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Nonlinear electrostatic ion-cyclotron waves
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Nonlinear coupling of a coherent electrostatic ion-cyclotron (EIC) wave with finite amplitude compres-
sional Alfven modulations can give rise to localized EIC wave packets. Criteria for the wave localization

are obtained analytically.
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where n' is the ion number density of the compressional
Alfven wave. The perpendicular and the parallel (to Bp)
components of the ion fluid velocities are given by

2

(t'ai+ Q )Vii r)t~titi dt~lni
mI np

i

V 2

+ Q OtP+ Utnt &z
ml np

(3)

Large-amplitude coherent (over many wave periods) elec-
trostatic ion-cyclotron (EIC) waves, propagating almost per-
pendicular to an external magnetic field, are found to play
an important role with regard to particle acceleration and
plasma heating in the auroral region of the ionosphere' as
well as in the solar wind. In particular, nonlinear EIC
waves may be responsible for the large-scale potential drop
in the ionosphere. ' One of the important nonlinear effects
associated with the EIC waves could be the modulational
instability whose possible final state could be envelope soli-
tons. 3 A small amplitude calculation for the latter was
presented in Ref. 3 by including the linear response of the
magnetohydrodynamic (MHD) perturbations to the EIC
waves. However, the observed ~aves can by no means be
considered as small amplitude.

The objective of this report is to generalize the result of
Ref. 3 by incorporating fully nonlinear compressional
Alfven-wave response to the EIC waves. Criteria for the
existence of finite amplitude EIC wave solitons are given
analytically.

Consider the propagation of the EIC wave in the x-z
plane. The external magnetic field Sp is along the z axis.
Since the parallel (to Bpz) phase velocity of the EIC wave is
much smaller than the electron thermal velocity, the inertia-
less electrons maintain an equilibrium along the external
magnetic field. The electron number density is thus given
by

n, = npexp(e$/T, )

where T, is the election temperature, np is the average plas-
ma density, and it is the ambipolar potential of the EIC
wave.

The ion number density in the EIC wave is determined
with the help of the continuity equation, namely,

where
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np , np

tP=e@/T„Q,= eBp/mtc, c, = c, +wit, c, = T,/mt

and V2='7/+ 82. In Eq. (5) the second-harmonic interac-
tions are excluded.

In the absence of nonlinear interaction, linearization of
Eq. (5) yields the dispersion relation describing the coupling
of the EIC waves with the ion-acoustic waves in magnetized
plasmas. . We have

co (to —toi)+ k c Qi =0 (6)

where co is the wave frequency, coq = 0 I + k c, , and
k = k„+k, . Here, k„and k, are the wave vectors perpen-
dicular and parallel to Bpz, respectively. For m —QI and
k, « k„,one encounters the EIC modes propagating al-
most perpendicular to the external magnetic field. In what
follows, we are interested in nonlinear coupling of the EIC
waves with the finite amplitude compressional Alfven waves
which satisfy n'=B, . Assuming that the amplitude of the
EIC wave varies on the time and space scales of the
compressional Alfven waves, we may employ the usual
WKB approximation for the EIC wave potential

ip= ~(IiY, )rexp( —ioipt+i kp r )

where we shall let cup '9, « 1 and kp '8„«1.
Substitution of Eq. (7) into Eq. (5) gives an evolution

equation
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where

kPPs & 1 Psdx « 1 Ps= ~ tax » tlz

where Q = eB,/mic is the ion gyrofrequency, B, is the total
magnetic field in the z direction, v„=(yt Tt/mt) tt2 is the ion
thermal velocity, and mI is the ion mass. In obtaining Eqs.
(3) and (4) we have noted that the compressional Alfven
waves do not have sheared magnetic fields.

Combining Eqs. (1)—(4), and making use of the
quasineutrality condition, we obtain

8i [tit + Qt —c,"72—Qt2(1 —B,z/B$ ) ]4—c,2Qz82tP

e 2

tltua = tl gati 8 nt
rn( np

(4) Furthermore, in deriving Eq. (8) we have also used the
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linear dispersion relation [o)0=@)1(ko)] of the EIC wave.
The last term on the left-hand side of Eq. (8) is the leading
order nonlinear term emerging from the large variation of
the compressional Alfven-wave magnetic field in the pres-
ence of the EIC waves. Note that the other nonlinear terms
on the second line of Eq. (5) are smaller than the one re-
tained in Eq. (8). The reason is that the wavelength of the
compressional Alfven waves is assumed to be longer
(p~292 && 1) than the EIC waves ( kf p

2 & 1).
The dynamics of fully nonlinear compressional Alfven

waves (across 50) is governed by the MHD equations4

B,n+ B„(nv)=0,
g,v+ v~x&+ cs Qx inn+ van-iBQ„B

= —(c,'/2k) p')g ld I' (10)

A close inspection of Eq. (18) reveals that sub-Alfvenic sol-
itary EIC waves consist of large amplitude density and rnag-
netic field depressions (associated with nonlinear compres-
sional Alfven waves) together with localized EIC fields in a
low-P plasma.

