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Spatial and temporal structure in systems of coupled nonlinear oscillators

Irene &aller and Raymond Kapral
Department of Chemistry, Uniuersity of Toronto, Toronto, Ontario, Canada M5SIAI

{Received 4 June 1984)

The spatial and temporal bifurcations of a ring of coupled, discrete-time, nonlinear oscillators are
studied. The model displays many of the phenomena observed in diffusively coupled, nonlinear,
chemical oscillators which can possess complex dynamics when isolated. The low-order bifurcation
diagram of the discrete-time model may be computed analytically and shows how in-phase and out-
of-phase solutions arise and undergo further bifurcations to quasiperiodic or chaotic states. Spatial
bifurcations (pattern formation) accompany the temporal bifurcations and the results indicate how
some of these processes occur. The phase diagram possesses self-similar scaling features associated
with the higher-order periodic states. The model should prove useful in identifying the analogous
phenomena in physical systems.

I. INTRODUCTION

Spatial and temporal pattern formation is commonly
found in nature, most obviously in biological systems
where coupling among autonomous oscillators can lead to
self-organizing structures and rhythms, but examples also
abound in other fields. Turing's well-known study' on the
chemical basis of morphogenesis showed how symmetry-
breaking bifurcations in reaction-diffusion equations may
lead to spatial organization and a rather extensive litera-
ture now exists on the study of nonlinear reaction-
diffusion systems. ' Nonlinear chemical oscillators can
exist in a wide variety of temporal states even when "well
stirred" so that diffusion plays no role: In addition to
complex periodic solutions, chaotic states have also been
observed and a number of specific routes to chaos have
been identified.

While spatial structure development in reaction-
diffusion systems is typically described by partial dif-
ferential equations, the same phenomena are exhibited by
coupled arrays of well-stirred oscillators. Such systems
have been studied experimentally and may be modeled by
sets of ordinary differential equations. The interplay be-
tween spatial and temporal bifurcations may be more easi-
ly studied for these cellular models since the bifurcation
parameters which specify the temporal states of the indi-
vidual homogeneous oscillators and the coupling among
the oscillators may be controlled. A number of studies of
this type have revealed interesting phenomena, for in-
stance, simple and complex synchronizations among the
oscillators, period doubling and quasiperiodicity even
when the individual oscillators are only capable of limit-
cycle behavior, and multistability among diverse attract-
ing states.

%'e investigate such phenomena through the study of
an even simpler model: an array of coupled discrete-time
oscillators. More specifically our model consists of a ring
of identical quadratic maps with general form
x,+i ——Ax, (l —x, ), each oscillator being linearly coupled
to its nearest neighbors. As A, varies, the map develops a
complicated but structured temporal behavior. Hence, by

varying A, and the coupling parameter we may study how
sets of coupled, complex, nonlinear oscillators behave.
Even two such coupled oscillators have a rich bifurcation
diagram. '0 '

The model studied here may be considered to be a one-
dimensional cellular automaton with an infinite number
of possible states. ' Much simpler two-state cellular auto-
mata display complex behavior, and multistate, two-
dimensional automata have been used to model pattern
formation in the Belousov-Zhabotinsky reaction. ' While
the model differs in a number of fundamental ways from
coupled, continuous-time oscillators (these will be dis-
cussed below), it does exhibit many of the phenomena ob-
served in real systems.

The model is described in detail in Sec. II arid its low-
order bifurcation structure is computed analytically. The
results show how a number of spatial and temporal bifur-
cations occur in coupled oscillator systems displaced far
from equilibrium and the nature of the multistability
among different spatio-temporal states of the system.
Calculations of the higher-order subharmonic bifurcations
are also presented and the self-similar scaling nature of
the phase diagram is discussed. The higher-order period-
ic, quasiperiodic, and chaotic states are studied in Sec. III.
Such states may also exhibit spatial patterns and their
character and structure in various regions of the bifurca-
tion parameter plane are investigated. The results are dis-
cussed further in Sec. IV.

II. RINGS OF COUPLED MAPS

Consider a set of N, identical, nearest-neighbor-
coupled, quadratic maps with periodic boundary condi-
tions: a ring of quadratic maps. The discrete-time evolu-
tion of this system is governed by the equation

x(m, t+1}=M(m, t}[1—x(m, t)]

+y[x (m + 1,t) —2x (m, t)+x (m —1,t)],
(2.1)
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where the index m H I 1, . . . , N I specifies the position on
the ring and x (1,t) =x (N+ l, t) as a consequence of the
periodic boundary condition. Letting x denote an X-
dimensional vector, the map may be written compactly as

x(t+1)=F(x(t);A,,y), where F is a vector-valued func-
tion defined by the right-hand side (rhs) of Eq. (2.1).

