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In nondegenerate systems, the tetraexcited clusters are weO approximated by products of discon-
nected pair clusters and the connected quadruply excited component is negligible. In contrast, when
the reference state becomes quasidegenerate with the lowest biexcited configuration(s), the connected
quadruply excited clusters become very important. To extend the applicability of the coupled-pair
many-electron theory to such situations, we approximate the connected tetraexcited contribution in
the form suggested by the unrestricted Hartree-Fock-type wave function, or one of its projected ver-

sions, such, as the alternant molecular-orbital method. We show that the incorporation of the con-
nected quadruply excited clusters into the coupled-pair equations effectively cancels certain non-
linear terms, originating from disconnected quadruple excitations, so that the resulting equations are
very similar (up to a numerical factor) to the approximate coupled-pair theory, in which only those
nonlinear terms which factorize with respect to the hole-electron pairs are considered. This fact
shows in turn why various approximate coupled-pair approaches can often provide better results
than the full coupled-pair many-electron theory.

I. INTRODUCTION

The coupled-cluster (CC) approach to the many-
fermion correlation problem is nowadays widely used in
applications to both many-nucleon and many-electron sys-
terns. Though the technical aspects of nuclear or atomic,
molecular, and solid-state applications may be vastly dif-
ferent, the structure of the CC equations and formalism
as well as basic philosophy are essentially the same, name-
ly, to get proper dependence on particle number (size ex-
tensivity).

The exponential structure of the many-body wave func-
tion was first recognized by Hubbard' and its exploitation
in the form of the cluster expansion Ansatz was first sug-
gested by Coester and Kummel. Designating the exact
and the independent particle model (IPM) states of an
fermion system as

~
4) and

~
@o), respectively, this An

satz takes the form

( 4) =exp( T )
~
40),

where the cluster operator T is given by the sum of its i
particle components T;,

ponential cluster expansion Ansatz (1) is physically better
motivated yielding the correct particle number X depen-
dence even when T is truncated to low-order excitations.
In more modern parlance, this behavior is often referred
to as the size extensivity or size consistency (the latter also
assumes that ~4o) correctly dissociates) of the CC ap-
proach. A simple comparison of both Ansatze, Eqs. (1)
and (3), yields' the well-known relationship between the CI
excitation operators 'C; and the cluster operators Ti,
namely

Ci =Tt+Qt
where

. represents the so-called disconnected ith-order cluster
component of C;. The sum extends over all nontrivial
partitions H; of i,

T=gT;.

In contrast to the shell model or configuration-interaction
(CI) Ansatz, which is linear in i-times-excited configura-
tions,

~~)=C)~p), C=gC;, (3)

where again C; is the i-fold excitation operator yielding a
linear combination of i-times-excited configuration states
when acting on the IPM reference state

~
@o), the ex-

so that physically Q; represents i-fold excitations which
are decomposable into the products of lower-order in-
dependent excitations.

For the nondegenerate ground state of pairwise in-

teracting fermions, the so-called pair clusters T2 represent
by 'far the most important contribution to T. In fact, the
correlation energy of such systems is completely deter-
mined by the T.1 and T2 cluster components. With an
appropriate choice (maximum overlap or Brueckner orbi-
tals) of the IPM reference state

~
4o), the monoexcited

clusters exactly vanish and even with the usually em-
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ployed Hartree-Fock (HF) reference state, they are quite
negligible. In any case, these clusters can be easily ac-
counted for even when a nonstandard reference state is
used, as for example in localized approaches, since their
number is small. Thus, in most instances we have that

A
Cz-T2 and T& -0. In contrast, the tetraexcited cluster
contribution, whose role is next in importance to the biex-
cited clusters, comes via their direct interaction with pair
clusters, and is normally due to the disconnected corn-

A ) A 2
ponent, so that C&- —,T2, since

A 2T4((TT2 )

at least in nonmetallic systems. This fact enables us to
truncate the cluster components in Eq. (2) at T2 (or T3,

A 2which are usually next in importance to the —,T2 contri-

bution) rather than at the C4 level of the standard CI ap-

proach. Even when truncating at the Tq level, all higher
excited disconnected components are accounted for
through the exponential Ansatz (1).

The explicit form of the equations determining cluster

components T; was first given in Ref. 5. Their derivation
exploited time-independent diagrammatic formalism (see
also Ref. 6) related to that of many-body perturbation
theory (MBPT). The explicit algebraic form, which was

given for the most important pair cluster approximation,
was particularly suitable for the applications to atomic
and molecular problems. These coupled-pair equations
were also derived using an ordinary wave-function formal-
ism. During the last decade other derivations and exten-
sions of the CC formalism appeared as well as new

developments of efficient computational implementation
of this approach, especially for the molecular electronic
correlation problem. Presently, numerous review articles
and parts of monographs exist which outline these various
developments and we list the most recent ones in Refs.
8—14. Those developments which are particularly
relevant to this paper will now be briefly reviewed.

The CC equations are most simply derived by substitut-

ing the cluster expansion Ansatz, Eq. (1), into the time-

independent Schrodinger equation, which yields

I [IIwexp(T) lc —«I
I
@o)=0 .

Here we exploit the normal product form (with respect to
the hole-particle vacuum

I 40), cf. Refs. 5, 6, and 15) of
the Hamiltonian, H~, and designate the connected part by
the subscript C. Projecting this equation onto the refer-
ence state

I
4O) we obtain the expression for the energy

«(relative to the reference state energy)

«=
& @0

I
HN ( 2 T 1+T2 )

I
~'0) i

assuming that the Hamiltonian contains at most two-
particle terms. Projecting then Eq. (8) onto the selected

configurations which span I T;
I
4o) I, i (n, yields non-

linear algebraic equations determining the cluster corn-

ponents T;, i (n, assuming of course that the higher ex-

cited clusters T;, i &n, are neglected. The explicit spin-
orbital form of these equations is best obtained by using
the diagrammatic methods based on Wick's theorem and

Feynman-like diagrams. ' ' The most common
coupled-pair formalism corresponds to the double excita-
tion cutoff and is referred to as the coupled-pair many-
electron theory (CPMET) or more succinctly as the CCD
(coupled clusters with doubles) approach or CCSD ap-
proach when singly excited clusters are included as we11.

For a spin-independent Hamiltonian the CC equations
can be simplified by eliminating the spin variables. The
resulting spin-free orbital formalism is referred to as
spin-adapted CC approach. A standard spin-adapted or-
bital force of the CC equations can be easily obtained by
replacing the spin-orbital labels by the orbital ones and by
assigning the factor of 2 to each closed loop of fermion
lines ' (for the two possible spin orientations). In terms
of many-electron configurations, this spin adaptation can
be shown to correspond to the use of spin-bonded func-
tions, which are generally nonorthogonal (moreover, for
clusters higher than biexcited, this simple spin-elimination
procedure leads to a linearly dependent set of configura-
tions). '6 Combining the time-independent diagrammatic
technique' with spin algebraic graphical methods' we
can obtain orthogonally spin-adapted formalism. ' ' The
most convenient coupling scheme, at least for the pair
clusters T2, is the so-called pp-hh scheme, ' ' in which
case the hole spins are first coupled independently of the
particle spins into the intermediate hole and particle spin
states, respectively, which are then coupled into the final
spin (which in the closed-shell ground-state case con-
sidered is the singlet spin state). The orthogonally spin-
adapted formalism is not only convenient computational-
ly, since the required matrices are sparser, ' and enables
one to cast the CC formalism into the SCEP (self-
consistent electron pair) form as shown by Chiles and
Dykstra, but, as we shall see below, it is also essential for
the developments presented in this paper.

