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Elastic continuum theory of biaxial nematics
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The elastic-distortion free-energy density of biaxial nematics is derived with use of the formalism
of tensor analysis. The macroscopic description of biaxial nematics involves 12 bulk elastic con-
stants. The appearance of chirality introduces an additional number of 5 twist terms.

I. INTRODUCTION

The macroscopic theory of nematics describes these an-
isotropic materials in terms of a continuous field. Be-
cause of the anisotropic nature and the absence of polar
effects this field must necessarily be a tensor field of
second rank. This tensor field is denoted by Q( r ) and de-
scribes both the amount of order and the orientation of
the material at the site r. The undistorted state of the
medium is assumed to be homogeneous, i.e., the tensor
field does not depend on r. In a properly chosen coordi-
nate system denoted by the unit vectors e ', a=x,y, z, the
tensor order parameter Q(r ) is diagonal having elements

Q p ——0 if a&P, where a,P=x,y, z

Q~ = —
3 (S —T» Qyy

= —
3 (S+T» Q~ =

3 S .

Biaxial nematics are described by the two order parame-
ters S and T, whereas uniaxial nematics are described by
only one order parameter, e.g., S in case the uniaxial axis
is chosen along e,'. %ith respect to an arbitrary coordi-
nate system denoted by the unit vectors e the elements of
the tensor order parameter read

Qap=RarR psQrs,

where Rap are the elements of the transformation matrix
of Euler, i.e.,

This means that the general expression of an element of
the tensor order parameter, which describes a biaxial
nematic, is given by

Q p= ——,'S(e er)(ep er)+S(e e,')(ep e,').
+ —,

' T[(ea e„')(ep e„')—(ea e~)(ep. e~)] .

An undistorted biaxial nematic hquid crystal is charac-
terized by three mutually perpendicular twofold axes,
whose directions are denoted by the vectors n, m, and
1 =m)& n. These symmetry axes coincide with the axes of
the specific coordinate system, that gives rise to a diago-
nal representation of the tensor order parameter. The fol-
lowing identification is chosen, 1 = e „', m = e „', and
n=e,'. This choice gives rise to the following expres-
sions for the components of the directors 1, m, and n

II. ELASTIC CONTINUUM THEORY

The elastic continuum theory is obtained by expanding
the free-energy density, f(r ), that belongs to a given

tensor-order-parameter field Q(r ), around the homogene-
ous state having a free-energy density fo. The difference
between both densities, i.e., f (r ) fo, is called the—distor-
tion free-energy density fd(r ). This distortion free-energy
density is a function of the spatial derivatives of the
tensor-order-parameter field. The elastic continuum
theory deals only with small spatial derivatives. Conse-
quently only the lowest order terms in the expansion are
taken into account. This means that the elastic continu-
um theory is based upon the following expression for the
distortion free-energy density:

fd(r )=L pr(r )8 Qpr(r )

+L pr~„p(r )[t) Qpr(r )][BpQ„p(r )]

+L prq(r )8 BpQrp(r ), (2.1)

where B =t)/Ba, the Greek indices denote x, y, and z and
the Einstein summation convention is used. The tensors

Lapr, Lapr„„z, and Laprz must be composed of the ten-
sors Q p(r ), 5ap, and the Levi-Civita tensor eapr.

Next the degree of ordering is assumed to be unaffected
throughout all the medium, i.e., the order parameters S
and T do not depend on the position r. Then it holds ac-
cording to (1.1)

a.Q»= (S——,
' T)[(a.np)n„+np(Q n )]

3 T[(damp)m&+mp(t) m )], (2.2)

with respect to an arbitrary coordinate system:

l =(e e„')=R

ma=(ea. ey) =Ray,

n =(e e,') =R

Consequently the general expression for an element of the
tensor order parameter of a biaxial nematic can be written
as

Q p=S(n np —35 p)+ ,
' T(l lp —mmp)—,

where the tensor 5 p is the Kronecker data.
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where use has been made of the relation

lalp=&ayveppampnympna =5ap mamp nanp .

Consequently the elastic-distortion free-energy density of
a biaxial nematic can be written as

The description of a chiral biaxial nematic involves evi-
dently 5 independent twist terms.