As A, varies on [0,4],' an isolated quadratic map under-
goes a complex sequence of bifurcations, which have been
well documented. ' The form of the coupling, whose
strength is gauged by y, clearly mimics that of diffusively
coupled continuous-time oscillators, but the analogy is not
perfect. '

Translational symmetry on the ring can be used to
characterize the solutions: Attractors must possess the
symmetry of the ring or exist in sets which have this sym-
metry; the dimension of such sets is a function of N and
the bifurcation parameters. Complex multistability is also
possible.

The analysis of the bifurcation structure of the ring of
maps is conveniently carried out by Fourier transforming
with respect to the position on the ring. (The analysis is
similar to Turing's. ) We define the Fourier transform as

N

g (t) y e 2mimj /Nx—
(m r)J (2.2)

and Eq. (2.1) takes the form

(t+1)=[A,—4.@sin (irj/N)]gj(t) A. g —gk(t)g k(t) .

(2.3)

The mode-coupling term arises from the nonlinear charac-
ter of the oscillator.

A. Period-1 bifurcations

Two of the period-1 fixed points of the coupled-map

system, x ' =F(x ', A, ,y), are identical to those of an iso-
lated map since the coupling term vanishes for such
states. These fixed points are x*(m) =x*=0 and
x*(m)=x*=1—1/A, and their stability may be deter-
mined from the analysis of the linearized forms of Eqs.
(2.1) or (2.3). (The other possible period-1 fixed points are
unstable and will not be considered further. ) Letting
x(m, t) =x*+5X(m, t) and 5$~(t) be the transform
5x(m, t), we obtain

These equations specify a family of lines in the (A, ,y)
plane that depend on the values ofj and N.

The bifurcation boundaries of the period-1 fixed points
are determined by the 0~- or 1J

—lines first crossed, corre-
sponding to marginal stability of a particular wavelength
mode on the ring, all remaining modes being stable. The
wavelength of a mode with index j is N/j. In the present
case the boundaries are determined by modes with two
wavelengths. In-phase-type bifurcations are determined
by the extreme long-wavelength mode with j =0. For the
x =0 fixed point this type of instability occurs at the y-
independent boundaries A, =+1, while for x*=1—1/A,
the boundaries are A, =1,3. These values of A, are identical
to the bifurcation points of an isolated map since the cou-
pling term vanishes for all in-phase solutions.

The remaining period-1 boundaries are determined by
the extreme short-wavelength modes. Here we must dis-

'

tinguish between even and odd values of N. For N even'
the marginally stable mode is j=N/2 and the boundaries
are A, =+1+4y for x =0 and A, =(2+1)—4y for
x*=1—I/A, . This mode, with wavelength equal to 2,
corresponds to a strictly alternating pattern on the ring,
every other oscillator being equivalent. These boundaries
(along with others to.be discussed subsequently) are shown
in Fig. 1. Thus, for N even the period-1 boundaries are
independent of N. On the other hand, when N is odd the
relevant modes have j=(N+1)/2 yielding the boundary
equations

A, =+1+4@sin [(N+ l)ir/2N] for x =0

A, =(2+1)—4y sin [(¹1)m/2N] for x*=1 —1/A,

which now clearly depend on N since the strictly alternat-
ing mode is not compatible with the odd number of oscil-
lators. on the ring. There are (N+ 1)/2 inequivalent oscil-
lators for odd N. Of course, as N~ ao, the odd-N boun-
daries approach those for even N (see Fig. 1).

The above analysis provides the boundaries of the two
parallelogram-shaped regions in Fig. 1 within which the
two period-1 fixed points are stable. We next consider the
nature of the subsequent bifurcations in this system. The
analysis will only be carried out for the even-N case al-

3.0

g' ( t) = [i)' —4y sin (ir j/N) ]'5g~ (0), (2.4)

where i)*=A,(1—2x*). The condition for marginal stabili-
ty of a particular Fourier component is

XIo—

i)*—4ysin (mj/N)=+1, j=0, . . . , N —1. (2.5)
n) &r4

For the fixed point at the origin, 7) =A, and the bifurca-
tion boundaries may be determined from -I.O

—I.O I.O

OJ
—. A, =+1+4@sin (irj/N), (2.6)

1J . A, =(2+1)—4y sin (i'/N) . (2.7)

while for the fixed point at x*= 1 —1/A, we have
'g =2—A, and

FIG. 1. Period-1 boundaries: the lower region, labeled 0,
refers to the fixed point at the origin, x (m) =0, while 1 refers
to the nontrivial fixed point x (m) = 1 —1/A. . The region of sta-
bility for N (even) & 4 is scored.
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though we shall discuss some features of the odd-N re-
sults. The fixed point x*=1 —1/A, is unstable for 1,& 3

and, as discussed above, the instability occurs through the

j=0 infinite-wavelength mode. This corresponds to bi-
furcation to an in-phase period-2 orbit. The region of sta-
bility of this orbit may be studied by a simple extension of
the previously given analysis.