We must also mention at this point various approxi-
mate coupled-pair (ACP) approaches. Neglecting the
nonlinear terms in the CC(S)D equations we obtain the
corresponding linear approximation designated as L-
CPMET or L-CC(S)D. This approximation is still size
extensive, in contrast to the corresponding variational CI
procedure restricted to biexcited configurations, (D-CI),
and is equivalent to the infinite-order MBPT restricted to
the diagrams with at most biexcited intermediate states
Ithus also called DMBPT (oo) (Ref. 23)]. This approxi-
mation yields excellent results as long as no quasidegen-
eracy is present. It can also be related with the often em-

ployed Davidson correction. A study of the role of the
nonlinear terms in the CCD equations revealed that the
diagrams which do not factorize relative to the hole pair
can be neglected. This observation was made indepen-
dently by several investigators ' and its remarkable
performance was verified on a number of systems both at
the semiempirical and ab initio levels. We refer to this
approach as the ACP-D45 approximation (since only dia-
grams 4 and 5 of Fig. 3 of Ref. 18 are considered in the
nonlinear part) or, for short, as the ACP approximation.
There also exists a multitude of yet more drastic approxi-
mations, which are generally referred to as CEPA(n)
(coupled-electron-pair approximation) approaches. These
approaches, which can be identified as versions of the
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ACP approximation, where only certain EPV (exclusion
principle violating) diagrams are retained, have been wide-

ly employed. More detailed outline of the relation-
ship of these approaches with the ACP approach as well
as examples of their performance can be found in Ref. 26.

Numerous applications of the CC formalism to various
atomic and molecular systems have clearly shown that the
CCD or CCSD approach can provide very accurate corre-
lation energies provided that the ground state considered
is not quasidegenerate. The correlation energy obtained
with the CCSD approach is practically identical with that
resulting from the CI limited to singly, doubly, and qua-
druply excited configurations. " ' The remaining error
usually does not exceed 3% of the correlation energy and
is primarily due to the triexcited configurations. The
latter can be accounted for by including the T3 com-
ponent clusters either exactly' ' or in an approximate
manner via finite-order perturbation theory (CCSDT and
various approximate versions).

The CCD or CCSD approach can also yield very good
results in certain quasidegenerate situations, particularly
in the case of the so-called orbital quasidegeneracy
which arises due to the proximity of the highest occupied
and the lowest unoccupied levels (e.g., 2s-2p quasidegen-
eracy in the Be atom) but which causes only a slight mix-
ing of the ground state and the lowest biexcited configura-
tions. A remarkable performance of the CC(S)D ap-
proach was found not only for the Be atom ' but, in
fact, for the entire Be isoelectronic series. In the case of
the state or configurational quasidegeneracy, when the
ground-state configuration is heavily mixed with the
lowest biexcited configuration while the highest occupied
and lowest unoccupied one-electron levels remain well
separated, the CCD approach still provides a very reason-
able approximation as we showed in model studies of vari-
ous H4 systems. ' Nevertheless, the performance of the
CCD approach necessarily deteriorates when the quaside-
generacy becomes appreciable, since the basic assumption

(7) becomes violated. Only when the T4 energy contribu-

tion (via the interaction with Tq clusters) remains rela-
tively small, as is the case for a few electron systems, the
CCSD will provide a still acceptable approximation.
However, when the T4 contribution becomes essential, as
is certainly the case in rnetalliclike large or extended sys-
tems, the CCSD approximation will fail completely.

The importance of the T4 clusters was shown directly
for the case of linear metal-like systems as modeled by the
cyclic polyenes CzH~, N =4m+2, v= 1,2, . . . . The
cluster analysis of the full CI wave functions for the first
two members (N=6 and 10) shows a very important T4
contribution in the strongly correlated limit (large cou-
pling constant). For large systems the same situation can
be expected to occur even for intermediate metallic densi-
ties. In fact, the CCD approach (which in this case is
equivalent to the CCSD approach since T& vanishes by
the symmetry), while yielding over 97% of the correlation
energy in both intermediate and weakly correlated regions,
leads to about a 100%%uo error in the strongly correlated lim-
it of the C6H6 model and about a factor of 10 error for the
Ci&H&0 in the same limit. ' ' For higher members we

were unable to find any solution of the CCD equations in
this limit and starting with Cz6Hzs, no solution was found
even for spectroscopic parametrization corresponding to
physical densities. ' The details of this investigation
will be given elsewhere.

The principal aim of this paper is to investigate the pos-

sibility of accounting for the T4 contribution in the CC
formalism. The direct inclusion of the T4 clusters in the
CC formalism is computationally hardly feasible in the
foreseeable future, even for relatively small systems. On
the other hand, we show that an approximate account of
T4 clusters is not only possible, but in fact results in a
formalism which is as easy to carry out as the ACP-D45
approach. These developments will also show the ACP
approaches in the new light and will provide an under-
standing for their remarkable success.

II. BASIC CC FORMALISM

We first briefly outline the orthogonally spin-adapted
CC formalism' in order to introduce the necessary nota-
tion and concepts. We shall employ the mixed
Hugenholtz-Goldstone diagrams, representing the cluster
components by the former and the two-particle part of the
Hamiltonian by the latter diagrams in order to obtain the
resulting expressions in terms of standard, nonantisyrn-
metrized, two-electron integrals. ' However, following
Brandow, ' the Hugenholtz vertices will be also
represented in Goldstone form in order to fix uniquely the
phases 6, 18

We consider the ground state of a closed-shell
N( =2n)-electron system described by a spin-independent
Harniltonian involving at most two-body scalar potentials
V. Using the second quantization formalism we write

this Hamiltonian in the normal product form with respect
to the IPM reference state

I
40) regarded as the Fermi

vacuum (cf. Ref. 15)

~N +N+ VN

= g&a IfI »QN[X~Ab. ]
a, b O

+ —,
' g (ab

I

v
I
cd)QN[Xa&aPdPe~] ~

a, b, c,d

(10)

where the one-electron part has the form

&a
I f Ib)=(a Iz Ib)+g(2(ac) Iv Ibc, )

—(ac
& I

v
I
c,b ) ) . (11)

Here X, (X, ) designates the annihilation (creation)
operator associated with the IPM spin-orbital basis
I I

& ) =
I

a )
I
o ) j. We use capitals to label the spin orbi-

tals and the lower-case letters to designate corresponding
orbitals while the spin states are labeled by the lower-case
Greek letters. The hole (occupied) and particle (unoccu-
pied) one-electron states with respect to the reference state

I
40) are distinguished by subscripts and superscripts, or
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by single and double primes, respectively. No subscripts
or superscripts are used when either the hole or particle
states are involved.

The i-times-excited cluster operator T; has then the
orm

T, =(t.)-'g g(A'A'
jw'I Ix,.)

x g(x,'g, )
j=1

mation extends over the particle and hole one-particle
states, respectively. In the second expression the antisym-
metrized t; matrix elements are used, which are defined
by

(A'A' A'It, IA, Az

g ( —1)t'(A'A . A'I t,.
I

A A ~ ~ ~ A & (13)
zeP', .

where the summation extends over all i f permutations P
of the symmetric group S;,

=(i!) 'g-g(A' . A'It, . IA, A, &„
Iw'I fa,, I

1) 2p ~ ~ ~ p g

P1~ 5'2. ~ p]
(14)

x /f4', +,),j=I
(12)

where I A'J and I A; J represent the sets of summation la-
bels [ A ', A, . . . , A'] and I A &, Az, . . . , A; ] and the sum-

I

and where p designates the parity of P.
The orthogonaBy spin-adapted connected biexcited

component of the exact wave function
I
4&, Eq. (1), given

by Tz I 40&, can be written as follows

a' a' glZ

T, ~40)= —,
' g g g g N, (a'a'~~ t, (S,M, ) a,a, )(, ; SM,

lS,M~ g, g 2 a, a a1,a& 21

(15)

using the pp-hh spin-adapted states

a' a2 g12

; SM, =N([S]/[S' ])'~ g Q & o o
I
Sz&ozi& & —,

' a'-,' o'
I
S"0."&

aj a2'
1 2 1221 C71,0'2, CJ, CT CT21,0'

x (sM, szicrzi Is' o'
& aio'] a&~2

(16)

where (1&m &lzmz I13m3 & are the Clebsch-Gordan coeffi-
cients, and

a 'a a'p
a'a . a aa)a a,p

[S]—=2S+1 .