The terms A pys[d np][Byns] B pys[B mp][Byms]
and C pys[B n p][Byms] appear to give rise to the follow-
ing 12 independent bulk terms:

fd(r )= A pB np+B pB mp+A pys[d np][Byns]

+B pys[d mp]fdyms]+C pys[d np][r}yms]

+Aapydadpny +BapyBadpmy (2.3)

The tensors Azpp Bp& A~pypp B&pypp Czpyp'& Azpy& and
B py depend on the order parameters S and T. The pos-
sible forms of these tensors follow directly from (1) the in-

variance of the free-energy density for replacing 1 by —1,
m by —m, or n by —n; (2) 1am =l na =mana=0; (3)
lala=mama=n na= 1; (4) lalp+mamp+nanp=5ap

A, (B n )(Bpnp),

A2(B np)(B np},

A 3n n p(B ny )(Bpny ),
A4m mpmyms(B np)(Byns),

A, m mp(Byn )(Bpny),

Bj(d m )(Bpmp),

B2(B mp)(B mp),

B m mp(a m )(cpm„),

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
III. RELEVANT TENSORS

The terms A ~B np and B pB m13 only appear in case
the medium is chiral. It is verified easily that these twist
terms must be of the following form:

l)&apynydanp ~

12ea~vm ~n vm pdan p,
13&ppvmpnvma~anp y

14epm Bmp,

15Eppvnpmvnar}amp '

(3.1)

(3.2)

(3.3}

(3.4)

(3.5)

It is worthwhile to note here that the term
e &~&m„npd mp does not give rise to an additional in-
variant. For n m =0, i.e., Bp(n m )=0, implies im-

mediately

Ea»n&mvnpdamp= &a»n&mvmpBanp

=&apW~n vm pBan p .

B4n npnyns(d mp)(dyms),

B n np(r} m )(Bpm ),
C)n mp(Bynp)(Gym ),
Cqn mp(8 ny)(Bpmy) .

(3.14)

(3.15)

(3.16)

(3.17)

(& mp)(r}pm ) (8 m—)(Bpmp)= 8 (mpdpm )

—8 (m Bpmp),

and the right-hand side of this identity contains only sur-
face terms. A second example concerns the
m npdpmyd ny It follows. directly from

Clearly more invariant terms can be constructed. Howev-
er, these additional terms all reduce, apart from irrelevant
surface terms, to the 12 terms (3.6)—(3.17). Consider, for
example, the term (8 mp)(Bpm ). This term is equivalent
to (8 m )(Bpmp), for

3 (m npnyBpmy) r} (n m—pnyBpmy)= m np(B ny)(Bpmy) nmp(B —ny)(Bpmy)

+npny(d m )(Bpmy} —mpny(B n )(Bpmy)+m ny(B np)(Bpmy) —n ny(B mp)(Bpmy)

that, apart from a surface term, the invariant man p(Bpmy)(Bany ) can be expressed as a linear combination of the invari-
ants n mp(B ny)(Bpmy), n np(B mp)(Bymy), m mp(B np}(Byny), m mp(Byn )(Bpny), and n np(Gym )(Bpmy).
The invariants n np(B mp)(Bymy) and m mp(B np)(Byny) in their turn are equivalent to n np(Gym )(Bpmy) and
mam p(Byna )(Bpn y), respectively. This follows directly from the relations

l lplyls(d np)(Byns)=(5 p nnp mmp—)(5ys n—yns myms)—(r} n—p)(Byns)

=(8 n )(B yn) y2m mp(B np—)(dyny)+m mpmyms(B np)(Byns)

and

l 1ply ls(B n p)(r}yns) =(5as nns mm—s)(5py —npny —m pm—y)(B n p)(Byns)

=(8 np)(Bpn ) —2mpmy(B np)(Byn )+m mpmyms(B np)(dyns) .

This means, apart from irrelevant surface terms, that
m mp(d np)(Byny) reduces to mpmy(B np)(Byn ).