+y'[5x(m +2,r)+5x (m —2,r)], (2.9)

B. In-phase, period-2 bifurcations

The in-phase, period-2 fixed points are identical to
those of an isolated map:

x) (m)=x(
=(2A, ) 'IA, +1+[(A,—3)(A, +1)]'~ I; (2.8)

xz(m)=xz

every oscillator on the ring is identical to its neighbor, the
fixed-point values alternating between x( and xq on suc-
cessive iterates of the map. Since each oscillator is in-
dependent of its neighbor, the system behaves like N in-
dependent period-2 oscillators set in phase to "fire" syn-
chronously. While the nature of this state is independent
of the coupling y, its stability does depend on y as for the
period-1 states. The stability of the state may be investi-
gated by considering the second power of Eq. (2.1),
x(t +2)=F(F(t) ), linearized about the in-phase, period-2
fixed points. Letting x(m, t)=x) q+5x(m, t) we have

5x(m, t +2)= A 5x(m, t)+B[5x(m +1,t)+5x(m —l, t)]

These j-dependent lines are shown in Fig. 2 for N =4 and
in Fig. 3 for N =6. The region of stable in-phase period-
2 is labeled and its boundaries are indicated as heavy solid
lines while the extensions of these lines outside the boun-
dary region are dashed.

The 21 (I) lines determine the subharmonic bifurcation
boundaries to period-4 orbits, both in phase and out of
phase. The 20 (I) line is simply A, = 1+v 6 and since it
corresponds to marginal stability of the infinite-
wavelength mode, it signals bifurcation to an in-phase,
period-4 orbit. While 20 (I) determines the bifurcation to
period-4 for positive y, for y(0 the family of lines

2~ (I)(j& 0) yield bifurcation boundaries for out-of-phase,
period-4 orbits, boundaries with decreasing j values deter-

mining the bifurcation process for larger negative values

of y (see Figs. 2 and 3). The spatial patterns correspond-
ing to the different marginally stable modes for N =4 are
shown in Fig. 4. When y(0 the j=N/2 mode with
wavelength equal to 2 governs the bifurcation process; this
gives rise to a period-4 orbit with a strictly alternating
spatial pattern (Fig. 4). For somewhat more negative
values of y the 2) 3(I) curves form the bifurcation boun-
daries. The wavelength of the mode is 4 and several types
of patterns are possible; these are shown in Fig. 4. In pat-
tern (a) alternate oscillators on the ring have periods of 4

t.7
~8

With

A =A, (1—2x i )(1—2xq )—4Ay(1 —xi —xq )+6y (2.10)

B=2k,y(1 —x
&
—x q ) —4y (2.11)

—A, +2k, +4+Sy sin (~j/N)[2y sin (vrj /N)+ 1]=+1,
(2.13)

Fourier transformation of Eq. (2.9) yields the time evolu-
tion of the ring collective modes for every other iterate of
the map:

g'J(2t) = [2 +2Bcos(2~j /N)+2y cos(4' /N)] '5'(0) .

(2.12)

Again lines in the (A, ,y) plane may be calculated from the
condition of marginal stability of modes with index j. We
obtain

5.0—

4.0—

3.0—

2.0—

l.o

.4
—.2

2i(0)

~2o(0)
i~

I

2~ (I)
C, =2+,(0)~

'/ i 2~(&)

2I /

zj(I)/

20(O)
r ~ g ~2i(I)

——~ —2 (I)

&o

where the explicit fixed-point values have been used in the
prefactor of 5('(0). The lines corresponding to +1 are

-0.5 0 0.5

and

21+(I): A, = 1+ I4+ Sy sin (mj/N)

X [2y sin (m j/N)+ 1]]' (2.15)

2J (I): A, =1+[6+Sy sin (n j/N)[2y sin (vrj /N)+1]J'i

(2.14)

FICs. 2. Phase diagram for X =4 showing the period-1, -2,
and -4 states. The notation for the various lines is discussed in
the text. The region 2 denotes in-phase, period 2 while the
scored region denotes out-of-phase, period 2. The in-phase,
period-4, and period-8 regions are shown in the inset with the
vertical scale magnified by two in order to make their structure
clearer; each in-phase 2"+' region is a scaled-down mirror image
of the 2" region below it.
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which are the analogs of the tangent boundaries in one-
dimensional maps. The j=X/2 mode determines this
boundary: to the left of the boundary escape occurs, while
to the right the in-phase, period-2 orbit loses its stability
but other finite attractors exist in this region.

