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The theory of Kohn and Sham treats a system of interacting electrons by establishing a correspon-
dence between this system and a noninteracting system. In this paper we develop a new formulation
of this theory, which differs from the original by its rigor and by the more correct treatment of the
kinetic energy term. This new formulation has the additional advantage that it bypasses the U

representability requisite of the original Hohenberg-Kohn-Sham theory.

I. INTRODUCTION

The attempts to simplify the many-electron problem in
terms of physical quantities or equations conceptually
simpler and easier to calculate go back to 1927 with the
works of Thomas' and Fermi, who realized the central
role of the density in such problems. Their approach was
intuitive rather than mathematical.

Eliminating the many variables of the many-electron
Schrodinger equation was not an easy task. Thus the
search for simplification led to another direction, the ef-
fective potential theories, i.e., to substitute the electron in-
teraction term, which was the source of the difficulties, by
an effective potential. ' In fact, the volume of atomic,
molecular, and solid-state physics calculations was based
on these theories. Local-exchange potentials were pre-
ferred instead of the nonlocal potential of the Hartree-
Fock theory.

A sound theoretical formulation of the problem with
the density as basic variable came with the work of
Hohenberg and Kohn in 1964. This led after one year to
the work of Kohn and Sham which justified the
effective-field approximations and gave impetus to im-
provements of such theories. This work stimulated many
investigations for reasonably accurate exchange and corre-
lation energy-density functionals. The fact that a ki-
netic energy correction term should be involved in the
Kohl-Sham equations was overlooked for years, and only
recently did this deficiency of the Hohenberg-Kohn-Sham
(HKS) theory appear in literature. 'o

The success of the Kohn-Sham theory for the ground
state led to attempts of generalization to excited states and
to development of functional theories for such states. Re-
cently many excited-state theories appeared, some along
the lines of the initial HKS theory. One of these was the
transition-state theory of Slater, ' who performed calcula-
tions that compared well with the experimental data.
This theory found a sound mathematical basis with the
work of one of us, ' ' whose subspace functional theory
led to equations similar to those of the KS theory, with
fractional occupation numbers. These equations nearly
coincide with those of Slater's theory. Other less tradi-
tional approaches for the excittxl-state problem appeared,
like those of Valone and Capitani. ' Still the KS theory is
the most popular in applications. Therefore, we believe

that it is worth looking for a rigorous formulation of this
theory. Such a formulation is presented in this paper.

II. HOHENBERG-KOHN THEORY

We shall now review some recent developments on the
Hohenberg-Kohn theory, which will be used for our for-
mulation of the KS theory. In what follows, we shall use

~ g) to denote an arbitrary X-fermion state, while
~
P)

will be reserved to Slater determinants. Furthermore, we
shall make use of the symbol =-as in g =-p to denote
that the state

~ f ) has the density p( r ), i.e.,
(f ~

p(r)
~ f)=p(r).

Suppose now that the Hamiltonian H =Ho+ V of a
system of fermions is given. The symbols used are ex-
pressed in terms of the fermion field operators and

Vrpr r

is the external potential. By Ho we shall denote the kinet-
ic energy operator T when we refer to the noninteracting
system, and Ho =T+H;„, for the interacting system:

T = —,
' f V%' (tr ) VV( r ) dr,

'I' (r)p(r ')P(r) d3 3
int 2 dr r'.

[r —r'/

The theorem of Hohenber and Kohn states that for
any density p(r), p(r) )0, p(r)d r =X there exists at
most one potential Vp(r) such that its ground state

~ P )
has the density p: g& --p. Consequently for all p or
which Vp and

~ gp) exist, we can define a functional

G (p)=&~, iH. +V i~,),
where V is the external potential. This functional has the
property that min&GH(p) =Eo (the ground-state energy of
the Hamiltonian H). In addition, the minimum is at-
tained when p is the correct ground-state density. Thus,
at least in principle, the ground-state energy can be ob-
tained by a minimization procedure involving just one
function p of the position variable r.

