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The evolution equation accounting for effects of diffusion and recombination is transformed into a simi-
larity equation in one, two, and three dimensions. This equation does not fulfil the Painleve criterion and
thus cannot be directly classified, or its properties analyzed, in general terms of its singularities. A particu-
lar similarity solution can, however, be constructed. It allows for a description of the evolution of plasma

configurations of physical significance.

In laboratories, as well as in space, plasmas often appear
in partially- ionized forms. This is also. true for the phase of
formation of plasma in various contexts, e.g., in fusion plas-
ma devices. In such plasmas the processes of diffusion and
recombination may, simultaneously, play an important role.
As a result of the nonlinear nature of the recombination
process the combined effects of diffusion (which can also be
nonlinear) and recombination are generally difficult to
describe analytically and most efforts in this connection are
numerical. Recently, some new analytical results concern-
ing particular solutions of physical significance were ob-
tained.!"* It is the purpose of this Brief Report to look for
similarity solutions describing plasmas where diffusion and
recombination occur simultaneously.

Consider the equation
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which governs the evolution of, e.g., an electron plasma
density, and where D and « denote the diffusion and
recombination coefficients, respectively (D and o are here
considered constants).

It is convenient to renormalize space and time; according-
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Then Eq. (1) becomes
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For symmetric situations the diffusion operator is
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where y =0, 1, 2 corresponds to the dimension d(d=vy +1).
Looking for the simplest form of similarity solution we
write

n(xt)=trp(€) , )
E=x/t" , ' )

where u and v are constants to be determined and ¢ the
similarity variable.

Inserting relations (4) and (5) into Egs. (2) and (3) and
matching powers of ¢ yields

u=—1,v="7% (6)
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and, accordingly, the similarity solution (4) of Eq. (2) is of
the form

ns(x,0) =t~ 1¢(x/t1?) , @)
where ¢ (£) satisfies the ordinary differential equation
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The time translational invariance of Eqgs. (1) and (2) implies
that, given a solution of the form (7), we can generate a
class of solutions of the form

n (o) =ng(xt+10) = (t+10) " 'p(x/(t +1)V?) , (9

with ¢ arbitrary.

In spite of its apparent simplicity, Eq. (8) is by no means
a trivial one. -Although it has, as shown below, a rather
simple particular solution, the problem of finding its general
solution remains very difficult because of its nonlinearity.
A first step in analyzing the true complexity of this equation
is to check whether or not it possesses the ‘‘Painlevé prop-
erty”’ (absence of movable singularities other than simple
poles), and whether or not it can thus be reduced to one of
the fifty standard canonical forms of the theory.

Following the Ince notations [cf. Ref. 5, pp. 326-330] it is
clear that Eq. (8) belongs to the so-called case (i), and has
the form of the equation (G) with the special values
A=C=F=0, D=1, E=—1, B(&)=—(y/¢+¢/2) for
the ¢ dependent coefficients. Now, by performing a stand-
ard transformation,’ Eq. (8) can be put in the reduced form
V'=6V?*+S8(Z), where S(Z) has to be linear in Z for the
Painlevé case. It is then only a matter of straightforward
calculations to show that, for the present values of the coef-
ficients, one cannot have S(Z) linear in Z and, thus, that
the Eq. (8) is not of the Painlevé type.

Such a result is to be considered from a general point of
view of the links between the integrability of nonlinear par-
tial differential equations and the singularities of their solu-
tions as discussed in early works by Kowalevskaya,® Pain-
levé,” Gambier,® and more specifically, in connection with
the recent conjecture of Ablowitz, Ramani, and Segur’® for
systems integrable by the inverse scattering transform (IST).
If this conjecture were accepted (viz., a partial differential
equation is ‘‘integrable’” when all its reductions to ordinary
differential equations by similarity transforms are of the
Painlevé type), the result would be that the nonlinear rate
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equation (1) is not integrable in the sense of the IST
method. Another way to deal with such a connection con-
sists in using the ‘‘extended” definition of the Painlevé
property for partial differential equations recently proposed
by Weiss, Tabor, and Carnevale.!® By applying their expan-
sions near singularity manifolds and performing a leading
order analysis it can indeed be shown that a certain compati-
bility condition resulting from recursion equations is not sa-
tisfied in the case of the Eq. (1). It thus follows that Eq.
(1) does not possess this ‘‘extended’’ Painlevé property,
and that it does not seem possible to define, in this way, a
transform of the IST type, as it is for the standard Burgers,
Korteweg—de Vries, Boussinesq, etc., equations.

In spite of the difficulties encountered when considering
the general properties of Eq. (8) the particular solution of
Eq. (1) obtained by Wilhelmsson,! which includes one, two,
and three dimensions and also allows for intermediate cases

of various asymmetries, may be used here to construct a

similarity solution of Eq. (1). Guided by the Wilhelmsson
solution we here look for particular similarity solutions of
the form

a b
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where
N=p+¢& . (11)

If we insert this trial solution [Eqgs. (10) and (11)] into Eq.
(9) and equate successive powers of N ! to zero we obtain
three equations to determine the three parameters (a,b,p).

A solution where b =0 implies p =0, a =6 — 2y, and cor-
responds to ¢=(6—2y)/&% and a stationary solution for
n(xt)=(6—2y)/x2 .

Consider now the more interesting case where b # 0, for
which we obtain '

a=12(4+V6+2y) , (12)
b=—24(30+2y +10v6+2y) , (13)
p=30+2y+10V6+2y 14)

[a solution with a minus sign in front of the square roots
has been omitted since it does not correspond to realistic
physical solutions of n (x,1)].

The values here determined [(12)-(14)] for the parame-
ters (a,b,p) fully agree with the solution found in Ref. 1
and accordingly that solution corresponds to a similarity
solution of Eq. (9). The solution is of a particular kKind but
of physical significance.

*Permanent address: Laboratoire de Physique Théorique et
Mathématique, Université de Paris VII, Tour 33-43, Premiére
étage, 2 place Jussieu, F-75251, Paris Cédex 05, France.

IH. Wilhelmsson, J. Phys. (Paris) 45, 435 (1984).

2H. Wilhelmsson, Phys. Scr. 29, 469 (1984).

3H. Wilhelmsson, Phys. Scr. 29, 475 (1984).

4R. Jancel and H. Wilhelmsson, Phys. Scr. 29, 478 (1984).

SE. L. Ince, Ordinary Differential Equations (Dover, New York,

1944). -

8S. Kowalevskaya, Acta Math. 14, 81 (1890).

7P. Painlevé, Acta Math. 25, 1 (1902).

8B. Gambier, Acta Math. 33, 1 (1910).

9M. J. Ablowitz, A. Ramani, and H. Segur, J. Math. Phys. 21, 715
(1980); 21, 1006 (1980).

105, Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522
(1983).



