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Nonlinear propagation of electromagnetic waves in magnetized plasmas
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The nonlinear propagation of an electromagnetic wave along an external magnetic field in a uniform

plasma is reconsidered in order to include the combined effects of the relativistic-mass and ponder-

omotive-force nonlinearities. The results of previous works on this subject are improved significantly.

In the past, there have been several attempts' to
describe the nonlinear propagation of electromagnetic waves
in magnetized plasmas. Hasegawa introduced the reductive
perturbation method in order to derive a p8ir of nonlinear
equations governing the coupling of an electron cyclotron
wave with magnetohydrodynamic oscillations. Further work
pointing out the existence of a new time-dependent pon-
deromotive force, 4 which is of significant importance for the
dynamical study of self-modulation of electromagnetic
waves in magnetoplasmas, have later emerged. ~

Recently, powerful gyrotrons and laser beams have been
employed for heating of fusion plasmas as well as for ac-
celerating electrons to very high energies. However, when
the intensity of the electromagnetic wave is very large, non-
linear effects cannot be ignored. Berezhiani and Tskhakaya7
thus investigated the combined effects of the relativistic-
electron-mass and ponderomotive-force nonlinearities on
the propagation of finite amplitude electron cyclotron waves.
For wave frequencies close to the electron gyrofrequency,
nonlinearities associated with the relativistic mass varia-
tion " were then found to be of fundamental importance.
Unfortunately, however, Ref. 7 has omitted the contribu-
tion of the parallel electron flow5 in the derivation of the
nonlinear frequency shift which is caused by the nonlinear
interaction of the cyclotron waves with the background plas-
ma. In the present Brief Report, we will include this free
streaming term and in addition generalize the results of Ref.
7 to arbitrary electromagnetic wave frequencies. The role of
the nonlinear ion motion as well as the effects of charge
separation are also taken into account.

Let us consider a right-hand circularly polarized elec-
tromagnetic wave

X= E(x+ iy )

exp�

(ikz —i td t) + cc.
which propagates along a constant magnetic field Boz in a
plasma where any equilibrium drift velocity is zero. The
frequency ao is supposed to be much higher than the lower-
hybrid frequency and it is also assumed that ~cd

—cd„~/k
exceeds the thermal velocity of the electrons. We have here
denoted the electron gyrofrequency ~tI, ~Bo/m, by cd, where

q, is the electron charge, m, = rn, o(1 —u2/c2) 'tz is the rela-
tivistic electron mass, and u2 = q2~E P/mz(td —td„)z.

It is then well known from linear theory that the frequen-
cy eo and wave number k are related by

td = k C + tdtdpg/(td togs)

where cd~ = (noq,2/cpm, )'t2 is the electron plasma frequency.
The wave amplitude E will, however, vary slowly in space

and time due to the nonlinear interaction with low-
frequency electrostatic field-aligned perturbations. This pro-
cess can be described by the equation5

i(e,+,a, )E+ Y,'e2E —~E=o, (2a)

where tdv2= notI,z/cpm o, td = ~q )Bp/m o, N=sn, /n'o and &~
are the relative electron density and field aligned velocity
perturbations associated with the low-frequency motion.
Those quantities are related to each other by the electron
continuity equation:

N+ Qz~~=0 (3)
The low-frequency (phase velocity much smaller than the
electron thermal velocity) electrostatic modulations must, of
course, also satisfy the electron momentum equation:

(1+N) 'tl, N = — '
B,P

e

2

&z — tit i ~, (4)
td(td td&) td(td —tdz) J

where tt is the ambipolar potential, T, the electron tempera-
ture, and W= eo ~E~ /noT, . The last term in Eq. (4) is the
ponderomotive-force contribution. 4 5 The ion motion is
described by the ion continuity and momentum equations

and

a,nnt+ e, [(n,+ ant)u„] =O,

Btvu+ va8 'Uu= 8 @
g(

ml

(sa)

(sb)

On using the Poisson equation

ti,'$ = —(q,an, + qtg nt)/eo (6)

where ug = tied/6 k stands for the group velocity and
vg=tlug/tlk represents the group dispersion of the wave.
The frequency shift b, discussed for the nonrelativistic case
by Karpman and Washimi5 can easily be generalized by in-
cluding weak relativistic effects. One then finds

(

tdtdp ug
N + kueatdc td qe

2(td —td, ) kc td (td —td, ) C n?eo (td td&)

(2b)
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and eliminating Snc, vc„and ct from the system of Eqs.
(4)—(6), we then obtain our low-frequency equation:

which is valid when Q and

ug = [1—(vg'/c') (1—cdg2co, /(cd —cd, )']ug/k

B2N —c2B2(N+ N + XD282N)

C OJ

GQ M —OJ Cd CU
—69

C

(7)

have the same sign. Here, E is the soliton amplitude.
When V is close to c„all the nonlinear and dispersive

terms in Eq. (7) must be kept. In this case, Eq. (7) reduces
to

B,N+ c,NBgN+ 'X)—Bg3N

where c, = (T,/m;)'~2 is the ion sound speed and XD the
electron Debye length.

