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Nonlinear generation of magnetostatic fluctuations by drift waves
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It is shown that nonlinear-mode coupling of drift waves can generate magnetostatic fluctuations in an in-

homogeneous magnetized plasma. The growth rate of the parametric instability is estimated for typical

tokamak parameters.

A number of experimental observations' ' have reported
the presence of the drift waves and the magnetic fluctua-
tions in tokamak discharges. Recently, Kaw and Chen es-
timated the level of enhanced magnetostatic fluctuations
which are created by nonlinear coupling of a given level of
drift-Alfven wave turbulence. It is found that even very
weak electric fields (e@/T, —1%) of the drift waves can
drive up very high levels (~bq/Bo~ —10 ') of the magne-
tostatic mode.

In this Brief Report, we present a self-consistent investi-
gation of nonlinear coupling of drift waves with magneto-
static modes. Specifically, we show that the latter are driven
unstable because they couple back to the drift waves. This
parametric interaction was considered by Shukla, Rahman,
Yu, and Varma who ignored the density-gradient effects on
the magnetostatic modes, and retained only the electron-
polarization drift nonlinearity. Here, we incorporate the im-

portant Ex Bp nonlinearity of the drift waves which is very
essential for the enhanced-magnetostatic fluctuations in the
presence of the density gradient. "

We consider a low-P plasma and treat the drift waves
within the electrostatic approximation. Since the parallel (to
80) phase velocity of the drift waves lies between the elec-
tron and ion thermal velocities, the inertialess electrons es-
tablish an equilibrium along the external magnetic field B~.
Thus, the electron density perturbation is given by
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where n p is the average plasma density, V —= V' q,
C&=e@/T„@ is the ambipolar potential of the drift wave,
T, is the electron temperature, k= c/co~ is the collisionless
electron skin depth, vD=D'7 lnnoxz, D = cT,/eBO, and A

is the parallel (to Bo) component of the vector potential as-
-sociated with the magnetostatic mode. The second term on
the right-hand side of (1) comes from the v, q V'u„and
( —e/m, c )V, q x b q z terms, whereas the last one originates
from the u 8,u term. For 8, « 0; (0,= eBO/m~c is the
ion gyrofrequency), the perpendicular and parallel (to 80)
components of the electron velocities in the drift wave fields

are, respectively,

v, i= zx VP=Dz x P'4
Bp

ud = —8, '(8, + vD V)4 (3)

+ 8, [8,z(a W )+c,'W8,'a ]
Bp

8, [8, 'z x P'@ ~ + (1 —g P' )g

+,' X'V'A 8, '(8, + v D '7 ) 4& ]
0;
Cs

where p, =c,/0;, and c, is the ion-acoustic velocity. Note
that Eq. (5) is derived by means of the ion continuity and
momentum equations under the quasineutrality (n, = n;)
and the drift (8, « 0;) approximations. The ions are as-
sumed to be'cold, and it is noted that the magnetostatic
modes have zero-density perturbations. 6

The beating of the drift waves gives rise to the nonlin'ear
two-dimensional magnetic fluctuations which are described
by the parallel electron momentum equation

(8, +v)u + E, vD '7A = —(v, i —'7u ), (6)
me mec

where v (v ) hk, u~ —u„/qR; u„ is the electron thermal
velocity, q is the safety factor, and R is the major radius of
the torus) is the electron-ion collision frequency. The
right-hand side of (6) represents nonlinear driving term as-

where in (3) we have used n, /no= &b. The parallel velocity
of the electrons in the magnetostatic fields (E,
c 8gA b J = '7 A x z ) is given by Ampere's law

u„= (c/4mnoe )'7'A

where the ion current is neglected because j ~/jI, = m&/m, .
Nonlinear interaction of the drift waves with the magne-

tostatic modes in a nonuniform plasma is governed by5
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sociated with the drift waves.
Combining (2), (3), (4), and (6), one readily finds

(8, + v)h, z'722 —(8, + vD V)A

' zx Q4 +[8 (8,+&D 0)c], (7)eO,
where Q, =eBp/m, c is the electron gyrofrequency. Equa-
tions (5) and (7) are the coupled system describing non-
linear interaction of the drift waves with the magnetostatic
modes. Note that we have neglected temperature gradients,

I

which can lead to linear instability7 of the magnetic drift
waves.

