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Electric microfield distributions in multicomponent plasmas
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We evaluate the electric microfield distribution in a multicomponent plasma (MCP). The method

employed is an adaption of the very' simple adjustable-parameter exponential approximation previ-

ously developed for one-component plasmas {OCP). %e also discuss a still simpler approximation in

which the MCP is replaced by an effective OCP. The results are generally close to each other and
the former is in very good agreement with computer simulations.

I. INTRODUCTION

Recently we proposed a method for calculating electric
microfield distributions in a plasma. In that work, here-
after referred to as I, the plasma consisted of X identical
point charges in a uniform neutralizing background. The
method gave numerical results in excellent agreement
with computer simulations for strongly coupled one-
component plasmas (OCP) in two and three dimensions. '
The primary objective here is to extend the adjustable-
parameter exponential approximation (APEX) developed
in I to multicomponent plasmas (MCP). Also discussed is
a second approximation method in which the MCP is re-
placed by an effective OCP followed by an application of
APEX as described in I. The numerical results from both
schemes are compared to computer simulations.

p=N/0, , (2.1)

where N~ is the number of particles of species tr and 0 is
the total volume.

We have then, ' in the limit of a macroscopic system,

II. FORMALISM

We consider the electric microfield distribution W(e),
defined as the probability density of finding a field E
equal to e at a charge Zoe, located at ro, in a MCP where
particles of species o carry a charge Z e. Here, e is the
magnitude of the elementary charge, and Zo and all the
Z 's are positive. The system, which also includes a uni-
form neutralizing background, is assumed to be described
by classical equilibrium statistical mechanics with tem-
perature T and number densities p,

N

W(e)=(5(e —E))= lim I . I drop g dr,
(tv )n « . ,

j Q(Ip I &T) '

fx rn=p )

(2.2)

(2.3)

where Q(Ip~I, Q, T) is the configurational partition function, rj is the position of the jth particle of species o, and
p=(kti T) ' The potent. ial energy Vis given by

r

v="XX +'X X +v~,
I ro —rj~ I

~;=i ( r r—lO' JO'

(i,cr'+j, cr )

Z e(rj —ro)
+E~

I r,-—ro I' (2 4)

As in the case of the OCP, a simple and exact expres-
sion may be obtained for the second moment of the distri-
bution 8'(e) Following the p. rocedure described in I, we
write

where Vz is the contribution to the potential energy due
to the background. The electric field acting on the charge
Zoe is given by the superposition of single-particle
Coulomb fields plus a contribution Ett from the back-
ground,

(E')=(Z,e) '(V', V V,V)-
=(z,' pe)-'(v,'v&

Zo N

p —g 5(rr —ro)jj=i

(E')= g p.z.yz, ,

where Vo is the gradient with respect to ro and

V'o.Ea ——4me+Z p

(2.5)

(2.6)
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even though Ez ——0 in the thermodynamic limit; see also
Lebowitz and Martin.

It is convenient to introduce the dimensionless quanti-
ties [g (x)f(x)—G (x)f (x)]Zopo ———0 (2.13)

and real particles of species o a distance x from the
charge Zoe, respectively, then we assume that

E x=r/a,
e a

(2.7) for all cr, where Z ef and Z ef denote the magnitude of
the quasiparticle and Coulomb fields, respectively, with

where a is the interparticle spacing

4m

3
a p=l and p= gp

Equation (2.5) then becomes

(2.8)

f(x)=x
—a~

f (x)= (1+a~),
(2.14)

(2.9)
and the set [a ] consists of real, positive parameters.
This yields,

G (x)=g (x)f(x)/f (x) . (2.15)

I =Pe /a and X~=p~/p (2.10)

T(k)=(exp(ik E)) . (2.12)

