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The relationship between Weinhold s metric geometry and the Riemannian geometry of thermo-
dynamics is presented.

I. NOTATION

The internal energy, U, of a system in thermodynamic
equilibrium with its surroundings is a function of the ex-
tensive variables E',E, . . . , E" (e.g. , S, V, N;, . . . )

which describe the system uniquely: U = U (E ',
E, . . . , E"). The equation U = U(E) defines an n
dimensional equation-of-state surface embedded in an
(n +1)-dimensional space, I"+', whose coordinates are
(E',E, . . . , E";U(E))=(E;U(E)). This surface is a
manifold everywhere except at edges defined by one or
more equations of Clausius-Clapeyron type.

A tangent space can be constructed through any point
in the equation-of-state manifold. The coordinates of any
point in the tangent space through the point (Eo,'U(EO))
are (E;U(EO))++a(E Eo )). H—ere A~ are the values of
the intensive thermodynamic variables of the heat bath
(e.g. , T, P, p;, . . .—) which are conjugate to the system's
extensive variables. At equilibrium

k(E,EO) = U(E) —Aa(E —Eo ) (1.2)

for the equilibrium Eo. The coordinates of the surface k
in I"+' are (E;4'(E,E ))o. The state of thermodynamic
equilibrium (Eo) is determined by the minimum value of
O'. The tangent space at this point is horizontal in I"+'
with coordinates (E;U(EO) ).

II. THERMODYNAMIC IMPLICATIONS

The first law of thermodynamics (dU =A,adE ) states
that, to first order, the change in the system's internal en-
ergy can be determined either from the equation-of-state
manifold or from the tangent space at the equilibrium
point. By the second law of thermodynamics, U(E) is
concave upward. This means that the equation-of-state
surface lies above (or on) any of its tangent spaces. The
local form of this global statement of the second law is
that the curvature of this surface is everywhere positive
(semi)definite. The curvature of U(E) is determined by
the matrix of mixed second partial derivatives

a'U
U tt=

&
)0 [positive (semi)definite] . (2.1)

aE aE~—

BE E,

It is convenient to introduce. the thermodynamic potential

The matrix Uati [Eq. (2.1)] is positive definite in single-
phase regimes. Since U(E) and the potential k(E Ep)
differ by terms linear in the extensive thermodynamic
variables E~, all their second- and higher-order deriva-
tives are equal. In particular U p=%' ti ——B 4'/
BE BE~

III. DISTANCE IN THE TANGENT SPACE—
CURVATURE OF THE EQUILIBRIUM SURFACE

Neither the equation-of-state surface U(E) nor its
tangent space comes endowed with a natural measure of
distance, but both are endowed with a natural measure of
curvature. The tangent spaces are flat (by definition); the
curvature of U(E) is given by the stability matrix U &
[Eq. (2.1)]. The matrix elements of this n)&n matrix are
the thermodynamic linear response functions (e.g., Ci,
r„p, ).' '

Since the curvature form U & is positive definite (in
single-phase regions), it can be used to define distances.
Weinhold used Uap(EO) to define a distance on the
tangent space to the equation-of-state surface at Eo. Al-
though any positive-definite n X n matrix would suffice to
define a distance on the tangent space, the choice
U tt(EO) was particularly fruitful. This is because stan-
dard Euclidean vector-space theorems (Schwartz inequali-
ty, Bessel equality and inequality) could easily be exploit-
ed to provide relations among the matrix elements of U ti,
and thus provide a geometric interpretation of the equali-
ties and inequalities which the second law of thermo-
dynamics imposes on the thermodynamic linear response
functions. '

With this choice of metric in the tangent space, the
square of the distance between the point in the tangent
space with coordinates (ED+DE; U(EO)+A, &E ) and
the point of contact (equilibrium point) (EO, U(EO)) is

Uati b.E bE~. To lowest order, this is twice the available
energy, or twice the vertical distance between U(E) and
its tangent space at Eo, as previously noted by Salamon
et al.

Several authors have suggested the possibility of using
the matrix Uap to measure distances in the equation-of-
state surface. ' This is not possible. Such a use leads to
an incorrect statement of the second law of thermo-
dynainics. To show this (Sec. V), and to determine the ap-
propriate measure of distance in the equilibrium manifold
(Sec. VI), we review in the following sections some basic
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mathematical procedures for studying the geometric prop-
erties of surfaces.

IV. GEOMETRY OF SURFACES

1 AIk ~ gjk

axJ ax' ax'ax'
~gd ~gatv

2 . 2

k+ax Jax" ax'ax'

Two important properties of surfaces must be charac-
terized by any study of surfaces: (i) the distance between
two nearby points in the surface, (ii) the curvature of the
surface at a point.