In order to investigate the parametric instability, we now
carry out a normal-mode analysis of Eqs. (5) and (7). We
shall use the usual local approximation6 and take a constant
density gradient. In a shearless situation, the local approxi-
mation dictates that the wavelengths of the perturbations
are much shorter than the density gradient scale length and
the wave numbers of the modes do not depend on the
eigenfunction. We divide 4 into three parts: the pump 4o
and the two sidebands 4+,

4= [@pexp(i kp' x —iiupt) +cc.]+4+ exp(i k+ x —i pu+t) +4 exp(i k x —ice t)

where k+ = k+ ko and co+ =cu+cuo are the wave vector and the frequency of the drift wave satellites 4+. Assuming
A =2 exp( —i cut+i k x) and making use of (8) into (5) and (7), one obtains after Fourier transformation
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We now consider nonresonant forced magnetic fluctuations" satisfying ru « k vD, and
~
k vD/iu+i v

~
&& kq X . Hence,

in these limits, Eqs. (9) and (10) yield

icT, zxk~o kJ A — o+
1 = + i%pi

e e kzo

For the three-wave decay interaction, we can take e =0 and e+ &0. Thus, for cu « cup and kq « kqp, Eq. (11) takes
the form

pi —5cu = P (S + i U)/Q (12)

where
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The growth rate is obtained by letting iu = iu, +i y in Eq. (12). The result is
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As an illustration, we apply our result to cold-plasma toroidal devices. Near the plasma edge, we assume that the density
gradient has a constant value which is equivalent to an exponential density profile. Furthermore, we assume that the
electron-temperature gradient is much smaller than the density gradient which is supported by the experimental evidence.
For

kqp —p, ', kq —O. lkjp, k, p
—(qR) ', T, —100 eV, np=10'3 cm 3, Bp=40 kG

R —4 x 10 p, —100 cm, ~L„~ —100p, (L„'= n p 'dn p/dx )
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and C&o ——1%, the growth time (7 ') turns out to be roughly
100 msec for a hydrogen plasma.

In summary, we have given a self-consistent treatment
for the nonlinear generation of nonresonant magnetostatic
fluctuations by electrostatic drift waves. For typical
tokamak discharge parameters, the growth time is found to
be of the order of 100 ms. 'Since the latter is longer than
the plasma confinement time (generally —5 ms), it appears
that the present instability would not presumably arise in
the present day cold plasma devices which have low-level of
drift wave fluctuations. However, since the growth rate
depends quadratically on ~C 0~, a shorter growth time is ex-
pected for high-level drift-wave fluctuations (e.g. , for
40-10%, the growth time is reduced by two-orders of
magnitude), which cannot be ruled out, in reality.

In closing, we mention that the present investigation does
not account for the magnetic perturbation of the drift
waves; its inclusion merely gives rise to the coupling of the
drift wave with the Alfven wave (instead of the sound

branch). Furthermore, the coupling coefficients would con-
tain some additional nonlinear terms which are generally
neglected for low-P [ = 8' noT /Bo « L„(m, /m;)' 2/qRl
plasmas. Finally, it is worth pointing out that in the pres-
ence of the magnetic shear the modes can be localized in
the neighborhood of the k ~ B surfaces. Accordingly, our lo-
cal treatment becomes invalid because the calculations of
the parametric theory would involve an eigenvalue problem.
Equations (5) and (7) should then take a form of the
second-order differential equations in x, and our calcula-
tions have to be revised in a systematic manner. This,
however, would lead us far beyond the scope of this Brief
Report.
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