The spin-orbital configurations are defined as follows:

'' ~ g' s

j=1

and the factor N„
N. =[(1+&ai la2&)(1+&a'Ia'&)1 ' '

(17)

(18)

(19)

a'p aza
a 'a) aza'

a~a a~p

a'a a'p
G6 ——- ——

I
a~a' a az

a&p a2a

we obtain the following explicit form for the Ms ——0 pp-
hh spin-adapted states (16):

1o&0=—
2 «3+G4 G5 G6),

assures the normalization in case the hole and/or particle
states involve the same orbital.

Explicitly, designatin'g the six relevant biexcited Slater
determinants (18) as G; (i =1, . . . , 6),

a'pap
Gl p I ala a2a'

Q ~I9 Q2g9

a 'a a'a
1— 2—aa . . aa

Q )CX Q2CX

I
0&I——(1/v 12)(2G, +262+G3+G4+G5+66),

I
1 &o= 2 «3 G4 G5+G6),

(21)
I
1&i= z«3 —G4+G5 —G6)

I
1 & I ——(1/W2)(G) —Gz),

I
2&I (I/3/6)(GI+Gz G3 G4 G5 G6) ~

where we used the shorthand notation

a'p aza
G = -a a' . aa

a~p aza
(20)

a' a' @12

, ; so) —= ~s)g
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(22)

a' a' s a
=(—1) '

a2S. 2 a& S. a2 a& S.
l l

(23)

and assumed that a'&a, a, +a2, so that N, =1. For the
singlet case S =0 we simplify our notation by defining

a' a' a' a S.
l

; 00
a~ a2S a& a2 S.

l

and note the following desirable properties of singlet pp-
hh coupled states:

Consequently, when the hole and/or particle labels are
identical, the S;=1 (intermediate triplet coupled) state
vanishes leaving only one nonvanishing singlet configura-
tion.

The symmetry-adapted t2 matrix elements, associated
with orthogonal spin-adapted pp-hh coupled states (16),
are related with the standard tq matrix elements, Eq. (12),
by the same orthogonal transformation as the spin-
adapted states (16) are related with spin-orbital configura-
tions (18), namely

(a'a
1
t2(S M, )

1
a~az)s„——N, ([S]/[S' ])' g g ( —,'cr2 —,'cr~ 1S2~cr2~)( 2a' —,'cr 1S' o' )

1 2 12O')~O'2, O', O' O'2(, O'

X (SM,S2&o'z&
I
S"o")(a'a'a'tr'

I
t21alola2cT2)A .

$
II 2tl

X
s

(26)

with N, given by Eq. (19), i.e., N~ =(1+(1'12'))(1
+(1"12")). The symmetry-adapted matrix elements,

Eq. (25), possess the same symmetric properties as the
corresponding pp-hh coupled states, namely

and

( 1"2"
1

t2
1

1'2' )s ——( —1) ( 1"2"
1

t2
1

2' ' )s
= (2"1"

1
t21 2'1')s, (27)

From now on we shall only consider the singlet com-
ponents so that always S=MS ——0 and S' =S2& ——S;. We
shall further simplify our notation by representing the or-

bital labels a' and a; by their superscripts or subscripts i,
distinguishing the particle and hole states by double and

single primes, respectively (thus following the notational
convention used in Ref. 16), and by dropping the subscript
i on the intermediate spin label S;. We shall thug desig-
nate the pertinent t2 matrix elements as

&I"2"
I
t211' '&s—= &a'a

I
tz

I aiaz&s

=( 'a'I t",(00) lat 2)s (25)

so that
1

(Tz
1
@o&)s=o= 4 g g 2 N, (1"2"

I
t211'2'&s

S=O 1",2" 1',2'

a

a
a S

a~a
i~

1

pO

'K
q

[
]1/2

In nonorthogonally spin-adapted standard form the or-
bital tz matrix elements are defined as

& ~ '~'
I
tz

I
~ i~2 &

= &a 'a'
I
t21a taz & &

~'
I
~i & & ~'1~2&

(29)

and are related with the orthogonally spin-adapted matrix
elements (24) by

(1"2"
1

tp
1

1'2')s —— N, [S]'~ I
—( —1) (1"2"

1

t211'2')

+(1"2"
1

t 12'1') I,
(30)

or, conversely,

( 1"2"
1

tz
1

1'2' ) = —,
'
N, '( —( 1"2"

1
t2

1

1'2' )o

+3 ' (1"2"
1
t211'2')$) . (31)

The diagrammatic representation for the biexcited clus-
ter components, Eq. (26), is achieved by using the pair of
diagrams: the orbital diagram of Fig. 1(a) and the corre-

(a) (b)

(27')

It is also convenient to define un-normalized matrix ele-
ments

(28)

which we shall associate with T2 vertices in our orbital
diagrams, while all the spin-coupling coefficients will be
represented by corresponding spin diagrams, ' as we shall
indicate shortly.

FIG. 1. The orbital (a) and spin (b) diagrams representing the

orthogonally spin-adapted biexcited cluster component f'z For.
the orbital diagram we use the so-called Brandow form, i.e., one
Goldstone version of Hugenholtz diagram. The spin diagram
(b) is the Jucys-type diagram representing the pp-hh coupling
scheme, Eq. (24), to the resulting singlet (Sq~ ——S' =S;) in the
3-jm representation (for more details see Ref. 18). The spin dia-

gram (c) is dual to the diagram (b) which is associated with the
projection onto the corresponding singlet spin-adapted state (22).
Finally, [S]=2S+1,Eq. (17).
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A' '(1"2",1'2';S)= —[S ]' I & 1"2"
I

u
I
2'1'&+( —1) & I "2"

I
u

I

I'2'& I,
2

g&tc" lf 3"&&3"tc"le ltc'tc'&; —+&3'If I
tc'&&tc"t7" le l3t7'&-

v=1 3" 3t

(35)

+ 2 &
"2"

I
u

I

"4"
& & 3"4"

I
cz I

I'2' &s+ 2 &
3'4'

I
u

I

1'2'
& & I"2"

I
&z I

3'4' &;3",4" 3I 4t

2 1

+ X ( —I)'"+""7 g —'([s][s])'"&~"3'
I

u
I
~ '3"

&
—&-, &

~"3'
I

u
I

3"X '&
&

3'Vc"
I rz

I
A, '3'&s

~, A, =1 3",3'S=O .
(36)

A'"(1"2" 1'2'S)=A"'= A"'+ A'"+ A'"+ A"'
t 3 4 5

with

(37)

S,S'=0 3t 4t 3lt 4tt

2 J,

Ai, z= 4[s]' 'y( —I)" y ( —1) + ([S][S'])' y IF(s+s+s')&3'O'IU I4"3"
&
—&3'O'I6'l3"4"&I

&& &I"3"
I ~z

I
tc'3'&s&2"4"

I
rz I

lc'4'&s' (38a)

1

A3 '= —,g( —1)" g [S]'~ g &3'O'I u
I

3"4"&&4"tc" Pz I

I'2'& &tc "3"
-I rz

I
3'4'&s,

K=1 S=O 3l 4I 3tt 4t I

2 1«'"=
z X(—I)"'2 [S]'" 2 &3'4'lu

I

3"4"&&1"2"le I
~'4'&s&3"4" lrz l~'3'&s

rc= I S=O 3t 4t 3tt 4tt

I)'+ —'[S]-'" g &3'4'
I

u
I

3"4"
& &1"2"Pz I

3'4'&-&3"4"
I ~z

I

1'2'& —,
3t 4t 3tt 4tt

(38b)

(38c)

(38d)

where

I

ae=&C, IH„Tz I eo&c,

tc=l+&i,„, «=1,2 (i.e. , 1=2, 2=1)
1I 2t 1tt 2lt

1

&I'2'
I

u
I

I"2"
& g ( —1)'+'[S]'"
S=O

and (39) && & 1"2"
I rz

I

1'2' &s .