The method in I used a coupling parameter integration
technique to express T(k) in terms of a (special) pair-
distribution function. ' This function was then approxi-
mated by a form containing a free parameter which was
fixed by the exact second moment of 8'(e). Instead we
will follow a procedure suggested by the a posteriori inter-
pretation of APEX in I. There, it was shown that APEX
is equivalent to replacing the plasma by a system of
noninteracting quasiparticles each producing a
parametrized electric field at ro. The quasiparticles have
a distribution about ro which is different from the fully
interacting "real" particles in the plasma and is deter-
mined by requiring that the field produced at ro by quasi-
particles contained in a volume element d r at position r
be the same as for the real particles for each r. This leads
to a density of quasiparticles at r in terms of the real par-
ticle density pg (r) and the parameter in the quasiparticle
field. The parameter is then fixed to give the exact second
moment.

To extend this APEX formalism to the MCP, it must
be . supplemented. First, the second-moment rule, Eq.
(2.9), strictly gives only one constraint on the parameter
set (one parameter per species) characterizing the quasi-
particle fields. Second, the "local-field constraint"
described above is not sufficient to determine all the
quasiparticle distributions about ro. In order to obtain
the necessary nuinber of constraint equations we assume
that both the local-field constraint and the second-
moment rule are satisfied species by species. That is, if
G~(x) and g~(x) denote the distribution of quasiparticles

are the plasma-coupling parameter and number fraction
for species cr, respectively.

At this point we introduce the Fourier transform of
W(e). Since the system is assumed isotropic we may
write, setting e=

~

e (,

P(e)=4ne W(e)= f dk k sin(ke)T(k) (2.11)
m'

and

The quasiparticle interpretation together with the distri-
butions G~(x) in Eq. (2.15) are then used to obtain an ex-
pression for the Fourier transform of the microfield dis-
tribution,

T(L)=exp 3+7 f dxx g (x)
0' ~ x

)& [jp[LZ f (x)]—lj, (2.16)

where L =(e/a )k and jo is the spherical Bessel function
of order zero. A comparison of the second-moment sum
rule, Eq. (2.9), and the second-moment expression ob-
tained from Eq. (2.16) gives

gZ g f dxx g (x)f(x)f (x)= gZ X
cr o

(2.17)

This is now assumed valid species by species to yield a set
of equations

Z~ xxg x x x =Z ZOI orallo. .

(2.18)

Equations (2.16) and (2.18) together with knowledge of
the distributions g (x) provide a scheme for evaluating
the paraineter set [a ] and then the microfield distribu-
tions in MCP's of positive charges in a uniform negative
background.

III. EFFECTIVE OCP

The multicomponent APEX scheme developed in the
preceding section provides numerical results which are in
excellent agreement with computer simulations (see Sec.
IV). However, these calculations require an approxiina-
tion procedure for obtaining the pair-distribution func-
tions g~(r) Although such. calculations are feasible with
present computers, they become increasingly difficult as
the number of species increases. Therefore, in an effort to
minimize the numerical complexity, we now consider an
approximation which replaces the MCP with an effective
OCP whose particles have the average charge
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(3.1)

where the total number density and the charge density of
the uniform background remain unchanged. We can now
proceed by using the APEX scheme as described in I to
obtain

1.2

0.8

T(L)=exp 3 f dxx g (x) Ijo[LZf~(x)]—1I

(3.2)

0.4

where
0

0 0.4 0.8 1.6 2.0 2.4

f (x)= (1+ax), (3.3)

and pg (x) is the density of particles of charge Ze at a
distance x from ro obtained from the effective OCP. To
determine the free parameter a we note that combining
Eqs. (2.9) and (3.1) yields

F

FIG. 1. Comparison of P(F) curves in units defined in Eq.
(2.7) for s binary mixture with charges Z& ——3 and Z2 ——1, num-
ber fractions g~ ——0.03 and g2 ——0.97 with I = 1.0.

=Z/Zol (3.4)

so that a comparison of the second-moment expressions
given by Eqs. (3.2) and (3.4) gives the constraint equation

Z xx g x x ~ x =Z ZOI . 35

Equations (3.2) and (3.5) together with knowledge of
g (x) provide a second scheme for calculating microfield
distributions in a MCP.