The above theorem of Hohenberg and Kohn is rigorous.
However, a problem remains: G&(p) is defined only for
some densities p, namely those corresponding to some
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QH (p)=infI(y I
Hp

I
~/i) for all q:-pI,

QII {p)=Q~ (p)+ f V( r )p( r )d'r .

(4)

(For the noninteracting case, the infimum is taken over all
Slater determinants

I
P) for which P =-p. )

As Levy proved, QH(p) is the desired extension of
GH(p); indeed, he proved the following.

ground state. Indeed, it can be proved' ' that there exist
reasonable densities p for which there is no ground state

I
g) such that g =.p, so GH(p) is not defined for those

p. This is annoying, for one needs to vary p freely in or-
der to obtain the Euler condition for the minimization of
G~(p). That is, the domain of definition of GH(p) should
be extended. This has been done by Percus and Levy
who defined, for any p(r) with finite kinetic energy,
p(r))0, f p(r)d r =N, and f (Vv p) der & oo the fol-
lowing functionals:

For the derivation of Eq. (6) we note that since the
minimum of (g I

Hp
I TP) under the conditions

exists, the expression

G(4) = &0 IHo
I
0&+ g ~.&0 I p. I @& E&—0 I 0&,

where A,„are Lagrange multipliers for the density con-
straints, has at least one extremum. The resulting equa-
tion under the variation of

I g) is

The solution of Eq. (7) depends on the parameters A,„
and has to satisfy the conditions

In addition, Lich' proved that the infimum of the func-
tional defined by Eq. (4) is actually a minimum.

Theorem 1 (Lich) Let .p(r))0, f p(r}d r =N,

f (VV p) d r & oo. Then
(1) there exist N-fermion states

I P ), I P) such that

and

(g I
T+H;„, I g) & oo,

(a) Q~(p) is an extension of GH(p). To be precise, for
all p for which GH(p) is defined, one has Q~(p)=GH(p).

(b) min&Q&(p) =Ep. The minimum is attained for the
correct ground-state density.

As there is always at least one solution, there is at least
one set of parameters A,„which satisfies Eq. (8). Next we
write the explicit expression for p„ in Eq. (7) and the ex-

pression Q„A,„P„becomes

g A,„P„=g f A,„y„(r)P(r)d r .

Under the hypothesis that the integration and summa-
tion signs can change order, we have

QA, „P„=f gA, „y„(r}p(r)d r

= f Vz(r)P(r)d r

=pl
(2) the infima

infI(P I

T P) for all P ~pI,
infI(yl T+H;ot It/) «r»1 q =-pI

are well defined and finite; and
(3} the above infima are minima, i.e., they are attained

by some states
I Pz), I Pz), respectively.

In the following we shall show that since the minimum
of QH (p) exists, a potential Vz(r) exists such that

I Pz)
is an eigenstate of Hp+ Vz, i.e.,

Hp+ f p(r)Ve(r)d r
I P )=eE

I gz) . (6)

In fact, the potential enters as a Lagrange multiplier, or
rather as a set of Lagrange multipliers in finding the ex-
trema of (P I

Hp
I P) under the density constraint.

It is preferable to work with the density operators p„,

p„= fP(r)P„(r)d'r,

where q&„(r) is any orthonormal set of square integrable
functions, which are chosen real so that p„ is a Hermitian
operator. Then the conditions (Pl p(r) I P) =p(r) be-

come

for some function V&( r ).
Thus Eq. (7) becomes

Ho
I g&+ f ~p(r}p(r)d'r

I
g&=E

I
P)' Q E D.

[The hypothesis of the interchange of the summation and
integration signs does not always hold. Then a local V(r)
may not exist. Such examples are given by Englisch and
Englisch. A derivation of this equation was also given

by Levy and others. ' ' ] Thus we conclude that the po-
tential plays the role of a Lagrange multiplier for the ex-
trema of Hp under the density constraints. When the
constraints are relaxed, the minimum gets lower.