We thus have derived a system of three coupled equa-
tions, namely, (2), (3), and (7), which describe the non-
linear coupling of electron cyclotron waves with field aligned
electrostatic density perturbations. In what follows, we shall
present some conditons under which wave localization is
possible.

Let us now look for solutions in a coordinate system
moving with a velocity' V, where V is sufficiently far away
from c„and introduce the coordinate ('= z —Vt. In Eq. (7)
we then replace B, by —VBg and neglect the N and XD2Bg2N

terms. By means of Eqs. (3) and (7), we can then write Eq.
(2b) as 6 = —Q ~E ~2, where Q is defined as

1 qe vg cdg
2 2

2 m,2O kC4 (cd —co, )'
20)

(Cd Cde)

m 0 C2 kVo)1+
m, ( V' —c,') cd(cd —co,)

(8)
and then write Eq. (2a) in the form

i [B,+ (ug —V)Bg]E+ ~ugB)~E+ Q jE~2E =0 (9)

C

1 qe ugkc meo kc
c 2 2 62 meo cdecop 4mc 2 (10)

Inspecting the factor 1 —(m, o/4m, )k2c2/co2 in (10), we note
the interesting fact that the nonlinearity due to the
relativistic-electron-mass variation is more important than
the nonlinearity from the radiation pressure if
m, o/4m, ( co,/k c2. Furthermore, Q, becomes negative if
the inequality is reversed. When comparing with Ref. 7, we
note that these authors have instead studied the factor
1+ (m, o/8mc) k2c2/co2 which is always positive. The
reason' for this discrepancy is that in Ref. 7 the
kv cd, /co(cd —co, ) term in Our Eq. (2b) iS miSSing in their
paper.

Finally, we present the stationary soliton solution of Eq.
(9). It is given by

)E~ = E~ sech[E (Q/vg)'~2$]

Equation (9), together with (8), stands for the main result
of the present paper.

Berezhiani and Tskhakaya7 have previously derived an
equation for the amplitude of a transverse electron cyclotron
wave propagating along an external magnetic field. In order
to compare our Eq. (9) with their Eq. (8), we put
V= vg » c, and co —co, = —cdg2cd, /k2c2. Our expression
for Q then reduces to

kV~, B2~E~2

Cd(Cd Cde) B$

Cd Cd iEi
C (Cd Cde )

(13)

The solution of Eq. (2a) with (13) is well known. '"
Summarizing, we have incorporated the contribution of

parallel electron flow to the nonlinear frequency shift caused
by the coupling of the electron cyclotron wave with the
field-aligned electrostatic density modulations. The in-
clusion of this extra term has some important corisequences.
We have thus found that the coupling coefficient Q, can
change sign at k values equal to (m, o/4m;)'~2cd, /c, which
means that the cyclotron waves can be modulationally un-
stable. A possible final state of that instability could be a
supersonic bright solitonlike structure. In the subsonic re-
gime, the waves are modulationally stable and one may then
encounter dark solitons. ' Also considered is the case of
transonic ( V= c, ) propagation by including the ion non-
linearities and charge separation effects. We then found a
coupled set of Schrodinger —Korteweg de Vries equations
whose solution has been given elsewhere. '

It is, of course, straightforward to generalize the results
above to a plasma with equilibrium drift motion and to in-
clude three-dimensional perturbations, but the algebra will
then turn out to be considerably more complex.

The results presented in this Brief Report can have appli-
cations in many branches of physics. First, in space and as-
trophysical plasmas, the whistler modes are often of consid-
erable interest. They are described by our formalism in the
limit co, )) co. Second, our nonlinear effects should also
play an important role in studies of beat-wave particle ac-
celerators as well as for electron-cyclotron-resonance heat-
ing7 of fusion plasmas.

Thanks are due to Ming Y. Yu for useful discussions.
This work was supported by the Sonderforschungsbereich
Plasmaphysik Bochum/ Julich.

CO 1+ ' '
B W/Bg . (12)

e e

Equations (2a) and (12) are for this case the coupled set
whose solution can be found by standard techniques. 3

In addition, we ought to mention that in strongly magnet-
ized tenuous cold plasmas, nonlinear processes may occur
on the time scale of the electron plasma period. Neglecting
ions motion as well as the electron thermal pressure term,
one thus finds from (4) and (6) that the ambipolar potential
is balanced by the radiation pressure, which means that

2
U

2m,'o (co —co, ) kc'
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