It is not difficult to generalize this procedure to calcu-
late the boundaries for the in-phase orbits with arbitrary
period n W. e may write the equation for gj(t+ 1) com-

pactly as g(t +1)=H( g(t);A, ,y), where the vector-valued,
nonlinear function H is defined by the rhs of Eq. (2.3).
The linearized form of the nth power of this equation
may be used to determine the stability of the period-n or-
bits:

FIG. 3. Detail of the in-phase, period-2 region for /=6
showing the sequence of 2~ (I) lines determining the bifurcation
boundary to a number of different types of out-of-phase,
period-4 orbits. The out-of-phase, period-2 region is scored.

5$(t+n)=
~(n)
H

5$(t), i =1, . . . , n .
() g'

g ( pr'))s

(2.16)

The derivative matrix can be written in the alternate form

and 2, respectively. This is a rhythm-splitting pattern. In
(b) there are two pairs of equivalent oscillators with an
overall temporal period of 4, while in (c) all four oscilla-
tors are inequivalent. Similar but more elaborate spatial
patterns are possible for larger N. Each such attractor
has its own basin, and multistability is possible.

Subharmonic bifurcation of an in-phase, period-2 orbit
to in-phase or out-of-phase period-4 orbits occurs when
the 2J (I) boundaries are crossed. This in-phase, period-2
region can be closed by considering the 21+(I) boundaries,

H

(2.17)

(0"(j)=A(1 —2x;*)—4y sin (mj/X),

we have

(2.18)

by using the chain rule. For the in-phase orbits we have
the further simplification that (gz')* =x;*510, i = 1, . . . , n,
where x; is one of the n fixed points of a single, isolated,
quadratic map. Defining co"(j) as

a b a ba' b' a' b'
b a b a
b' a' b' a'

~(n)
BH n

g ~(i)(J.) jL

. g =( P' )* i =1
(2.19)

(a) &

a b c b
a' b' c' b'
c b a bc' b' a' b'

The boundaries for the period-n orbits may then be deter-
mined from the solutions of the equations corresponding
to marginal stability:

g ~(()(J)
i=1

(2.20)

a a b b
a' a' b' b'
b b a a
b' b' a' a'

(c) &

a b c d
a' b' c' d'
d c b a
d' c' b' a'

FIG. 4. Spatial patterns corresponding to the marginally
stable collective modes for the 2J (I) boundaries for X =4. The

j=2 mode leads to a period-4 state with strictly alternating pat-
tern. There are three possible states for j=1,3: (a) a rhythm-
splitting pattern where two period-4 oscillators are separated by
period-2 oscillators; (b) two pairs of equivalent period-4 oscilla-
tors; (c) four inequivalent period-4 oscillators. The fixed-point
pattern corresponding to each of these states is shown on the
right-hand side of the diagram.

Since the fixed points are independent of y, Eq. (2.20)
may be easily solved for any fixed j and X. As an exam-
ple, the period-4 and period-8 boundaries for X=4 are
shown in Fig. 2. It is evident that, the in-phase, period-4
region is a scaled down, mirror image of the in-phase,
period-2 region; the in-phase regions corresponding to
higher-order subharmonics scale in a similar way produc-
ing a phase diagram with self-similar scaling features. In
fact, it is not difficult to deduce the scaling properties of
these regions. The maximum heights of the in-phase re-
gions clearly have the same A, scaling as the isolated quad-
ratic maps, i.e., they scale as Feigenbaum's 5=4.669. . . .
The width scaling follows simply from Eq. (2.20) and may
be shown to be y-a ", where u is Feigenbaurn's orbit
scaling exponent, a=2.5029. . . . Thus, the heights of the
the regions contract more rapidly than the widths giving
rise to very flat regions for large n.

The in-phase, period-2 orbit ~hose bifurcation structure
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was discussed in this section was born out of the period-1
state via the instability of the extreme long-wavelength
mode j=0; this orbit may also bifurcate through margin-
al stability of the extreme short-wavelength mode j=N/2
giving rise to an out-of-phase, period-2 orbit. In Sec. II C
we explore the stability of this out-of-phase state.