—F(0)=F(1)=1, F(2)= —,, F(3)= —,
'

The nonlinear part A' ' has been broken down into the
contributions from the individual diagrams as indicated
by the subscript. Note also that the four terms A1 2, A3 ',
Az ', and A5

' are associated with the four Hugenholtz di-
agrams arising from the disconnected tetraexcited cluster
component —,T2, shown in Fig. 5. Finally, projecting Eq.
(8) onto the reference configuration

I
4o& we obtain the

energy b,e (Fig. 6),

cz;+gb;J. tj+ gc,j.kt;tk —0 (i =1, . . . , m) .
j jgk

(41)

Setting c;jk ——0 we obtain the corresponding linear approx-
imation (L-CCD). Finally, considering only diagrams 4
and 5 of Fig. 4 when calculating the nonlinear coefficients
c,jk (i.e., the terms A4

' and A5 ) we obtain the ACP-D45
approximation.

(40)

Assuming an arbitrary but fixed ordering for the tz ma-
trix elements (orthogonally spin adapted or not) and desig-
nating them simply by t; (i=1, . . . , tn), the nonlinear
algebraic system of CC equations (32), which determines
them, has the form

III. APPROXIMATE ACCOUNT
OF TETRAEXCITED CONNECTED

CLUSTERS: MOTIVATION

FIG. 6. The correlation energy resulting orbital diagram ob-
tained by projecting Eq. (8) onto the reference state

I
@0& and

yielding Eq. (40).

Even though it would be quite feasible to work out the
CC equations involving Ti through T4 components (for
Ti, Tz, and T3 orthogonally spin-adapted formalism, see
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Ref. 19) there is little hope that these equations could be
solved in a foreseeable future for any realistic model.
Indeed, it is sufficiently challenging to carry out such cal-

culations involving the T3 as well as T~ and T2 com-

ponents, so that one often resorts to approximating the Ti
contribution only to a finite (fourth) order of perturbation
theory (see, e.g., Ref. 8). Clearly, the principal source of

complexity is the large number of equations, which in-

creases with each excitation order by roughly the multipli-
cative factor (ni, n~), where ni, and n~ designate the num-

ber of hole and particle states, respectively. On the other
hand, the required modification of the CCD equations

which is brought about by the inclusion of either the Ti
or T4 clusters is rather simple. Particularly in the latter
case (for T3 see Refs. 16 and 19) we only have to consider
one additional Hugenholtz diagram shown in Fig. 7.
Consequently, if the T4 component, or its reasonable esti-
mate, were available to us, it would be rather straightfor-
ward to include its contribution in the CCD equations.
Since T4 is the highest cluster component which enters.
the CC(S)D equations, assuming pair interactions, these
corrected equations (for both T3 and T4) would yield a
very good correlation energy (in fact, we would get the ex-

act result if exact T3 and T4 were used in solving the pair
equations).

One could attempt, of course, to estimate the T4 com-
ponents by the first few orders of the MBPT, similarly as
it is currently done for the T3 contribution (cf. Ref. 8).
However, since the first contribution will appear in the
fifth order, this would be also computationally quite
demanding. It would seem preferable, therefore, to esti-

mate the T4 components and include them in pair equa-
tions via the diagram of Fig. 7. Considering the structure
of the CC equations for quadruples, the main contribution
can be expected to come via interaction of doubles
through the diagrams of the type shown in Fig. 8. In
view of the large number of quadruply excited com-
ponents, one should in fact directly calculate the pertinent
corrections to the CCD equations by substituting the dia-

grams of Fig. 8, approximating the T4 component, into
the interaction term with the doubles, given by the dia-
gram of Fig. 7. Thus, each CCD equation would be
corrected by the diagrams shown in Fig. 9 (these yield 26
Hugenholtz diagrams when lines are oriented). Since each

t
2g

FIG. 8. A schematic Hugenholtz diagram representation of
the nonlinear terms containing two T2 .vertices and contributing
to the CC equations for quadruples, obtained by projecting Eq.
(8) onto the quadruply excited states. This term can be expected
to yield the most important contribution to the quadruply excit-
ed cluster manifold. Note that for the sake of simplicity we use
nonoriented fermion lines, so that the above diagram represents
in fact three diagrams which differ by the type of pair interac-
tion: pp, hh, or ph.

such diagram involves six summations over the internal
lines, four of which can be the particle lines, we are again
facing quite a demanding computational task. (However,
a similar approach to the T3 component, where only qua-
druple summations are involved, might be worth consider-
ing. ) It is therefore worthwhile to look for the source of
information about the T4 clusters elsewhere.

As we mentioned earlier, the importance of the T4 con-
tribution increases with increasing quasidegeneracy of the
reference state used. One of the very difficult cases is
represented by the fully correlated limit of the cyclic
polyene model (or, in fact, of any m-electron system), in
which case all the one-electron contributions vanish, lead-
ing to a highly degenerate situation. The cluster analysis
of the exact full CI wave functions for the first two cyclic
polyenes (%=6 and 10) shows clearly the importance of
the T4 component. In fact, starting with N =10 there
exist tetraexcited states which have no disconnected coun-

(a) (b) (c)

FIG. 7.. Resulting Hugenholtz diagram containing one T4
vertex and obtained by projecting Eq. (8) onto the doubly excited

state (22), S;=S. This diagram represents the contribution A' ',

Eq. (34), to the CCD equations. In an ordinary CCD approach,
this contribution is neglected.

(cI) (e) (f)
FKx. 9. A schematic Hugenholtz diagram representation of

the lowest-order contribution of diagrams of Fig. 8 to pair clus-
ter equations. Again, nonoriented fermion lines are used (see

caption to Fig. 8) so that the six diagrams above represent in
fact 26 Hugenholtz diagrams.



30 APPROXIMATE ACCOUNT OF THE CONNECTED QUADRUPLY. . . 220i

I
@Bs&=exp(R i)

I
@o) (42)

or its projected symmetry-adapted version
I
4)=P

I
4Bs)

where P designates the pertinent symmetry projector.
Thus, we can use either the UHF, PHF, or AMO wave
functions or in fact any other broken-symmetry state (e.g. ,
other types of UHF solutions as classified by Fukutome '

or other broken-symmetry solutions, such as those found
for singlet-unstable RHF, etc.). The monoexcitation

operator R~ for the spin-broken-symmetry cases (UHF,
PHF, AMO) has the form

terpart and their number grows rapidly with X (i.e., for

these states C4 ——T&). On the other hand, it is well known

that the unrestricted Hartree-Fock (UHF) method of the

DODS (different orbitals for different spins) type
represents an excellent approximation for the large cou-

pling constant regime (i.e., small resonance integral P
values relative to the electron interaction integrals y) and

in fact provides the exact solution in the fully correlated
limit (when P=O). It is therefore tempting to exploit
the UHF wave function to provide the information about

the T4 cluster component.
It is also well known that the UHF reduces to the stan-

dard restricted Hartree-Fock (RHF) procedure whenever

the latter is triplet (nonsinglet) stable. ' Moreover, the
transition between the stable and the unstable regions
(separated by the critical value of the coupling constant)
may show a nonanalytic behavior in either the density
matrix or even the energy. This transition may lead to
various difficulties in both the CC and the MBPT ap-
proaches. ' This behavior is of less concern for large or
extended systems since the critical coupling constant be-
comes very small in such cases [e.g., for cyclic polyenes

IP, , I
~oo when N~co, see Ref. 42(b)]. However, for

finite molecular systems this behavior is of considerable
concern. It is thus preferable to exploit some projected
procedure, such as the projected Hartree-Fock (PHF)
method or, if possible, the alternant molecular-orbital
(AMO) method, where the above-mentioned discon-
tinuities are avoided. The AMO approach represents a
special case of the PHF procedure (and is only applicable
to minimum basis-set models) in which the restrictions on
the coupling of occupied and virtual orbitals are so chosen
that the most important correlation effects are well
represented.

