the second law is
less clearly explained. A gas of infinite noncolliding
charges in an infinite unbound space is seen to increase its
translational kinetic energy by extracting energy from the
ZPF. It is as if energy were spontaneously transferred
from a reservoir at zero temperature to a reservoir at a
higher temperature without the provision of any work.
But one of the premises involved in this objection is not
correct. If the ZPF, at least that of SED," is originated
in the motion of all accelerated charges in the universe,
one cannot claim that it represents a background radiation
at zero temperature but only that it is the radiation that is
left when thermal radiation is removed. This ZPF radia-
tion is the vehicle by which the given free particle tends to
establish its equilibrium with the rest of the universe. Re-
call that in SED the ZPF has a fundamental property that
transcends the ordinary phenomenology of random EM
fields in the thermodynamics of thermal radiation.
There is also the following question: if free particles are
spontaneously accelerated by the ZPF, why is it that there
is not a spontaneous warming up of ordinary matter in
the universe? A qualitative answer may be given. It con-
tains two complementary aspects: (i) When matter fields
are strong, p(co) does not have the Lorentz-invariant dis-
tribution and drag forces are present; (ii) The cooling ef-
fect of collisions makes the particles radiate back energy
into the random-field background. This shows that ther-
modynamic difficulties are not compelling objections to
the reality of the ZPF concept. On the positive side we

mention the acceleration mechanism proposed as a possi-
ble source of excitation of the IGS plasma and as a possi-
ble originator of the x-ray background and of cosmic rays
(CR) primaries preferentially in the ultrahigh energies
ranges. ' ' The proposal was made considering only the
SED original acceleration. However, all still holds if the
mechanism can be rephrased within QED. As the astro-
physical aspects have been discussed at length else-
where, ' ' we omit further comments on them. But be-
fore accepting the QED acceleration as an established
fact, several difficulties should first be surmounted: (i)
Nonrelativistic QED is not Lorentz invariant and a
Lorentz-invariant QED treatment should be provided for
the acceleration prediction; (ii) The presentation of Moniz
and Sharp does not follow the standard perturbative re-
cipes of QED but introduces different approximations
whose predictions are sometimes at variance with those of
the usual perturbative analysis and a comparison be-
tween the traditional and this nonperturbative approach
must first be accomplished; (iii) Equation (1) neglects the

operator R /c without providing a conclusive math-
ematical justification for this approximation; (iv) In our
derivation we use the dipole approximation and in SED
this approximation is reasonable but we have to better
justify its use in QED; (v) In our proof of the acceleration
in QED we use an iterative procedure where first we

neglect the magnetic field and obtain R as produced only
by the action of the electric field. Next we introduce this

R into the magnetic part of the Lorentz force operator
and proceed to obtain the impulse operator A~ and then
we obtain the acceleration. This is the standard procedure
in SED but its implementation in QED requires more
rigor.

Finally we observe that a classical form of Zitter-
bewegung is known to curb down or even quench the clas-
sical acceleration predicted in SED.' This suggests that
electron Zitterbewegung in QED may quench the ac-
celeration predicted here for structureless monopolar
charges in the nonrelativistic QED of Moniz and Sharp.
A fully relativistic QED calculation which de facto would
imply Zitterbewegung might not display the acceleration
effect as suggested by the quenching of the acceleration
for a classical but relativistic model of a monopolar
charged particle where the center of charge and the center
of mass do not coincide, ' but for polarizable particles
there is still acceleration. '
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