C. Out-of-phase, period-2 bifurcations

M»(j)=2% cos(2~j/N), M21(j)=2% cos(2mj/N) .

(2.27)

The problem is now formally similar to the two-

morphogen case treated by Turing. ' Since a 2& 2 problem
must be solved for each j, there is a correspondingly rich-
er solution structure. Equation (2.26) may be solved for
the even and odd perturbations by diagonalizing M; we
find

~hen N is even the period-2 orbit that results from the
bifurcation of the period-1 fixed point x (m)=1 —1/A,

has a strictly alternating pattern on the ring. The region
of stability in the (A,, y) plane of this orbit may be deter-
mined by a procedure similar to that described above;
now, however, one must linearize the second-power map
equations about each of the separate fixed points, which
alternate around the ring. ' If we denote these fixed
points by x'(m)=xi for m=2k and x*(m)=x2 for
m =2k+1, linearization of the second-power map leads
to

5x(2k, t+2)
= &5x (2k, t)+ %[5x(2k + l, t)+5x (2k —l, t)]

and

5$ ~J'(2t) = —,
'
[ (A/A )'/2(ei —e2 )5g~'(0)

+(e)'+@2')5$& '(0)] .

The eigenvalues ei 2 of M are

e, 2(j)= K+4y [1+cos (2~rj/N)]

+4y(@+4y )'/ cos(2n j/N),

g~j"(2t) = —,
'
[ (ei'+ e2')5'~'(0)

+(A/A )'/ (e '—e ')5$' '(0)] (2.28)

(2.29)

(2.30)

+y'[5x(2k +2, t)+5x(2k —2,t)], (2.21) (J' = —A,2+2K, +4+4y(4y —5) . (2.31)
where M=A defined in Eq. (2.10) but the fixed points x 1

and x2 are now those for the out-of-phase, period-2 or-
bitl8

When studying the solution structure we may distinguish
two cases: real eigenvalues and complex eigenvalues.

X2
~
———, +A, '( —, —2y)+A, '[A( —,'A, ——,

'
) —(1—2y)

The coefficient A is defined by

A =2k,y(1 —2x2 ) —4y

+ & ]1/2 (2.22)

(2.23)

(a} (b)

N/2
5g"(t) =—g e ' ~ 5x(2k t) (2.24)

2 N/2 —1

g(0)(t) g e
—27ltJ(2k+1)/1v5x(2I + 1 t) (2 25)

1V k

A similar expression may be written for the relaxation of
perturbations at odd positions on the ring; the equation
takes the same form with 2k replaced by 2k+1 and A .

replaced by 8P, which can be obtained from Eq. (2.23) by
replacing xz by x&. These equations may be solved by in-
troducing the following transformations:

J tg

r

(c)

++

++

~4

+
+

J
+

+

+
+

+

+

+

+ +~~
+

+

+ + t++y*
++

ry

+ +
+ +

+
+

+

aIld

M11(j)=M22(j) =M+2y cos(4m j/N)

Under these transformations Eq. (2.21) and its mate
reduce to the matrix equation

g~j'(t +2) 5'~'(t)
5$'"(t +2) —J 5$'"(t) (2.26)

J J

with

FIG. 5. Projections of the dynamics for N =4 on the
[x(1,t),x(1,t+1)] plane. Projections on the other oscillator
coordinates have identical forms. The figures correspond to
A, =2.5 and an increasing sequence of y values. The maximum
Lyapanov exponents 1,„were computed to determine if the
state was quasiperiodic or chaotic: (a} y =0.25, 1,„=—0.0002,
quasiperiodic; (b) y =0.26, 1,„=0.0003, quasiperiodic; (c)

y =0.27, 1,„=0.0005, quasiperiodic, (d) y =0.29, 1 =0.175,
chaotic.
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If the eigenvalues are complex and the complex-
conjugate pair passes through the unit circle, the system
undergoes a Hopf bifurcation. Using Eq. (2.30) the condi-
tion for such a bifurcation may be written as

[8'+4y2sin (2n j/X)] =1,
which yields the Hopf lines in the (A,,y) plane

(2.32)

2J (0): A, =1+[6+4y(4y 5)—+4y sin (2Irj/N)]'~
(2.33)

These lines are sketched in Fig. 2 for X=4 (and partially
for X=6 in Fig. 3). The j=0 and j=E/2 modes deter-
mine the boundaries for this bifurcation. Since the
transforms are carried out on alternate oscillators on the

ring, both j values correspond to extreme long-wavelength
modes on the ring. The relaxation is now oscillatory

about each type of fixed point suggesting bifurcation to X
invariant circles with the symmetry of the out-of-phase
period-2 state. This is indeed found in the numerical
simulations and results for % =4 are shown in Fig. 5.
The other 2J (0) hnes lie to the right of 2~ (0)=2+/2(0)
and do not determine the bifurcation boundaries for any
(even) N. Note, however, that the lines touch at
(A, =1+&6, y=O).