For the general development which we shall present
below it is quite irrelevant which type of the broken-
symmetry single determinantal solution is used and
whether the optimization is carried out before (UHF) or
after (PHF) projecting out the relevant symmetry com-
ponent. We shall thus consider a general broken-
symmetry (BS) single antis ymmetrized product wave
function of the form

(44)

The diagrammatic representation of R~ is shown in Fig.
10(a), while the general multiple diagrams representing
the multiply excited components of

I
@Bs), Eq. (42), are

illustrated by Figs. 10(b) and 10(c). Note that we
represent the triplet coupled vertex by a one in a square
and associate with it the matrix elements (44).

The resulting broken-symmetry wave function I@Bs)
with R

~
defined by Eq. (43) contains various higher mul-

tiplets (triplets, quintets, etc.), which can be projected out

obtaining a multideterminantal state P~ o I
@as). At this

stage there is formally no difference between the UHF,
PHF, or AMO procedures, since they will only differ in
actual values of the matrix elements (44). In each case,
these coefficients are determined from the variational
principle which is applied before the projection in the
UHF case and after the projection in the PHF and AMO
cases. In the last case, a further restriction on the coeffi-
cients (44) is imposed by considering only the monoexcita-
tions between the alternately conjugate pairs of orbitals.
In the following, we shall thus use the projected form of
the UHF-type wave function in order to estimate the con-
tribution of connected quadruply excited clusters.

IV. CORRECTIONS FOR QUADRUPLY EXCITED
CONNECTED CLUSTERS

Po
I +as & =Poexp(R i )

I
@o& =exp(+ )

I
@o& (45)

where Po designates the projector onto the singlet mani-
fold. For the spin broken-symmetry wave function of the

UHF, PHF, or AMO type considered, the operator K can
contain only even-number-of-times-excited components,
s.e.,

E=K2+K4+- (46)

since all odd-number-of-times-excited contributions will

be annihilated by the singlet projector Po.
In order to determine first the pair operator E2 we

To correct the CCD equations for the T4 contribution,
as approximated by the projected broken-symmetry wave

function Po
I
C&Bs), Eq. (42), we first express the latter in

the exponential form

(a) (b) (c)
(43)

namely, it consists of triplet monoexcitations with zero z
component of spin (X~~&~—XzpX~~). For the sake of
brevity we shall designate its matrix elements as follows:

FIG. 10. Diagrammatic representation of (a) the mono-

excitation operator R ~, Eq. (43), and (b) and (c) of disconnected
components arising through the exponential Ansatz, Eq. (42),
representing multiply excited contributions. The triplet charac-
ter of the monoexcitations is indicated by the rectangular vertex
enclosing number 1 for S=1.
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must examine the doubly excited component of l@Bs)
A 2which arises by the action of the operator —,R i,

]II $I 2II 2I

xg( —1)'+~+xt x ~t x
= —,(Gi+G2 —Gp —G4),

(49)

This component is diagrammatically represented by Fig.
10(b), a= 1, with a', a; (i=1,2) being free labels. ' For a
fixed set of hole-particle labels, say a ',a2, ai, az, both dia-
grams Ir= 1 and 2, Fig. 10(b), must be considered and the
configurations associated with the products
&1"Ill'&&2"II2'&»d &1"112'&&2"lll'& a«»nearly in-

dependent (unless a'=a and/or ai ——a2). We can thus
express them in terms of single determinantal states (20)
as follows:

&& i I@'0&= & X X( &1"Ill'&&2"ll2'&
I @(+)&

Itt pll I I pt

= i( —Gi —G2+G5+G6»

and ultimately in terms of the pp-hh coupled spin-adapted
states (16) or (21), since

I@(+)&=210&a+2(3) ' 'lo&i+( —', )' 'I2&i, (50)

as may be easily found by calculating the overlaps be-
tween the states (49) and (21). Note tha, t the states

I 4~+~), Eqs. (49), are contaminated by the quintet com-
ponent but contain no triplet component. It should also
be stressed that Eqs. (21) and (49) assume distinct hole-
particle labels, i.e., a'&a, a»a2. Otherwise, the right-
hand side of Eqs. (21) must be multiplied by the factor
N„Fq. (19). Thus, we finally get

po( 2& i) I
@0&=—' g Q I (&1"Ill'& &2"ll2'&+ &1"ll2'& &2"Ill'&)

I
o&o

1",2" 1' 2'

+(3) '"(&1"Ill'&&2"II2'&—&1"112'&&2"lll'&)10&iI

$
II 2II

= —.
' & g gt:~1 '"(&1"lll'&&2"112'&+(—1)'&1"ll2'&&2"lll'&)

1
1",2" 1',2' S S (51)

2'q a) a2q

is defined by Eqs. (16) and (22).
Defining the orthogonally spin-adapted elements of the

biexcited component Ki by analogy with the definition of
Tz components, Eqs. (24) and (25), we get analogously to
Eq. (26) that

(E, I
e )) =—,

' y'y y N, '(1"2"
I
k, I

1'2')
g O aft 21t I / gt

with Eqs. (12), (29), (30), or (31) that

&1"2"
I k2

I

1'2'& =-,'( —&1"2"
I ~.

I

1'2 &0

+3
—i/2( 1 ii2&i

I

~
I

li2t )

where we defined the unnormalized k2 elements by analo-

gy with Eq. (28),

(1"2"
I
&2 I

1'2')s ——N, '(1"2"
I
ki I

1'2')g

(S=0, 1) (55)

$
I I 2I I

X )I 2I
+2&1"II2'&(2"Ill'&) . (56)

{1"2"Ik, I
1'2'},

=t.~l '"I &1"Ill'&&2"ll2'&

+(—1)s(1"I I2') (2"
I I

1') I . (53)

This last relationship can be also easily derived directly
when we exploit the fact that the spin projector commutes
with the Hamiltonian (or its two-particle components),
which is assgmed to be spin independent. This immedi-
ately imphes the equality of energy contributions

Using a nonorthogonally spin-adapted expression for X2
with matrix elements (1"2"

I k2 I
1'2'), we get by analogy

(No
I

v~%2 I No) = (4O
I
v( —,

' 8 i) I
@0) .