It is useful to know the relation of the set of
I P) for

which the minima of (QIHo I f) under the condition

(f I p( r )
I p) =p( r ) are obtained to the set of ground

states.
Theorem 2. The set of ground states is a proper subset

of the set of
I ge), where

( (k+ IHp I
ge)=m'inI(QIHp I g) for all P =-pt

Proof. If
I fp) is a ground state for some potential V

and gp =-p, then for any other
I f) such that g =-p,

&Wo IHo+ VI Wo& «0 I
Ho+ V

I 0&
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Hence,

&fojHojto& «0jHoj@&
that is,

j 1(jo) minimizes (g jHO j 11 ) under the condition

j A&= j gp&
On the other hand, as I.ieb" and I.evy' showed, there

exist densities p which cannot be realized by any ground
state. For such p, min& ~ (P j Hp j f) has a minimizing

j Pz), which will be an eigenstate of Ho+ V for soine V,
but not a ground state. Thus the set of

j fz) is greater
than the set of ground states; Q.E.D.

GH (P)=minI(g T+H;„, jf) for all P =-pI . (10a)

The existence of this minimum follows from theorem 1.
The minimizing state or states will be denoted by j g~).
As the search for the minimum is in a space which con-
tains Ssi, j P&) does not necessarily belong to Ssi. The
following equality holds for

j P~ ):

(9b)

In a similar way one can define a functional for states
in Ssi by means of the minimum of the kinetic energy
plus the interaction energy in the space of all states

j P)
with the same density as

j P ), i.e.,

III. RIGOROUS KS THEORY
(Pp j

T+H;„,
j Pp) =G (P) . (10b)

The advantage of the KS scheme is that instead of hav-
ing to search for the real ground state of the interacting
system which is a linear combination of infinite number
of Slater determinants, one has to solve a systein of N
one-particle Schrodinger equations in an effective poten-
tial, V,ff(r). By means of these one-particle wave func-
tions one can form the Slater determinant, that is, the
wave function of an equivalent N-particle noninteracting
system. The initial formulation of Kohn and Sham relied
on the density variational principle of Hohenberg and
Kohn, discussed in the preceding sections. In the formu-
lation that follows no such variational principle will be
necessary. The various functionals will be defined by
Slater determinants and the minima of the energy will be
obtained by doing variations in the set of states corre-.

sponding to Slater determinants. These states will be
denoted by j P) and the corresponding set by Ssi. One
must note that Ssj is not a linear space, i.e., a Hnear com-
bination. of Slater determinants is not a Slater determinant
apart from very special cases. In this section

j f) will
denote a general state in the Hilbert space.

As we aim to derive a Ininimum principle for a func-
tional having

j
&I)) as variable, it is necessary to define a

functional over
j P ) whose value is either (a) always equal

to the expectation value of' the Hamiltonian of the in-
teracting system for some state

j g) belonging to the set
of ground states as is tacitly implied in the initial KS
theory, i.e., G(P)=(sf' jH j g), or (b) one can define
G(&)I)&(f j

H
j P), but the minimum value of G($) must

coincide with the minimum value of (g H
j g). The

second case will be used here. The procedure is as fol-
lows.

For any N-particle Slater deterininant with finite kinet-
ic energy, i.e., for every

j P) in Ssi with (P j
T

j P) & oo,
a non-negative function p~(r) is defined by means of the
relation p~(r) = (&)&

j p(r) &)& ).
Consider next the space of all Slater determinants

j
P')

having the same density as
j P). Then by theorem 1 the

minimum of the kinetic energy in this space exists. By
means of this minimum one can define the following
function. al:

py r py r
(12)

where E„, is the exchange and correlation energy. Finally
we define

G„(y)= &yj T jy&+aT(y)+ f V(r)pq(r) d'r

p~(r )p~(r ')

Evidently, GH(P) is well defined, since each term of the
expression for this functional is well defined by Eqs.
(9)—(12). As the following theorem shows, GH(P) has all
the desired properties.