Note that in the effective OCP approximation the
charge Zoe is not changed, but instead of being immersed
in the MCP it is now immersed in an OCP. As a result of
Eqs. (3.4) and (3.5), the effective OCP scheme provides an
approximation to W(e) which satisfies the exact second
moment. However, the local-field constraint described in
Sec. II is not satisfied. That is, if we let G (x) be the dis-
tribution of noninteracting quasiparticles of charge Ze a
distance x from the charge Zoe, then we have [see Eq.
(3.2)]

2.0
I I I I I

IV. NUMERICAL RESULTS

»»gs. 1—4 we present &(+) plots for various binary
ionic mixtures with charges Zie and Z2e and number
fraction X& and X2. The results are limited to cases where
Zo is set equal to either Zi or Z2 since computer simula-
tions are impractical otherwise. The pair-distribution
functions were evaluated in the hypernetted-chain approx-
imation generalized to MCP. It is clear from these fig-
ures that the multicomponent formulation of APEX [la-
beled as APEX(MCP) in the figures] is in excellent agree-
ment with the computer simulations (CS in the figures).
We have also included the effective OCP approximation
[labeled as APEX(OCP) in the figures]. The agreement
for this second approximation with computer simulations
and APEX(MCP) is also very good.

A discrepancy between APEX(MCP) and APEX(OCP)
may arise when the effective OCP g (x) is very different

Go(x)f (x)=g'(x)f (x), (3.6)
1.6

which means that the quasiparticles satisfy the local-field
constraint when compared with the effective OCP. In the
MCP, on the other hand, the right-hand side of Eq. (3.6)
replaced by

gp g (x)Z f (x),

so that a comparison with the MCP requires

g Z0 p~ g (x}= g Z~p~g~(x),

(3.7)

(3.8)

0.8

0.4

which is clearly satisfied only for large enough x where
g (x} and all the g~(x) equal 1 and for x=o. Conse-
quently, the effective OCP method does not, in general,
satisfy the local-field constraint.

0
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

FIG. 2. Same as Fig. 1 with charges Zi ——10 and Z2 ——1,
number fractions gi ——0.01 and gz ——0.99 with I = 1.04.
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FIG. 3. Same as Fig. 1 with charges Z& ——17 and Z& ——1,
number fractions g) ——g2 ——0.5 and I =0.1.

0.4

from the I g (x) ) in the MCP. For example, if
APEX(OCP) has a charge distribution about ro, which on

the average stays very far away from ro when compared
with the MCP, then since the local-field constraint is not
satisfied (see Sec. III), the electric field produced by the
effective OCP will be, on the average, too small. As a re-

sult APEX(OCP) will yield a P(I') which is shifted to-
ward smaller fields relative to APEX(MCP).

V. CONCLUSION

We have developed a method for calculating electric
microfield distributions in MCP which are in excellent
agreement with computer simulations. The method takes
advantage of the exact second-moment sum rule and the
local-field constraint described in Sec. II.

A second approximation is also developed, which al-

though not in general as accurate as the first, is numeri-

cally simple. This second approach makes use of the
second-moment sum rule but does not satisfy the local-
field. constraint. It was observed in I that a parametriza-
tion of the Baranger-Mozer scheme which satisfied the
second-moment sum rule but not the local-field constraint
was not as accurate as APEX. This fact suggests that the
local-field constraint plays an important role in the
development of approximation schemes to calculate elec-

0 I
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F

FIG. 4. Same as Fig. 1 with charges Z~ ——2 and Z~ ——1, num-
ber fractions g) ——J2——0.5 and I =4.88.

tric microfield distributions. Nevertheless, the effective
OCP method may be of value for large-scale numerical
computations in radiative transfer problems or situations
where only the average charge Z is known rather than the
actual detailed composition of the plasma. '
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