In fact, the same procedure would apply to the projection
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of any biexcitation formed from effective triplet coupled

operators, so that we shall write

6,=(1-2"Ik, I12), 6,=(1-2"Ik, I21), (58)

and

triplet coupled excitations.
~e are now ready to derive the corrections to the CCD

equations due to the connected tetraexcited clusters. In
order to estimate the T4 contribution, we must consider
the tetraexcited component

(59)

with the understanding that e and 0 can be any opera-
A 2

tOrS Of the type E2 and R &, respeCtively. RepreSenting
these operators diagrammatically in the same way as the

operators E2 and R~, we see immediately that the left-
and right-hand members of Eq. (57) are given by the dia-

grams shown in Figs. 11(a) and 11(b), respectively. We
find that any diagram which contains a closed loop of fer-
mion lines with an odd number of triplet vertices gives a
vanishing contribution [i.e., the first diagram of Fig. 11(b)
in our case]. Thus, Eq. (S7) implies that

Po 4,
~ i I

~'o) =( z & &+&4) I
@'o)—=C4 I

~'o),

(65)

Where the prime On C4 indiCateS that thiS cOmpOnent iS

only an approximation to the exact tetraexcited corn-

ponent C4, , Eq. (3). As we showed in the Sec. III, we are
only interested in. the evaluation of the coupling bi-
tetraexcited terms as given by the diagram of Fig. 7,
which will be used to correct the CCD Eqs. (32) by the
term A' ', Eq. (34). This correction is thus given by

A"'=&@i~
I

I iv&4 I
+o) =&+I 'I 4«4 —z&z) I

@o)

2ed-e, = —n, .

Writing 6d as a linear combination of 0's,

ed ——aQd+bQ, ,

so that also

(60)

(61)

=+4 ~(2,2) ~

(3) (3)

where we defined

A4
' ——(O'; '

I
V~Cg I

&bo),

+(2,2) ~~"i"
I
~x( 2 & 2) I @o&

(66)

(67)

8,=aQ, +bQd,

we obtain by substituting into Eq. (60) that

26' —6, =Qg(2a b)+Q, (—2b —a) = —0, .

(61')

(62)

Comparing the coefficients at the same terms we get a
simple linear system for a and b coefficients,

2a —b =0,
(63)

2b —a= —1,
which has ihe solution

It should be also noticed that the projection onto the sing-
let component, Eq. (6S), will be automatically achieved
when calculating matrix elements (67), since

I
4'; ') is a

pure singlet state and the singlet projector Po commutes
with any part of our Hamiltonian in view of its spin in-

dependence. In evaluating the matrix elements we can.

g 2 (64)

We have thus recovered expression (56) and, in fact, ob-

tained a simple rule for the projection of a product of

(b)

(1) (2) (1) (2)
FIG. 11. Diagrammatic representation of the energy matrix

elements given by (a) the left-hand member of Eq. (S7) and (b)

the right-hand member of Eq. (57). To stress the fact that the

same relationship will hold for any pair operator E2 and triplet

coupled monoexcitation-type operator Pi, the corresponding
vertices are labeled by 8 and ~, respectively. Thus, for example,
the co vertex may represent any connected diagram containing
an odd number of 8& vertices and having only two external
lines, while the 8 vertex represents a standard singlet pair ver-

tex.

(1) (2)
FIG. 12. The resulting Goldstone-type diagrams representing

(a) the linked and (b) the unlinked contributions to A4", Eq. (67).
Diagram 3 of (a) and 2 of (b) give vanishing contributions.
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distinguish linked and unlinked terms, even though we
must exercise great care since in view of the approxima-
tion used we represent approximate connected clusters E2
or K4 through the products of triplet monoexcited clus-

ters R~. We shall see, however, that considering both
linked and unlinked clusters in evaluating A' ', the latter
automatically disappear.

Let us rewrite Eq. (66) as

A =At + A„= (A4 —A(2 2))t
(3) (3) (3) (3) (3)

+(A4"' —A,',"„)„, (68)

where the subscript indicates the linked or unlinked char-
acter. The linked contributions to A4 ', Eq. (67), are
represented by the diagrams in Fig. 12(a) and the unlinked
ones in Fig. 12(b). We have already seen that any closed
loop of fermion lines which contains an odd number of
triplet vertices makes the diagram vanish [i.e., the last di-
agram in Figs. 12(a) and 12(b)] so that only the first two
diagrams of Fig. 12(a) and the first diagram of Fig. 12(b)
have to be considered. In view of the formal similarity
between the K2 and T2 operators, the linked diagrams
(which are also connected} contributing to AIq'q~ are iden-
tical with those of Fig. 4 (where, of course, we now associ-
ate the k2 or ~2 matrix elements with biexcited cluster
vertices), while the unlinked contribution to AIz'2~ is ob-
tained by combining the diagrams in Figs. 1(a) and 6,
yielding be(a'a Ikzlata2)-. Using the energy expres-

sion, Eq. (40), and the representation of the kz matrix ele-
ments, Eqs. (53) and (55), we easily find that the unlinked
contributions in Eq. (68) cancel out so that we have

(69)A' '=At =(A4 —A(i, x))t .(3) (3) (3) (3)

Expressing the CCD equations in the form (41) we can
write the correction term A' ' as follows:

A"'=a, yc,J„kJk-„,
jpk

(70)

where a; is given by the first two diagrains of Fig. 12(a)
and kj's label the ~2 matrix elements, which are assumed
to be ordered in the same way as the corresponding ~2 ma-
trix elements so that the coefficients c;Jt„given by Eqs.
(37}—(39), are identical in both cases. Thus, the modified
CCD equations (which we could call CCDQ' equations)
including the approximate T4 contribution have the form

a;+a;+ gb, itJ. + g ctJt, (tJ tt, kJkt, )=0 . — (71)
j j(k

The matrix elements k; = (a 'a
I
k2 I a ia2)s can be cal-

culated from Eq. (53) once the monoexcited coefficients
(a'

I I
a i ), defining the UHF, PHF, or AMO wave func-

tion employed, are available. It thus remains to evaluate
the contribution a; from the diagrams of Fig. 12(a). This
can be most easily achieved via the nonorthogonally
adapted formalism. Designating by Az(a a„;a a-„) the
unprojected contribution from the jth diagram of Fig.

I

x (3"
I I

1'& &4"
I
l2'), (73a)

3I 4I 31t 4lt

(3'4'
I

u
I

3"4")(3"II4')

x( &1"ll3'& &4"ll~'&&2"
I
f~'&

+ &2"II3'&&4"II '& &1"II '&) .

(73b)

To obtain spin projected contributions, we note that the
resulting monoexcitations in the first diagram of Fig.
12(a) have a singlet character, so that they give directly
the required contribution A, ~ to a; in the nonorthogonally
spin-adapted (spin-bonded function) basis, namely

A, ,(d) =il, (1"2";1'2')=A, ', ',
(74)

A, i(e) —=A, i(1"2";2'1')=A'i ' .

In the second diagram of Fig. 12(a) the two oriented paths
represent triplet excitations so that we have to carry out
the appropriate projection. This is simply achieved using
the above outlined prescription [Eqs. (57)—(64)] so that

A 2(d) =A p(1"2";1'2') =——,
' (A2"+2k 2 '),

A2(e) =Ay(1 "2";2'1')= ——,(A2 '+2A2 ) .
(75)

It is now straightforward to find the corresponding
contributions in the orthogonally spin-adapted basis by
applying the inverse transformation of Eq. (54) which
gives

A"'=—A"'(1"2" 1'2'S )4,j= 4,j
= —[S]' [(—1) AJ(d)+X (e)I,

so that finally

aJ =—(A4 )t =A4 i+ A4 2 .(3) (3) (3)

Explicitly

(76)

(77)

12(a), j=1,2 (recall that A,3 ——0 and note that arguments
label the external lines associated with the two oriented
paths in the standard way), the contributions to the two
possible CCD equations, labeled by the fixed (distinct)
particle labels a ',a and hole labels a i,az, before the spin
projection are [cf. notation of Eqs. (59) and (60) of Ref. 5]

A, '"=A, .(1"I'2"2')+1, (2"2'1"1')J J J
(72}

A,
' '=A, .(1"2'2"I')+A, (2"1'1"2') .J J J

Explicit expressions for these quantities follow easily from
the diagrams of Fig. 12(a), namely

