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Solution of Bloch equations involving amplitude and frequency modulations
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The undamped Bloch equations are shown to have a'more general analytic solution which includes the
famous self-induced-transparency solution of McCall and Hahn, and the nonadiabatic excitation solution of
Allen and Eberly as special cases. A generalized area characteristic for a laser pulse of modulated ampli-

tude and frequency of the forms of hyperbolic secant and tangent is given. It resolves the difficulty of the

previous area concept in the presence of frequency modulation. The solution provides an exact analytic

result for the amplitude- and frequency-modulated pulse of any area.

The Bloch equations' for magnetic resonance and optical
resonance problems are

Io
v = —B

IIwI 0

B 0 'u

0 A v

—A 0],w.

where, in the optical resonance problems, u and v are the
components of the atomic dipole moment in phase and in
quadrature with the incident laser field, and w is the popula-
tion inversion for the atom. The matrix elements A and B
have the dimension of angular frequency and are related to
the generally time-dependent amplitude and detuning of the
incident laser pulse by

A =K g'(z, r) —= Q(z, r), (2a)

and

8 = cga 0 cd (z, r) = 6 (z, r) (2b)

=2= K I' (z, t) = —sech[ (t —to)/r ] (3a)

where 8'(z, t) and co(zt) a, re the amplitude and frequency
of the incident laser pulse, coo the frequency difference
between the two levels of the atom, and x =2d/t, d being
the atomic dipole moment.

A beautiful solution of Eq. (1) for the case of constant
detuning 6 is the famous hyperbolic secant pulse of McCall
and Hahn:

nonadiabatic excitation solution of Allen and Eberly:

= K 8' (z, t) = —( 1 + 5'r') ' ' sech[ ( t —to)/r ]
7'

8 = A(z, r) = —g tanh[(r —ro)/r ]

(5a)

(sb)

where 25 is the magnitude of the frequency sweep. Starting
with an atom initially in the lower state (at t = —~), the
pulse completely inverts the atom and leaves it in the upper
state at t = +~. If the frequency modulation is zero, then
g becomes a standard m pulse and it would naturally be ex-
pected to invert an atom. On the other hand, if the fre-
quency modulation is substantial enough so that, for exam-
ple, 5 ~ = 3, then we have a 2m pulse which again inverts
the atoms, and does not return them to their ground states.
Clearly in the presence of frequency modulation, the identi-
fication of the pulse area to dipole turning angle is no longer
true. The appropriate characterization of pulse area has
never been made in that case.

We present, in this Brief Report, a more general analytic
solution of the Bloch Eqs. (1) which includes the solution of
McCall and Hahn [Eq. (3)] and the solution of Allen and
Eberly [Eq. (5)] as special cases. We shall introduce a char-
acterization of pulse area and show that the pulses given by
Eqs. (3) and (5) correspond to the special cases of 27r and
n pulses, respectively. Our solution provides an exact ana-
lytic result for a specific type of amplitude- and frequency-
modulated pulse of any area.

We shall derive our solution of Eq. (1) through solving
the following set of equations:

8 =b, (z, r) =5, (3b) r

CI —,
'

Iwe

where ~ is an arbitrary pulse length. The important concept
of the envelope area of the pulse was also introduced by
McCall and Hahn as

(6)~ I ~

C2 —ice'
I

2

~t
A (z, r) = ~ J 8'(z, r') dh',

u =e ' C] C2+e' C2Cl

v= —i (e ' C)'C2 —e' C2Ct)

w = C] C) C2 C2 I CI I' —
I C21

(7a)
which is also identified as the dipole turning angle. The
area A (z, ~) of the pulse (3a) is 22r, and it is this special
2m- property which makes the pulse stable. As the pulse
propagates through the atomic medium, it excites but re-
turns the atoms to their initial state as it emerges from the
medium completely unattenuated. McCall and Hahn named
the phenomenon "self-induced transparency. "

An interestingly related solution of Eq. (1) for the case
involving both amplitude and frequency modulations is the

(7b)

(7c)

When the solutions of ICOSI and IC2I are determined from
Eq. (6), w can be determined from Eq. (7c), and v and u

from Eq. (1) as

v = —w/A

It can be verified that given Eq. (6), Eq. (I) follows if u, u,
w are related to Cl and C2 by

(4)
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and

u = ( —~+Aw)/B (9)

The steps (7c), (8), and (9) make the determination of the
phases of Cq and c2 unnecessary for our solution of Eq.
(I).

