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It is shown that the field emitted by a free-electron laser (FEL) in the low-gain regime exhibits anti-

bunching over a wide range, for an initial Poisson distribution of probability amplitudes. %'e also investi-

gate the variance of the momentum coordinate, and find the FEL state to be squeezed.

I. INTRODUCTION

Recently some interesting characteristics of free-electron
lasers (FEL) such as photon antibunching'z and squeezing3
have been reported. These features can only be explained
quantum mechanically. This has revived interest in
quantum-mechanical treatments of FEL as the earlier ex-
planations of FEL fail to describe them.

In this Brief Report, we investigate the photon statistics
and squeezing properties of FEL, retaining the quantum na-
ture of both the laser and wiggler fields, whereas in some
earlier works, ' the wiggler has been approximated to a clas-
sical field. We work in the low-gain, weak beam, single-
particle approach, in the Bambini-Renieri frame. We as-
sume an initial Poisson distribution of probability ampli-
tudes for the FEL state and study the time evolution of this
state using perturbation theory. The FEL state evolves
from the vacuum state by spontaneous emission buildup
into the laser mode. During this buildup we investigate an-
tibunching and squeezing under conditions discussed in
Secs. III and IV.

II. FEL STATE AND ITS PERTURBATION

We start from a state with electron energy pp /(2m) and
with laser and wiggler photon numbers nL and n~, respec-
tively. The most general state at any time t (Ref. 5) can be

I

given by the superposition
1

lQ) = eXp i +oinL+oinW t
p

2mb
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x X c&lpp+2liik, nL —l, nw+1)
1 nL

(2.1)

Momentum and photon number conservation enable the
state to be labeled by index I only. They are

(2.2b)

The FEL.Hamiltonian in the Bambini-Renieri frame is

H = HF + Hg + H;„, (2.4)

where

HF limni(&L&L+ &W&W) HA
p
2m

and

H,„,=&A(re'rtwe "k'+ oL~we"~-) .

Here,

A = e /(2moiep Vw)

is the coupling constant. Now

p+tk(nL —nw) =const
Ap
2hk

In Eq. (2.1), ct's are unknown coefficients. The equation
of motion for the cI's may be obtained from Schrodinger's
equation,

Hlp) =iii lQ)—
Qt

(2.3)

and

HFle) =&~(nL+nw) exp 1 +~nL+conw t g c~lpp+2lfk, nL —l, nw+1)pf
2mk . L nL

(2.5a)

w (pp+2ltk)2
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I n 2m 2mb
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—nW

H~„, lili) = tA exp i + ainL+ runw t exp( —2ikz) g ctlpp+ 2lli k nL —1+ 1, nw+1 —1) [(nL —1+1)(nw+1) ] 1p$ ~ 1/2

2mB nL
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+ exp(2ikz) g cilpp+ 2ltk, nL —1 —1,nw+1+ 1) [(nL —1) (nw+ 1+ 1)]'
I nL

(2.5c)
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and

itr —It!() = ih i + p(nt. +ptnw X c(Ip p+2lhk, nt, —i, nw+ i)8 . . M
9 t 2mb

, l nL
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+ X c(lpp+2lttk, nt. —l, nw+ i) exp i +0(nt +0(nw t
Po

l nL
2mb

(2.5d)

(3.1)
ic(= ( Apl+ el') c(+ A[ c(+([(nt, l) (nw—+ I+ I) ]'t'

where In) is the number state of the laser field. Knowing
the c('s from Eq. (2.11) we can obtain an expression for the
photon statistics.

+ c( ([(nt. —3+1)(nw+ i)]' ~j

(2.6)

I

Comparing coefficients on both sides of Eq. (2.3), we get It is
the equation of motion as

where

2kpp
0

m
(2.7a)

p(n) = Ic(I = Ic„„I since nt. —i= n

The first-order probabilities are

(3.2)

and

(2t k)'
2m

(2.7b)

It is not possible to solve this equation exactly. We use
perturbation theory to solve for the cl's. We assume that
the zeroth-order values of the probability amplitudes cl have
a Poissonian distribution. This in effect is starting from a
coherent state of the FEL. We take

(, ) ~ 4I&I'sin'[(~gi+~P)t/2]
( wpi + e l~) ~

(3.3)

and

(n) = Xnp(n) =nt —X iIc("'I',
(-nL

(3.4)

To investigate bunching properties, we calculate the first
and second-order moments of the photon number:

r r g/2

Cl
(0) e xgl

I!

The equation of motion (2.6) now becomes

ic, ' =Ac, ' +B
where

A = 8'pl+f12

(2.8)

(2.9)

(2.10a)

l nL nL

Bunching is determined by the parameter7

b = (n') —(n)'- (n)

(n') =Xn'p(n)
0

nW

= X i'Ic("'I'+nt'. 2n, X iIc,"—'I' . (3.5)

(3.6)

and

t i/2e-a~I+1
(i+ 1)! [(nL, —l)(nw+ l+ I) ]'t~

Photons are bunched when 6 is positive and antibunched
when b is negative. For the FEL, in our case,

[(nt. —i+ 1)(nw+ i) ]'t . (2.10b)

Integrating (2.9) we get

c (t) — (e —lAt I ) (2.11)

III. PHOTON STATISTICS

The probability p(n) of having n photons in the FEL
state Itft) [Eq. (2.1)], gives the photon statistics of the FEL.