&3'4'I "I 3"4"
&& "113'&& "fl4'&

3I 4I 3II 4II

A4 i(1"2",1'2',s)= —[s]' g I ( —1) (3'4'I u
I
3"4")+(3'4'I u I4"3")}

3I 4t 3II 4II

&« I"113'& &2"II4'& &
3"Ill'& &4"

I

2'& (78a)
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and

A(3)( lit2ii It2i.p) [Z]—I/2[g(1)+( 1)sg(2))

2

=[S] ' y (34 )v ~3 4 )(3 )4 ) y ( —1)'"+ ' (A,"~~3')(4"() ')(g")(/') .
3I 4I 3II 4tl

(7&b)

Assume for the moment that the projected state
I p ~ 4Bs) Eq. (45), is exact and that

In this case Eqs. (71) reduce to the linear form

(80)

where a; are given by the first two diagrams of Fig. 12(a).
Keeping in mind the relationship between the pair clus-
ters, Eq. (79), and monoexcited triplet clusters, Eq. (44), as
expressed by Eq. (53), we can examine which types of
nonlinear diagrams of Fig. 4 or 5 are represented by the
correction a; in CCDQ' Eqs. (80) under the assumption of
Eq. (79). In order to see this correspondence we can make
the replacement indicated in Fig. 13 which can be regard-
ed as a diagrammatic representation of Eq. (53). This re-
placement is most easily implemented by considering the
Goldstone form of nonlinear CCD diagrams of Fig. 4 or 5

(see Fig. 8 of Ref, 6), in which case it suffices to erase the
nonoriented connecting lines as shown in Fig. 13(b). The
resulting set of diagrams is shown in Fig. 14. We see that
this operation yields the diagrams of Fig. 12: the un-

linked diagrams of Fig. 12(b) occur once while each linked
diagram of Fig. 12(a) is generated three times. On first
sight it would seem that the effect of inclusion of the con-

nected qu.adruply excited clusters T4, under the assump-
tion of Eq. (79), can be regarded to be equivalent to delet-

This completes the derivation of the explicit form of the CCDQ' Eqs. (71).
I

V. DISCUSSION ing the first three nonlinear diagrams of Fig. 4 (or the
first two Hugenholtz diagrams of Fig. 5) while keeping
only the last two diagrams of Fig. 4 or 5, whose contribu-
tion is equivalent to the term a; of Eq. (80). With this in-
terpretation, the CCDQ' Eqs. (80) would be exactly

J equivalent to the ACP-D45 approximation of the CCD
equations discussed in the Introdoction. &e shall show
shortly that while this interpretation is basically correct, it
needs nevertheless some "fine tuning" (namely, the change
of an integer factor of one of the diagram contribution).
Before finding out this precise correspondence let us dis-
cuss the correspondence between a; diagrams and non-
linear CCD diagrams in more detail.

Since each diagram of Fig. 12(a) occurs three times
among those of Fig. 14 one could of course devise other
interpretations of the term a; in Eq. (80) than that given

(b)

(a)

(b)

FIG. 13. A schematic diagrammatic representation of the re-
lationship (53) between the pair E2 clusters and R ~ clusters, and
(b) corresponding relationship between standard pair and Ri
clusters as given by Eq. (56).

FIG. 14. A schematic representation of the relationship be-
tween the nonlinear CCD diagrams of Figs. 4 or 5, represented
in the Hugenholtz form by diagrams (a)—(d), Fig. 4, and corre-
sponding linked quadruple contributions, represented by dia-
grams of Fig. 12, as implied by the relationships (53) or (56} (see
Fig. 13). For each Hugenholtz diagram (a)—(d) of Fig. 4 we
first list the corresponding GoMstone versions (white arrow) fal-
lowed by the application of the relationships (53) or (56),
represented by the black arrow. The resulting diagrams of Fig.
12, approximating the quadruply excited cluster contribution to
the CCD equations, are enclosed in rectangles.
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above in terms of the ACP-D45 approximation. Even
when we exclude the first two diagrams of Fig. 4 (i.e., the
first Hugenholtz diagram of Fig. 5), since its counterparts
in Fig. 14 contain unlinked diagrams of Fig. 12(b}, we see
that from the viewpoint of the comparison we are under-

taking, diagrams 3 and 4 of Fig. 4 (or diagrams b and c of
Fig. 5) play exactly the same role. In fact, these diagrams
are closely related since they can be transformed one into
the other by the hole-particle conjugation operation which
reverses the orientation of each fermion line. In any sys-
tem possessing the hole-particle symmetry, for example in

alternant m.-electron systems described by the semiempiri-
cal PPP (Pariser-Parr-Pople) Hamiltonian where the
the Coulson-Rushbrooke pairing theorem holds, these dia-
grams will give exactly the same contribution, so that in
fact the D45 approximation will be equivalent to the D35
approximation in such systems. Generally, however, the
particle-hole symmetry is not present, in particular for ab
initio model Hamiltonians when larger than the minimum
basis set is used. Thus, while the above outlined
correspondence (cf. Fig. 14) shows the ACP-D45 approxi-
mation in the new light, it does not unambiguously imply

I

this approximation. In fact, the main reason for choosing
the D45 approximation stems from the fact that these two

diagrams give the EPV terms, which are proportional to
the (occupied} pair energies, as discussed in more detail in

Refs. 26 and 27. Indeed, in various CEPA-type ap-

proaches, only these EPV terms are retained. Another

way of expressing this fact is to state that diagrams 4 and

S of Fig. 4 factorize with respect to the pair energy contri-

butions.
Let us, finally, carry out the detailed comparison be-

tween the CCDQ' approximation via Eqs. (80) and the
ACP-D45 approximation to the CCD equations. We can
simply consider the terms originating from diagrams 4
and 5 of Fig. 4, as given by Eqs. (38c) and (38d), respec-

tively, and use the relationship between the k& and r] ma-

trix elements, Eq. (53), assuming Eq. (79) holds. Froin the
contribution of diagram 4, Eq. (38c), we recover in this

way precisely the contribution of the second diagram of
Fig. 12(a) as given by Eq. (78b). [Recall that the last dia-

gram of Fig. 12(a) gives a vanishing contribution. ] How-

ever, from the contribution of diagram 5, Eq. (38d), we

find that

A',"=[S]-'" y I( —1)'"&3'4'
I

U
I

3"4"
&
—

&
3'4'

I
U

I

4"3"
& I

&1"113'&&2"114'& &
3"111'&&4" 12' &

[S ]
—2A(31

with A4 i given by Eq. (78a). Thus, while in the singlet
equation (S=O) the contribution of the first diagram is
again identical with that of diagram 5, Fig. 4, these con-
tributions differ by the factor of 9 for the triplet (S=1)
equation. Thus, assuming that Eq. (79) holds, which is
equivalent to assuming that our UHF, PHF, or AMO
wave function provides us with exact pair clusters, we
find that the CCDQ' equations, which reduce in this case
to a simple form, Eq. (80), are identical with the ACP-
D45 equations [provided the relationship (53) is em-

ployed] except for those which were obtained by project-
ing onto the biexcited configurations with triplet inter-
mediate coupling of hole and particle pairs (S= 1), in
which case we have to multiply the fifth diagram contri-
bution by the factor of 9. In order to distinguish this new
approxiination from the ACP-D45 (or simply ACP) ap-
proximation, we refer to it as the ACP-D45(93) or simply
as the ACPQ (approximate coupled pairs with quadru-

ples) approach. Needless to say that the simple relation-
ship between the ACPQ and A.CP approaches (a factor of
9 for the fifth nonlinear diagram in triplet coupled equa-
tions) can only be achieved when we employ the or thogo
nally spin-adapted formalism. '