Equations (6) are an extension of the set of equations
studied by Rosen and Zener in connection with the double
Stern-Gerlach experiment in which they had B =cut. We
shall follow the method used by them, but our extension of
B to the form which we shall specify is crucial in incorporat-
ing the frequency modulation in Eq. (1).

Elimination of Cz from Eq. (6) leads to the second-order
differential equation

and similarly, we find

C2=e F(a', b', c',z) (20)

where @2 is another arbitrary phase factor, and we note that

IC, I'+ IC,I'=I . (21)

By using the relations

F( b I) I (c)I (c —a —b)
I (c —a) I'(c —b)

(22)

where @t is an arbitrary (real) phase factor. Thus, we find

C&= e ' z' 'F(a +1—c,b+1 —c, 2 —c,z), (19)
2~le I

~ ~

~ ~ AC)+ iB ——. C(+
AI

We now make the choice

Ci=oA

2

and

r(.)r(-.) =
z sinmz

(23)

A=

B=

sech[(t —to)/r ]

1
(pp+ p tanh[(t —to)/r ]j (12)

we find

ICt(+ ~) I'= sech[ 2 (po+ p) ] sech[~ (po —p) ]

x [sin ( z 4) cosh ( z P)

where n, po, p are arbitrary constants which may be con-
sidered to have the dimension of angles in radians for our
problem, and v is an arbitrary pulse length. These func-
tions, (11) and (12), together with the transformation

and

+ cosz( z 4 ) sinh (~P) ]

I C,(+ ) I'=I —
I c,(+-)I',

(24)

(25)

z = ~ [1 + tanh[(t to)/r ]] (13)
where

( 2 p2) 1/2 (26)

reduce Eq. (10) to the hypergeometric equation

d C1 dCiz(1 —z) ~ + [c —(a+b+1)z] —abCt=0
dz2 dz

where

a = [(n' —p') '/'+ /p]1
2%.

[-( '-p')"'+/pl,
277

(14)

(15a)

(15b)

turns out to be an important parameter which we can use to
characterize the "area" of the pulse given by Eqs. (11) and
(12) under various conditions which we shall discuss.

Equations (24) and (25) give us the fraction of electron
population inversion for the atoms at t = + ~ of Eq. (1) to
be

w(+ ~) = 2 sech[ z (Pp+P) ] sech[ —,(Po —P) ]

x [sin ( z 4&) cosh ( z p)

1 . Po+P
c = —1+i

2 7T
(15c)

Ct ——a~F(a, b, cz)+azz' 'F(a+1 —c,b+1 —c, 2 —cz)
(16)

As t goes from —~ to ~, z goes from 0 to 1. The general
solution of Eq. (14), which is defined in this range, is

+ cos ( —,
' 4) sinhz(~P) ] —1 (27)

when the atoms, starting with w ( —~) = —1, are subjected
to an incident laser pulse which has a modulated amplitude
and frequency given by Eqs. (11) and (12). The special
cases discussed below when one or both of the parameters
pp and p equals zero give us further insight into the nature
and wide applicability of the solution which we have ob-
tained.

Consider the boundary conditions

Cg( —~)=0,
IC,(- ) I

= I,
(17a)

(17b)

Special cases

0) The case P = 0. We have from Eqs. (26) and (27),

(28)

so that w( —~) = —1 in Eq. (1). To satisfy the boundary
condition (17a), we must set aq= 0. Using the first of Eq.
(6), we find that the boundary condition (17b) is satisfied
when

and

w (+~ ) = 2 sin2( 2 4) sech ( 2 po) —1 (29)

(18) 4=2nm, n =1,2, 3, . . . (30)
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which yields
I

2)gp/& t —t p
sech1+pg~2

(32a)

then the atoms are always returned to their initial state.
The self-induced-transparency solution of McCall and Hahn
corresponds to the particular case of Eq. (30) when n = 1 for
which a simple analytic solution of C~ is available for all t:

i$] 1 (1/2) (1+IPp/m) (1/2) (1—iP p/w )

( I + pg2 2) 1/2

C2 ——e F(a, —(2, z,z)
'42

(39)

no matter what 8 is. Our Eqs. (34) and (35) express a more
general result not previously stated, that a pulse with
ip= (2n —1) n in the case pp=0 always inverts the atoms
completely, but that a pulse with 4=2nm does not always
return an atom to its initial state except when p = 0.

g) The case Pp=)8=0. This case is of separate interest
because the atomic evolutions can be expressed in terms of
elementary functions for all t for an incident pulse of modu-
lated amplitude of any area.