The other type of bifurcation of an out-of-phase
period-2 orbit occurs when the eigenvalues of M are real.
The marginal case now occurs when one eigenvalue, say,
e„satisfies (c',

(
=1 while ~e

~

«1. In fact for real
eigenvalues we must have ei ——+1 and the bifurcation is

analogous to a tangent bifurcation in the one-dimensional
case. The lines corresponding to this marginal case are
given by

2&+(0): A, =1+2I1+2y(2y —3)+2y sin (m'j/N)[1+2y —2y sin (n j/X)]I' (2.34)

The equivalent j=0 and j=N/2 modes again determine
the boundaries for this bifurcation; this boundary along
with the other 21+(0) lines are shown in Fig. 2 for N =4
where the region in the (A,,y) plane corresponding to stable
out-of-phase, period-2 orbits is scored with heavy lines.
The 20 (0) and 20+(0) boundaries cross at
(A, =1+2~5, y= ——,).

Hence, for N even the low-order bifurcation structure
may be computed analytically for rings of quadratic
IIIRps. Tlic 00 ~y2» 10 jygI» 20+~»»p(I)» 20 (0)=2~gI(0)» RIld

20+(0) =2~~I(0) boundaries are independent of N (for N
even), while the 21 (I) boundaries change as N varies lead-

ing to the spatially different patterns for out-of-phase,
period-4 orbits. As a consequence most of the structure
displayed III Fig. 2 is tlllc foi' RIly cvcII ¹ Tlic bollll-

daries for odd N are more difficult to compute because
the symmetry of the system is lower after the first
symmetry-breaking bifurcation. Since the out-of-phase,
period-2 state 's not strictly altern ting, o e must i ge-
eral solve higher-order sets of coupled equations for the
boundary lines. For large N one expects that the odd N-
boundaries will approach those given above as was the
case for the 0—+ and 1

+—boundaries.

III. QUASIPERIODIC AND CHAOTIC STATES

Complex behavior is observed in regions of the parame-
ter plane outside those corresponding to the low-oxder
periodic states discussed in the preceding section. In fact,
these coupled oscillator systems display all of the routes
to chaos mentioned in the Introduction but now accom-
panied or interrupted by spatial bifurcations.

A101ig tllc liilc y=0 fhc systcII1 is, of course, like X iso-
lated quadratic maps and exhibits period-doubling cas-
cades as well as 1nterm1ttency trans1t1ons 1nto chaos; these
mechanisms also operate for y&0 for the in-phase orbits.
%'e noted that period doubling from the out-of-phase,
period. -2 orbit does not occur. Instead the system under-
goes a Hopf bifurcation and quasiperiodicity ensues; pro-
jections of the quasiperiodic attractor (in X-dimensional

space) onto the [x (m, t +1),x (m, t)] 'plane are a set of 2N
invariant circles. As A, and y are tuned these circles dis-
tort and break up leading to chaotic behavior. This break-

up process is accompanied by sequences of mode lockings
which give rise to stable periodic orbits. For circle maps
(and for two-coupled oscillators) this mechanism for the
onset of chaos is being actively studied and many aspects
of the scaling theory of such phenomena are now under-
stooL For N coupled maps the various spatial bifur-
cations that occur during this process must also be taken
into account. By way of illustration we now consider
some of these processes, first for even N and then for
N =3 as an example of the attractor structure for odd N.

Since the j=0 (X/2) mode in our alternate site Fourier
representation determines the Hopf boundary, the invari-
ant circles for even N have strictly alternating symmetry
about the ring with regard to their phase relations, but
their projections onto the [x(m, t+1), x(m, t)] planes are
identical. A sequence of such projections for N =4 and
A, =2.5 with increasing y is shown in Fig. 5. Throughout
this progression the temporal behavior of the attractor
maintains an alternating phase relationship around the
ring, each oscillator projection having the same appear-
ance as its neighbors. (Consequently only one such pro-
jection is shown for each set of parameter values. ) Thus,
the spatial symmetry is preserved through a range of tem-:.
poi'Rl periodic, quaslpcriodlc, RIld cliaotlc states. (Tlic
character of the state was determined from the value of
the maximum Lyapunov exponent, I,„; lm, „~O for
periodic states, 1,„=0 for quasiperiodic states, andl,„~0 for chaotic states. )