Multiplying Eq. (14) by d4/dx, using Eqs. (15)—(17), in-
tegrating once, and using the appropriate boundary condi-
tions (n =1, 4=0, and dn/dx =0, and d&b/dx=0) at
~x~ = ~, we readily obtain the energy integral

'2

+4=0,
dx,

(19)

where the potential energy is given by

'P(n) =4+2(n) Q 2[(1—A)42(n)+ T(n3 —1)
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where 8, « 0;, n,'=n', n =n'/no, and vq =Bo/4nnom;
The right-hand side of Eq. (10) is the ponderomotive force'
term which originates from the averaging (over the periods
of the EIC waves) of the ion convection term. We have
noted that the introduction of a small but finite k, of the
compressional Alfven waves would not alter our principal
findings.

It is convenient to normalize the variables in Eqs.
(8)-(11). Thus, the time and space scales are written in the
units of p, /vq, and p, ; whereas the ion fluid velocity v and
the ambipolar potential 4 are normalized by v& and
c,2/2v~~kjp~2, respectively. We look for the stationary solu-
tions in the form

e=e (x —Mr) exp[ie(r)+ lg(x)]

B=B(x—Mr), n=n(x —Mr),

v =v(x Mr)

where M = V/vq is the Alfvenic Mach number.
On substituting Eq. (12) into Eq. (8), one finds

d24
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where P = c, /v~, and the plasma is assumed to be unper-
turbed (B=1, n =1, 4=0, and v =0) at ~x~ =~. For lo-
calized perturbations, we take 4= 4 ( & 0), n = N at x =0.
Thus, combinations of Eqs. (15) and (16) give a nonlinear
dispersion relation

2N (42 + N —1+P lnN)
N2 —1

(18)

where A = 2eI),0+ 2kop, 8„q+ (0„p)2 is the nonlinear fre-
quency shift, to be determined later. Here,

e = qcuvo/A, c, and p(x) = 2(eM —kop, )x

On the other hand, inserting Eq. (13) into Eqs. (9)-(11),
one gets

Mn=
M —v

with Q=l+Pn ' —M n 3, and

42(n) =1—n —P inn+ M (1—n 2)/2

Since at the center dn/dx=0, we find from 0'(N) =0 the
nonlinear frequency shift

A =1—[2(N3 —1)+3P(N2 —1) —6M 1nN]/642(N) . (21)

Localized solutions are ensured5 provided that II' & 0
between the two points (say, n = 1 and n = N). Thus, near
n = N, one demands dO/dn ~„n& 0, yielding:

A &1+N2(M —/3N2 —N3)(N3+PN2 —M ) ' . (22)

On the other hand, a Taylor expansion of Eq. (20) near
n =1 yields ql = —4A(n —1)2. It follows that W & 0 for
A & 0. The small amplitude result is easily obtained by re-
taining the terms up to order (n —1)' in the potential ener-

gy +.
In summary, we have shown that finite amplitude solitary

EIC waves can exist provided that the conditions (18), (21),
(22), and A & 0 are satisfied. Since we have treated fully
nonlinear compressional Alfven-wave response to the EIC
waves, our results are valid beyond the usual description of
small amplitude solitary waves which are described by the
cubic Schrodinger equation. Strongly nonlinear EIC
waves could have important implications in relation to au-
roral particle acceleration. 7 However, the particle dynamics
in the solitary EIC waves have to be investigated in order to
demonstrate the applicability of our work to space plasmas.
This is a separate issue and is beyond the scope of this Brief
Report.

In closing, we ~ould like to point out that the presen. t in-
vestigation can readily be generalized to include more gen-
eral boundary conditions leading to periodic wave trains.
However, it is expected that the basic relations between the
Mach number, the EIC wave amplitude, and the corre-
sponding density and magnetic field changes should still
prevail.
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