Finally the terms AapyBaBpny and BapyB Bpmy must
be considered. These terms, however, do not give rise to

I

additional invariants. It follows quite simply that the re-
sulting invariants are, apart from surface contributions,
already contained within the 12 invariants (3.6)—(3.17).
Consider for instance the term mym npB Bpny. It fol-
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lows directly from

8 (m~m npBpnr)

= m np(B m&)(Bpnr)+mznp(B m )(Bpni, )

+m~m~{B~np)(Bpn~)+ mrm~n p~~~pni,

that, apart from a surface term, the invariant

mmmm
n pB Bpnr can be expressed in terms of the indepen-

dent invariants n mp(B nr)(Bpmr), n np(Brm )(Bpmz),
and m mp(B&n )(Bpnz).

IV. EI.ASTIC-DISTORTION FREE-ENERGY DENSITY

Cleary the elastic-distortion free-energy density of a bi-
axial nematic liquid crystal is a linear combination of the

/
I

12 independent invariants (3.6)—(3.17). In case the biaxial
nematic is chiral as well 5 independent twist terms must
be added to this energy density. It is customary to write
the full expression for the elastic-distortion free-energy
density in terms of the divergence and rotation of the vec-
tor fields n(r ) and m(r ). This can be easily accom-
plished using relations such as

(n Xcurln )~=npB~np np—Bpn = npB—pn

= —(n. 7 )n

m.curl(n Xm )=m q pre&„Qp(n„m„)

=m mpBpn —Bpnp .

Then the following expression is obtained:

fd(r )= ki(n. curln )+k2(m curlm)+ks(mXn ) [(m. V )n )+k4(nXm) [(n V )m)

+ks[(mX n ) (mXcurln )+(n Xm ) {nXcurlm )]+—,'Ki(divn ) + —,'K2(n curln )

+ 2 K3 ( n Xcurln ) + —,K4(divm ) + —,
' Ks(m curlm ) + —,

' K6(m X curlm ) + —,
' K7[n (m Xcurlm )]

+ —,'Kz[m (n Xcurln )] ~ —,'K9[m.curl(n Xm )] + —,'Kio[n curl(mX n )]

+ 2K, i[curl(nXm)] + 2K~2[div(n Xm)] (4.1)

where the coefficients of the 5 twist terms are given by

1
ki ——Ii, k2 ——14, k3 13+ 2 l2

1 1

k4 ——ls+ 2 l2i ks ——
2 l2,

whereas the elastic constants read

+1 2~1+2~2+~5 C1~ +2 2~2 C1~

X3——2A p+2A3 —C( —Cg, X4 ——28)+282+85 —C),
E5 ——282 —C), K6 ——2B2+283 —C) —C2,

E7—234+35 +C2~ +8 284+85 +C2

X9— 35p E]0— 85

E]]=C$, X$2=C$+C2

These coefficients depend on the order parameters S and
T.

The expression (4.1) is invariant with respect to inter-

changing n and m. This symmetry requirement must be
fulfilled, because neither of both symmetry axes is prefer-
able to the other. Clearly the original expression of
Frank' for the distortion free-energy density of uniaxial
nematics is contained within expression (4.1). Choosing
for example the uniaxial axis along the director n, i.e., the
order parameter T is zero, all coefficients are zero except
those in front of the invariants 6 p&n&a.np, (a n )(Bpnp),

I

(8 np)(B np), and n np(B nz)(Bpn&).

V. DISCUSSION

It appears that 12 bulk elastic constants are needed in
order to describe biaxial nematics within the framework
of the elastic continuum theory. This number was also
obtained by Brand and Pleiner ' (BP). Their analysis
differs from the present one on the following points. The
Bp approach does not consider chiral biaxial nematies.
Starting point of their analysis is the symmetry-broken ex-
pression for the free-energy density of a biaxial system
and the invariant expression is constructed afterwards.
The result is rather untransparent because the Frank ex-
pression for the uniaxial case does not follow directly by
neglecting the terms containing n or m. Finally it should
be noted that the BP calculation of the bulk contributions
is based upon an incorrect application of the anholonomi-
ty relations. It follows easily that

5i52n~5z5) n

for 5i nd and 82 ——m——pBp as distinct from the BP al-
legation.
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