Theorem 3. (a) The minimum of the functional GH(P)
in Ssl exists and its value is equal to the ground-state en-

ergy, Eo of H. (b) If the minimum of GII(P) is attained
for some

j Po), then the density p~ ——(Po p( r )
j Po) is the

correct ground-state density of H.
Proof. (a) First, rewrite Eq. (13) in the form

+ (P~ j T+H,„,+ V
j y~), (14)

where
j P~), j g~) are defined by Eqs. (9) and (10) and use

was made of (11) and (12). From Eq. (9) it follows that

(1S)

and since

(q~ j T+H,„,+ V
j y~) &Z, ,

Eq. (14) gives

By means of the functionals defined by Eqs. (9a) and
(10a), one can define the following functionals:

~T(y)=(y, j T y, & &y; j
T—jy, &

GT(&I&)=minI (P' T
j

«&&') for all &I)' p&I . (9a) GH(0) &Eo . (17)

The state or states for which this minimum is attained
will be denoted by j P&). Then it follows that

To show that the minimum of GH(P) equals Eo consid-
er

j Po ), i.e., the ground state of H and set
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po(r)=&go IP(r) I go& By theorem 1, minI &P I
T

I P& for
all P:-pc I is well defined, and attained by some

I Po &.

Consider now GH(gp). By the definition of
I Po&, we

have p& p~
——. On the other hand, the

I P& & and

defined by Eqs. (9) and (10) are nothing but lgo& and

I go &, since we have

&0o I
T+H t I 4o&

=min{ &g I
T+H;„, I P& for all g =-p~ I

and

Slater determinants
I P &. The value of these functionals

is not equal to the expectation value of the Hamiltonian of
a ground state of some interacting system having the same
density as

I
P&. However, the minimum value of this

functional is equal to the ground-state energy of the sys-
tem considered. The equation resulting from the minimi-
zation of GH(P) given by Eq. (13) is

T
I 4&+ f V ff(r)p(r)d'r

I
k&=E

I y& (19a)

where

&Pol T
I
Po&=minI&P

I
T

I P& for all P =-p~, J .

Then Eq. (14) becomes with

V,tt(r )= V( r )+V.,( r )+ f p (19b)

&t(, I
T+ H,„,+vip, &=E, ,

where
I 1l~ &, by Eq. (10), is a state such that

&Py, I
p(r)

I ty, &= &do IP(r) I ko& .

(18)

But (18) implies& that
I g~ & is the ground state of H.

Thus &Pp lp(r)
I Po& is the correct ground-state density;

Q.E.D.
Thus there is a way of formulating the KS theory

without the need of variational principles on functionals
defined on the space of densities, i.e., it is possible to
bypass the Hohenberg and Kohn theory. The theory
developed here defines energy functionals on the space of

GH(40) = & (~'o
I
T

I 4o &
—

& 0'o
I

T
I

0'o &

+ &Co I
T+II.t+ v

I
fo&=Eo

Thus part (a) of the theorem is proven.
(b) Suppose now that for some

I Po & we have

GH(fp) =Eo. Equality in relation (17) holds if and only if
relations (15) and (16) are equalities. Thus we have

V„,(r ) = [E„.(p)+ ~T (p)] . (19c)
5p

These equations are equivalent to those of the KS theory.
The dependence of E„,(P) and b, T(P) on p follows

from the fact that for a given
I P & a p(r) is defined, and

by Eqs. (9)—(12), to all
I P& having the same density, the

same value of these functionals corresponds. Hence these
functionals can be defined as functionals of p. We believe
that further rigorous investigation of the KS theory will

help in the search for the determination of the functionals
b, T(P) and E„,(P) which enter the HKS equations.
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