To regard the ACPQ equations from yet another angle,
we can also make a similar comparison between the linear

part of the CCD equations, Eq. (36), and the correspond-

ing terms, which arise when we consider the projected
UHF-type wave function in lieu of the cluster Ansatz in
the Schrodinger equation (8). Projecting onto the biexcit-
ed configurations 14; '& as in Eqs. (32)—(34), we obtain
the system

&e',"
I
H~I, "

I e, &
= &c',"

I

H„"'
I @,& =0. (82)

This yields —(nm) equations for only -(nm) variables
&a'

I
ri

I
ai &. However, making the replacements of the

products of ri matrix elements by pair clusters, following
the relationship given by Eq. (53), or rather its inverse,

Eq. (A15), we can restore the correct number of indepen-

dent unknowns. This removes the restrictions placed on

the higher-excited components by the structure of the
UHF wave function. In this way we also find a complete
correspondence between all the bilinear terms in the r&

matrix elements and the linear terms of the CCD equa-

tions as shown in the Appendix, We recall that for the

quadruply excited part this complete correspondence was

only found for diagram 4 of Fig. 4, while for diagram 5 of
Fig. 4 an extra factor of 9 was introduced. Consequently,
we can also regard the ACPQ equations as arising from

the PHF-type equations (82) by replacing the products of
R i matrix elements by the tz (or k2) matrix elements ac-
cording to the rule expressed by Eq. (53), or Eq. (A15).

Let us mention, finally, that it would be very desirable

to handle the effect of triexcited clusters T3 in a Inanner

similar to the way we handled the T4 clusters in this pa-
per. Of course, this is not possible using the UHF-,
PHF-, or AMO-type wave function exploited here since
no triexcited singlets can be projected from the wave func-
tion of the type given by Eqs. (42) and (43). However, this
might be possible when using other types. of broken-

syrnrnetry wave function to estimate T3 component.
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VI. CONCLUSIONS

The consideration of the connected tetraexcited cluster
components T4 is important whenever the reference state

I
@0) becomes quasidegenerate and is absolutely essential

in extended metalliclike systems, such as linear polyenic
chains. It is well known that the inclusion of these clus-
ters represents a very formidable task. We have shown in
this paper that the effect of these clusters can be taken
into account in a surprisingly simple way by a slight
modification of the approximate coupled-pair theory sug-
gested and exploited earlier. This fact also explains
the successes of the ACP and the fact that whenever ap-
plied in cases where exact solution was available from the
full CI treatment, the ACP provided better results than
the full CCD or CCSD approaches. We will show in
forthcoming papers how .this approach is essential for
handling of metalliclike systems mentioned above. In
fact, these papers will show that while the usual CC(S)D
approach breaks down altogether for sufficiently large cy-
clic polyenes, the ACPQ approach provides the exact
solution in the fully correlated limit, while having practi-
cally no effect in the weakly correlated limit. Thus, this
approach yields very good results in the whole range of
the coupling constant. This paper also explains why even
cruder approximations, such as various CEPA-type ap-
proaches, can provide relatively good results in nondegen-
erate as well as quasidegenerate situations.

c i=+&~"If I

3"
& &3"ll~'& && "ll~'&

3lt

r
z= —+&3' If I

~'&&&"ll3'& && "ll~'&
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3II 4II
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I

U
I

~'~'& &~"113'& &~ "II4'&
3I 4I

ps+ p6= —g ( &~ "3'
I

U
I
3"~'& &~"113'& &3"ll~'&

3I 3II

(~"3'
I

U
I

3"A,')
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(A4)

ladder-type interaction corresponds to diagram 2» (2~) of
Fig. 3 and, finally, diagrams 5—8 [diagram 8 vanishes for
the same reason as diagram 3 of Fig. 12(a) and 2 of Fig.
12(b)] involving the hole-particle ladder- and ring-type in-
teractions correspond to the diagrams 2&i, and 2&i, of Fig.
3.

Using an analogous notation to that employed on the
right-hand side of Eq. (72), we designate the contribution
from the ith diagram of Fig. 15, whose external lines of
the two distinct paths carry the labels ~",A,

' and K",X'
(where x =1+5,„, x =a, A,), by p; =p;(a"A, ';a "A, '). The
explicit algebraic form of these contributions is found
easily (we assume all labels to be free' ) from the diagrams
of Fig. 15, namely,
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APPENDIX

3I 3II
(A6)

(A7)

Now, except for diagram 7 (Fig. 15), whose oriented
paths involve an even number of triplet monoexcitation
vertices, we have to project out the singlet component.
This can be achieved in the same way as outlined in Sec.
IV. Combining relationships (72), (75), and (76) we obtain
that

We shall establish a detailed relationship between the
bilinear part of Eqs. (82) and the linear part of the CCD
equations (32). In other words, we wish to inter-relate the
second-order triplet cluster terms, projected onto the biex-
cited states, (N,' ' IH~( —,R i) I 40), and the linear pair
cluster terms of the CCD approach, (@I ' IH&T2

I
@0).

The relationship between corresponding projections onto
the reference state

I @o),Eq. (57), which provided us with
a simple rule for the projection of products of triplet cou-
pled components, was given in Sec. IV, Eqs. (57)—(64).

The resulting Goldstone diagrams, which represent the
matrix element (@I '

I
H~( —,'R i) I

40) and consist of two
triplet-type monoexcitation vertices [Fig. 10(a)] and one
interaction (one- or two-particle) vertex are given in Fig.
15. We can easily associate them with the diagrams of
Fig. 3 which give rise to the linear CCD terms: diagram 1

(2) in which a particle (hole) is scattered by the one-

particle term of H~ corresponds to diagram lz (11, ) of
Fig. 3, diagram 3 (4) with a particle-particle (hole-hole)

(2)

(6)

FIG. 1S. The Goldstone-type diagrams representing the dou-

bly excited contribution to Eq. (82). The same diagrams are also
obtained by applying the transformation represented in Fig. 13
to the linear CCD diagrams of Fig. 3.
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Ai(1 "2",1'2',S )

= —'[S ]'"[2+(—1)']
2

&& g ( —1)'"+ '
A, (sc"A,'K "1,')

J
sc, A, =1

2

=[S] ' g ( —1)'"+ '
A, (a"A,'K "X') (A8)

Thus, replacing A, 's with p's and designating analogously
the contribution of the ith diagrain of Fig. 15 projected
onto the biexcited state

1" 2"
1' 2'

by MJ =MJ(1"2",1'2', S) we get

3II
(A9)

(A10)

M, =[S ] '~' g (1"2"
I

U
I
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For diagram 7 (Fig. 15) we only have to apply the transformation analogous to that of Eq. (76) since in this case Eq. (74)
holds, so that

2

M7=[S]' g ( —1)'"+ ' g (a"3'
f

U
I
X'3")(17"If3')(3"I IA, ') .

3t 3tl
(A14)

We shall finally inter-relate the spin-adapted contributions of the diagrams in Fig. 15, Eqs. (A9)—(A14), with those
originating from the linear CCD diagrams of Fig. 3. This can be achieved by replacing the products of ri matrix ele-

ments by the corresponding pair clusters using the relationship of Eq. (53). Inverting this relationship we obtain

1

(1-
I I

1 ) (2-
I I2 ) =-,' g [S]'"(1"2"

I
k,

I

I'2')s . (A15)
S=0

Replacing now the products of r, matrix elements by the pair cluster elements using this last relationship we obtain the
desired expressions. For example, for the first diagram contribution, Eq. (A9), we get

2 1
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I f I
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(A16)

The resulting expression is easily identified with the first term in A, Eq. (36), if we identify the a2 and w2 matrix ele-

ments. In the same way, we find a similar correspondence for the remaining diagrams of Fig. 15, Eqs. (A10)—(A14),
yielding eventually the whole A"' contribution, Eq. (36). This completes the derivation of the desired correspondence.
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