Two useful methods have been developed for studying
the geometry of surfaces. These methods are the extrinsic
method developed by Gauss and the intrinsic method
developed by Riemann.

In the Gaussian approach, an n-dimensional surface is
embedded in a Euclidean space, K"+', of (usually) one
higher dimension: (x ',x ~, . . . , x";x"+'(x', . . . , x")).
The distance between points in K"+' is defined by a con-
stant positive-definite (n +1)X(n +1) matrix. The usual
choice is

+g (I ' ~'I ~ l~ k)' (4.5b)

In Eq. (4.5a), g'i is the matrix inverse of g;1: g "gIJ = fi'~.

In the event that a Riemannian surface can be embed-
ded in a Euclidean space and thus studied also by Gauss-
ian methods, the two approaches must provide equivalent
results for the measures of distance and curvature. In
particular, the Riemannian metric g;J(x) is the restriction
of the Euclidean metric on K"+' to the embedded sur-
face. A concrete example of an induced metric, germain
to thermodynamics, will be presented in Sec. VI. The
Gaussian sectional curvature is related to the Riemannian
metric and curvature tensors by

d/2 —(dx i)2+(dxz)z+(dx" + i)2 (4.1)
X(r,s)=—

grrgss gmgsr
(4.6)

The distance between nearby points in the surface is de-
fined by the distance between these points in the Euclide-
an space. The curvature of the surface at a point is deter-
mined by an n X n matrix of mixed second partial deriva-
tives B2x"+'/Bx'Bxj (curvature matrix). In particular, if
only coordinates x' and x' are allowed to vary, and the
remaining n —2 independent coordinates are held con-
stant, the Gaussian sectional curvature is defined by

X(r,s) =det
J sr J ss

(4.2)

where f(x', . . . , x")=x"+'(x', . . . , x"). For an ideal
monatomic gas with x'=S, x = V, x = U(S, V), we have

X(S,V) =det

T
Cv

T 1

I v VPs

2 P
3 R

(4.3)

dl =gj(x)dx'dxJ . (4.4)

The curvature of the surface at any point can be deter-
inined by constructing the Christoffel symbols I Jk (not a
tensor) and the curvature tensor R;J ki from the metric
tensor g;~ as follows:

P

gu r)fqv ~gjk

ax' axk ax' (4.5a)

where PV=RT, Cv ———,R, I v ———,V, Ps ,P-——
The Gaussian approach is called extrinsic because it de-

pends on an embedding of the n-dimensional surface in a
space of higher dimension. The Riemannian approach is
called intrinsic because it requires no such embedding.

In the Riemannian approach an n Xn positive-definite
real symmetric metric matrix g;J (x) is defined at all points
on the n-dimensional surface. The distance between two
nearby points with coordinates (x', . . . , x") and
(x'+dx', . . . , x"+dx") is

when the Euclidean space has metric (4.1). If the metric
on K"+' is different, modifications in (4.6) must be made.
For functions which are either concave or convex, all
Gaussian sectional curvatures are positive.

V. MISUSE OF THE CURVATURE FORM

I py
——

2 U "Upy~,

Rap, ys ( 2 ) U [Uayp Upsv UaspUpyv] .

(5.1a)

(5.1b)

Using the results (5.1) to determine the Gaussian sectional
curvature (4.6), we find

( —,
'

) U""[U~~q Upp„U~pq U~~]—
K(a,P) =— (5.2)

aa pp ap pa

The second law of thermodynamics requires U to be con-
cave upward, and thus the sectional curvature to be posi-
tive. Since U Upp Up Up & 0 [cf—. Eq. (2.1)], the
choice of U p as a Riemannian metric g p on the
equation-of-state surface leads to the inequalities

U""[U~~q Upp„U~p~ Up „](0— (5.3)

(all pairs a,P) between second and third derivatives of the
internal energy.

The second law of thermodynamics places well-known
constraints on the second derivatives of U [i.e., Eq. (2.1)]
but no known constraints on the third derivatives of U.
We must therefore reject the choice of the Gaussian cur-
vature form U p as the Riemannian distance form (i.e.,
metric tensor) g p on U. Such a choice is not compatible
with the second law of thermodynamics.

Several authors have proposed using the matrix U p,
which measures the curvature of the equation-of-state sur-
face, to measure distances between nearby points within
this surface. '" If this is to be done, the consequences of
this choice cannot be neglected. The principal conse-
quence is the ability to compute the curvature from the
metric tensor g~p=U~p using Eqs. (4.5) and (4.6). A
trivial calculation gives
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n

dl =g(A, dE )+dk
a=1

(6.1)

In the neighborhood of the equilibrium point
(Eo', 4'(Eo}) the induced metric on the n-dimensional po-
tential surface (E;+(E)}is

g ti
——(A, )i5 ti+ k +&,

where

(6.2)

(6.3)

is the generalized thermodynamic force acting on a sys-
tem in contact with a heat bath characterized by intensive
thermodynamic variables A,~. At equilibrium, &~=0.