For greater (even) N values the strictly alternating
.phase relationship is not maintained over as wide a range
of y values but bifurcation is always to a quasiperiodic
state with this symmetry; as X increases the region corre-
sponding to the strictly alternating state shrinks and other
spatial bifurcations intervene. The results for a ring of six
oscillators shown in Figs. 6(a)—6(d) illustrate the types of
bifurcation pattern which can occur for larger X values.
In all figures the dynamics of each oscillator is again
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represented by its projection on the [x(m, t+1),x(m, t)]
plane. Figure 6(a) displays the quasiperiodic attractor
which exists near the out-of-phase, period-2 boundary;
while each projection appears identical to that of its
neighbor, again the time series of alternate oscillator coor-
dinates are identical. As y increases, the circles distort
and break up as in the N =4 case but now these bifurca-
tions are accompanied by states with new spatial symme-
try. Spatial bifurcations may occur as the coupling pa-
rameter is tuned as shown in Fig. 6(b). Here the quasi-
periodic attractor possesses the spatial symmetry (1)=(2),
(3)=(6), and (4)=(5) [oscillator positions on the ring will
be denoted by (m)] but the time series of the oscillator
coordinates are different. In Fig. 6(c) the projections of
the chaotic attractor display rough spatial symmetry of
the form (1)=(6), (2)=(5), and (3)=(4), while again the
time series of all oscillator coordinates are different from
each other. In the final figure [6(d)] a chaotic state exists
which looks like six very noisy quadratic maps in our pro-
jection. Beyond this chaotic state the system mode locks
on a period-2 state with the following symmetry: (1)=(4),
and (2)=(3)=(5)=(6). The results described above are
not particular for the chosen examples; we have observed
similar phenomena for larger N. Because of the various
possible symmetry-related states for large N one must also
deal with multistability of the different attractors and the
dispositions of their associated basins. We have not at-
tempted to give a systematic classification of these
higher-order spatial and temporal bifurcations or an
enumeration of possible coexisting states.

The bifurcations to invariant circles occur from inany
of the out-of-phase states. For instance, the out-of-phase,
period-4 orbits described earlier bifurcate in this way as is
shown in Fig. 7. As the bifurcation parameter A, is tuned,
a subharmonic cascade of in-phase periodic solutions ex-
ists for positive y near zero; correspondingly for negative
y each of these orbits may bifurcate to out-of-phase orbits
with doubled period that in turn undergo Hopf bifurca-
tion to a quasiperiodic state. A rich but highly structured
solution hierarchy exists which exhibits scaling features.

Since the quasiperiodic and chaotic attractors reside in
an N-dimensional space their structure is not completely
revealed by the representations adopted thus far. In order
to examine the nature of some of these states in more de-
tail we consider the three-oscillator case for which simple
graphical representations are still useful.

We saw that for odd N, bifurcation to the out-of-phase
period-2 state occurs via marginal stability of the extreme
short-wavelength mode with j =(¹1)l2and leads to a
period-2 orbit with (N+ I)/2 equivalent oscillators. As
anticipated, our numerical results indicate that Hopf bi-
furcation to the, quasiperiodic state maintains this symme-
try. For N =3 there is one distinct and a pair of identical
oscillators on the ring and, thus, there are three such coex-
isting period-2 states corresponding to the three different
possibilities for the distinct oscillator. This symmetry is
preserved beyond the Hopf bifurcation giving rise to three
pairs of invariant circles in the three-dimensional space,
each with its own basin [see Fig. 8(a)]. This illustrates one
of the complications for the odd-N case. Multistability of
the attraetors appears immediately after bifurcation from
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FIG. 6. Spatial and temporal bifurcation patterns for a ring
of six oscillators. In all figures A, =Z. 5. (a} y =0.25, strictly al-
ternating temporal quasiperiodic state, identical spatial struc-
ture; (b) y =0.26, quasiperiodic state with temporal structure; (c)
y=0.27, chaotic temporal state with (rough) spatial structure;
(d) y =0.27, highly evolved chaotic state.
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(0)

= 120

e =4S (b)

(b)

e=45

FIG. 7. Quasiperiodic and chaotic states arising from an
out-of-phase, period-4 orbit. (a} A, =3.4, y = —0.25, quasi-
periodic state; (b} A, =3.45, y = —0.25, chaotic state.