This gives us an expression for the first-order probability
amplitudes cl

' as a function of time.

Analytic determination of the moments does not appear
possible. We have evaluated the moments numerically on a
computer and obtained 6 for a range of values of the
wiggler and laser photon numbers, the parameter A. of the
Poisson statistics of the coefficients c((p), and time (see
Table I). Some of the experimental parameters for our nu-
merical evaluation were taken from data reported in Ref. 8
(see appendix).

Under these conditions, we find that when we start from
the vacuum state (nL =0), the photon statistics depend
strongly on the parameter of the Poisson statistics P and on
the wiggler field strengths (nw) as shown in the table.
When A. is either very small (X —1) or quite large
()(.—100) antibunching occurs irrespective of wiggler field
strengths. In the region around (A. —10), the photons are
antibunched when the wiggler field is weak (nw small) and
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TABLE I. The table depicts the values for 5—the bunching parameter and (hp)z —the values for the

squeezing variable. 5 —ve indicates antibunching while 5+ve indicates bunching. (Kp)2( —,X1.6X10-'4
indicates squeezing.

Time
nL =0

10

10

10

10

100

10

100

10
100

10000

10
100

10000

10
100

10000

10
100

10000

10
100

10000

10
100

10000

—0.9822
—0.9781
—0.9777

—0.9811
—0.9767
—0.9763

—0.9664
—0.9609
—0.9604

—0.3966
+0.9875
+0.1348

—0.2014
+0.6988
+0.7599

—0.6262
+0.8892
+0.9499

0.1407
0.1410
0.1411

0;1414
0.1418
0.1418

0.1543
0.1556
0.1557

0.1690
0.1815
0.1825

0.1767
0.1970
0.1984

0.2169
0.2423
0.2442

bunched when the wiggler field strength increases (nn
large). When we start from a state where nr. & 0, we predict
antibunching will always occur. These results are valid for
both short times and long times.

Becker and Zubairy' calculate photon statistics using an
electron field number state assuming the wiggler to be clas-
sical. Starting from the field vacuum, they predict bunching
or antibunching to occur depending upon whether the elec-
tron momentum is p ) 0 or p (0 in the moving frame.
Our results do not depend on whether the electron velocity
is greater or less than the velocity of the Bambini-Renieri
frame since in our expressions this parameter appears much
less significant compared to the other summed variables.
Sibilia et aI. , predict that antibunching will occur at short
times and it will depend on the initial phase between the
laser and wiggler fields. There is no dependence on electron
momentum since they eliminate the electron variable and
consider the radiation field to be in a combined laser and
wiggler coherent state. Our results differ from those of the
Refs. 1 and 2 due to differences in our assumptions and ini-
tial conditions. We take a generalized, fully quantum elec-
tron, laser, wiggler state but consider a model where the
zeroth-order probability amplitudes for the state are Pois-
sonian, i.e., initially we start from a coherent state. Using
conservation laws, the state is labeled by one index I only,
which gives the change in photon number. Thus in calcu-
lating the variance of the photon number, the initial phase
difference between the laser and wiggler fields does not
arise as a parameter.

aW aB~g ~2,
where

gg = [(gz) —(g)2]t~2

A state is squeezed if

(4.1)

(AA)2 or (hB)'&—
2

(4.2)

We have studied the squeezing properties of the states de-
fined in Eq. (2.1) with the coefficients defined in Eq. (2.11)
starting from the coherent state defined in Eq. (2.8). The
expectation values of the electron coordinate x and momen-
tum p are determined as follows:

—N~

(x&=(ylxlq&= X [c,l'(IIx]1&,
I nL

where

( I) = ~pc+ 2' k, nL I, ns +I)—
(4.3)

(4.4)

(x ) = X (c/) (t]x )l) (4.5)

its symmetrical quantum limit at the expense of the other
conjugate one so that the uncertainty relation is not violat-
ed.

The uncertainty relation for two conjugate variables A and
8 states

IV. SQUEEZING

Squeezing is purely a quantum-mechanical phenomenon
in which the fluctuations of one variable is reduced below

I nL

Similarly, for p,
—5yr

(4.6)
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where

p I/) = (pa+ 2/t k) I/&

Therefore
—nW

(p) = X IciI2(pc+2/tk)

=p, +2tk X /Ic, I',

(P ) = Pf +2tkpc X /Icil +4t k X / Ic/I
I I

So the variance is

(4.7)

(4.&)

(4.9)

Our results indicate that the FEL state is squeezed in the
momentum coordinate p, for the values considered.

APPENDIX

These values have been calculated using experimental
data of Ref. 8. The following constants are in SI units.

2

A = = 1.108 10
2m&~p Vw

A. is the parameter of Poisson statistics; range 1, 10, 100. n~

is the number of initial laser photons; range 0, 10, 100. nw
is the number of wiggler photons; range 1, 10, 100, 1000,
10000. t is time; range 1, 10, 100.

r

= 4tk2 X /2IcII g—/IcII —2tkpc X /I cII'

(4.10)

We have calculated the variance (b,p)2 numerically for
the range of values of parameters given in the appendix.

8'o —— ——0.1305x 10-6 —0.1305x 102kpp

m

= 0.1347x 105
2l'k2

m

po=8.5584x10 25

Computer program available on request.
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