From Eq. (20),

2 t —to t —tp
v=, , sech tanh1+p2 vr2

2 t —tp
w = —1+, , sech'

1+Po/2r'

(32b)

(32c)

where
C1a=

2n-

Since

F (a, —a, ~, sin2x ) = cos(2ax)

(40)

(41)

and

( 2 p2) 1/2 (33)

Equations (32) can be written in the more familiar forms
when we identify /3p/vr to be hr from Eqs. (12) and (3b).

That a pulse with 4 = 2n m always returned the atoms to
their initial state was conjectured and numerically confirmed
by McCall and Hahn. Equation (29), derived much earlier
by Rosen and Zener, was in fact a more precise statement
of that effect.

It will be noted that a pulse with d) = (2n —1)vr,

n =1,2, . . . does not completely invert the atoms to their
upper states except when Pp= 0.

(2) The case Pp=0. We have from Eqs. (26) and (27)

we find

~
C1~'= sin'( —,

' a 8)

I C2I'= cos'( —,
' a ())

where

sin —= sech[(t —tp)/r]0
2

cos—= —tanh[(t —tp)/7 ]
8
2

Thus, we have

(42a)

(42b)

(43a)

(43b)

w(+~) =1—2cos'( —,'C ) sech'( —,'P) (34) Q=0 (44a)

qI=(2n —1)2r, n=1, 2, 3, . . . (35) v = —sin 0
2m

(44b)

then the atoms are always fully excited to their upper states.
The nonadiabatic excitation solution of Allen and Eberly
corresponds to the particular case of Eq. (35) when n =1
for which again simple analytic expressions of C~ and C2 are
available for all t:

w = —cos 00!
2m

(44c)

where 8 can be verified to be related to A of Eq. (11) by

—pi-~=e z

C2 —e 2(1 z) (1/2)(1+/P/1r)

which yield
i I

/3 t —tp
u = —sech

A

t —tp
v = ——sech

A 'r

w = tanh

(36a)

(36b)

(37a)

(37b)

(37c)

g
2'

CX

(45)

Equations (44), together with Eqs. (43), express the
atomic evolutions when the atoms are subjected to an in-
cident resonant pulse given by Eq. (11) of any area n A.
(2n —l)2r pulse always fully inverts the atoms and a 2n2r
pulse always returns the atoms to their initial state. The
atomic evolutions when n is an integral multiple of m can
be written down more explicitly by using the multiple angle
expansions of the relevant trigonometric functions. In par-
ticular,

(a) n=2r

It will be noted that in the presence of modulated-detun-
ing, the area of the pulse is no longer characterized by n but
by iI) = (n2 —P2)'/, and that for the pulse considered by Al-
len and Eberly [Eqs. (5)] n=2r(1+5 r )', p=2r57 from
Eqs. (11), (12), and (5), and hence

v = —sech[(t —tp)/r]

w = tanh[(t —tp)/r]

(b) n=22r

v = 2 sech[(t tp)/v'] tanh[(t —tp)/r]

(46)

(47)

( 2 p2) 1/2 [ 2(1 + g2 2) 252 2]1/2 (3g) w = —1+2sech'[(t —tp)/r)]
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(c) a=3m

u = —3 sech[(t —tp)/r ] + 4 sech'[(t —t p)/r )

w = —3 tanh[(t —tp)/r ] +4 tanh [(t tp)/ r]

(48)

v = 8 tanh'[(t —tp)/r ] sech[(t —tp)/r ]

—4tanh[(t —tp)/r] sech[(t tp)/r]

w = —1+8 tanh2[(t —t p)/r ] sech [(t —tp)/r ]

(49)

etc.
To summarize, we have found the population inversion of

electrons in atoms [Eq. (27)] when subjected to an incident
laser field involving both amplitude and frequency modula-
tion of the forms given by Eqs. (11) and (12). The special
results, Eqs. (29) and (34) for the cases when one of the

parameters P and Pp equals zero, suggest the usefulness of
the parameter 4 [Eq. (26)] for characterizing the pulse area,
which also unified the self-induced-transparency solution of
McCall and Hahn and the nonadiabatic excitation solution
of Allen and Eberly which are shown to be two special cases
(@=2m and m, respectively) of our special solutions. Ex-
plicit expressions for the atomic evolutions at all times, Eqs.
(44) and (43) for the case P = Pp= 0, are also presented.

Our results are immediately applicable to the multiple sol-
iton and multilevel excitation problems recently studied
where specific dynamic symmetries were shown to produce
dynamical subspaces of the form of Eq. (1).
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