the period-1 state. The invariant circles suffer the same
fate as described earlier for the even-X case. They de-
form, undergo a sequence of mode lockings, and finally
give rise to a chaotic attractor, which is shown in Fig.
8(b). This three-dimensional attractor has a rather in-
teresting structure which contains remnants of the three
pairs of circles which have broken up. In the chaotic state
the three attracting regions are no longer distinct, al-
though iterates are clearly concentrated in the neighbor-
hood of the now unstable invariant circles. Iterates
wander in a three-dimensional region of phase space but
spend large amounts of time in the now broken circles.
The attractor also possesses features which can be related
to the stability analysis of the period-1 fixed point
x*(rn) =1—1/A, , whose secondary bifurcations led to the
chaotic state. The hnearized stability analysis yields
eigenvalues e~ ——2 —A, and @2 3 ——2 —A, —3y characterizing
the relaxation about this fixed point. For the parameter
values of interest

~
e~

~
& 1 while

( e2 3 ~
& 1. The attractor

possesses rotational symmetry about u~ ——(3) '~ (1,1,1)
the stable direction eigenvector corresponding to e~ and,
in fact, has a hole from which iterates are excluded. As y
increases, the attractor expands and encompasses this
stable manifold of the period-1 fixed point. When this
happens the hole ceases to exist and iterates may access
the unstable fixed point [Fig. 8(c)].

The above results for N =3 provide some indication of
the kinds of quasiperiodic and chaotic attractors that sys-
tems of coupled dissipative oscillators could possess. In

FIG. g. Quasiperiodic and chaotic attractors for )V=3. {a)
Three quasiperiodic attractors for A, =2.5 and y =0.34;
1,„=—0.0003. (b} Chaotic attractor at A, =2.5 and y=0. 38;
1,„=0.10. (c} Chaotic attractor at A, =2.5 and y =0.40;
1,„=0.19. Two projections are shown for each attractor:
8=45' and 120'.

these higher-dimensional systems hyperchaotic attractors
(more than one Lyapanov exponent is positive) may exist
and give rise to complex aperiodic temporal behavior.

IV. DISCUSSION

The ring of quadratic maps was introduced as a model
for a coupled set of nonlinear oscillators whose intrinsic
(isolated) dynamics may be complex. The first few bifur-
cations in the discrete-time model can be studied. analyti'-
cally and the results show how in-phase and out-of-phase
solutions arise and undergo further characteristic types of
bifurcation: the in-phase solutions, which correspond to
infinitely long-wavelength collective modes on the ring,
may bifurcate to yield period-doubled, in-phase or out-of-
phase solutions with different wavelengths; the out-of-
phase solutions, on the other hand, cannot period double
and instead undergo a Hopf bifurcation to a quasiperiodic
state. Spatial structure accompanies the subsequent tem-
poral bifurcations leading to quasiperiodic or even chaotic
temporal states corresponding to specific collective modes
on the ring. In addition, we saw that a number of dif-
ferent types of synchronization phenomena like those ob-
served in coupled continuous-time nonlinear oscillators
were found. Thus, the model may have utility for the
analysis and prediction of the kinds of behavior that may
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be observed in continuous-time systems, which are more
difficult to analyze.

A number of features of the map model differ from
those of coupled chemical oscillators with diffusive cou-
pling. In the model, the coupling acts only at discrete
time units. While map models are typically derived from
flows through a Poincare surface of section, it is not a
simple matter to generalize this construction in a manner
that obviously leads to the present map system. Further-
more, in continuous-time systems the full dynamical
behavior of a limit-cycle oscillator may be followed and
different types of synchronization behavior are possible.
The full structure of phase resetting cannot be examined
with a map model. Because of these differences the ring
of maps should be regarded as an abstract model of cou-
pled, complex, identical nonlinear oscillators that suggests
some of the kinds of phenomena that may be observed in
coupled oscillator systems in far-from-equilibrium states.
In particular, the global structure of the higher-order bi-
furcations involving out-of-phase periodic, quasiperiodic,
and chaotic states should be amenable to more detailed

analysis, especially with regard to its scaling properties.
Analogous phenomena should be observable in systems of
coupled continuous-time oscillators, for instance in dif-
fusively coupled cells of chemical oscillators. Some as-
pects of the analysis of these higher-order bifurcations are
like Turing's treatment of the morphogenesis problem but
with many morphogens. Since we are dealing with secon-
dary bifurcations far from equilbrium we observe a much
inore elaborate spatial and temporal bifurcation structure
than that observed through bifurcation of a simple steady
state. The present work may serve as a guide to the kinds
of bifurcations to be expected in these far-from-
equilibrium states.
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