Using the choice of metric (6.2) and the expressions
(4.5), another straightforward calculation for the Christof-
fel symbols and curvature tensor at the equilibrium point
gives (recall that k ti

——U p)

rp, =O,

~op, yS = Uan Upy —Uay Upa .

(6.4a)

(6.4b)

The relation between the Gaussian sectional curvature
K(a,P) = U«Utttt U~pUtt —and .the Riemannian curva-
ture is given by (4.6), which must be modified slightly.
When the coordinates are modified by scale factors, [com-
pare (6.1) with (4.1)], the right-hand side of (4.6) must be
modified by multiplying by scale factors (A~) (A&) . The
following expression results:

(A, )(Ap)R p pK(a,P) = — ' = U~~ Upti —U~pUp, .
gang pp

—g apg p

(6.5)

With the choice of metric (6.1) in I"+' and the induced
intrinsic metric (6.2) on k(E), the Gaussian (extrinsic)
and Riemannian (intrinsic) description of the equilibrium
manifold are completely equivalent. Weinhold's metric
geometry and the Riemannian geometry of the equilibri-
um surface are equivalent local formulations of the
second law of thermodynamics.

VI. RIEMANNIAN GEOMETRY
ON THE EQUILIBRIUM MANIFOLD

The failure of the curvature (5.2) to provide a quantita-
tive local statement of the second law of thermodynamics
does not mean that the methods of Riemannian geometry
cannot be applied to study the equilibrium surface U(E).
It simply means that an incorrect metric has been used.
To determine the correct metric, we assume that the dis-
tance function in the space I"+' in which +(E) is em-
bedded is

Salamon et aI. The results are also valid in the entropy
representation S =S(U, V,X;, . . .), used by Ruppeiner. '

The n Xn curvature matrices in these two representations

[ U], [S],are related by [ U] = —T[S], ' where the matrix
elements are second derivatives with respect to the intrin-
sic arguments. The equilibrium surfaces U and S are con-
cave upward and concave downward, respectively. The
Gaussian sectional curvature is the product of the two
principal curvatures in the three-dimensional subspace
(E, E~; U; or S). Both principal curvatures are non-

negative for the energy surface and nonpositive for the en-

tropy surface, and so the inequality K(a,P) )0 is valid in
either representation.

Ruppeiner introduced the metric (S p) through a mul-
tivariate fluctuation argument, "' claiming more generali-

ty for his metric than for Weinhold's. However, not only
are the two metrics conformally equivalent, ' but Gil-
more has shown the equivalence of five different interpre-
tations of U &, including the two (curvature of the energy
surface, description of multivariate fluctuations) discussed
above.

Ruppeiner's unconventional interpretation of the mea-
sure of curvature ( U~p, Weinhold's metric) as a measure
of distance on the equilibrium surface leads to

(1) the vanishing of the curvature scalar for an ideal
gas;

(2) the "interaction hypothesis, " based on the previous
finding; and

(3) nontrivial relations [Eq. (5.3)] among the second and
third derivatives of the internal energy (entropy).

This last feature, which has not been discussed by Rup-
peiner, lies completely outside the scope of classical ther-
modynamics.

The correct choice of a measure of distance in the
equilibrium manifold has been presented in Sec. VI. With
this choice, the Riemannian curvature carries exactly the
same information as the Gaussian sectional curvature.

As yet, the Euclidean metric (6.1) and the Riemannian
metric (6.2) induced from it have no physical interpreta-
tion. In the neighborhood of an equilibrium point the
Christoffel symbols are given by I tir ——[ k /(k ) ]Upi, .
If these can be interpreted as forces restoring a perturbed
system back to its thermodynamic equilibrium, then the
relaxation equations would have the form

d(5E )ydt+rI, 5Ett5Er=o.

The solutions of such equations have an asymptotic time
dependence (using k = U „5E")of the form t '~ . The
Riemannian curvature is entirely consistent with the
second law of thermodynamics. The Bianchi identities
are trivially satisfied, and provide no constraints on U p.

VII. SUMMARY AND CONCLUSIONS

The calculations above have been carried out in the en-
ergy representation, used by %Reinhold, ' Gilmore, and

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation Grant Nos. PHY-81-02977 and PHY-83-
04868.



30 LENGTH AND CURVATURE IN THE GEOMETRY OF THERMODYNAMICS 1997

~F. Weinhold, J. Chem. Phys. 63, 2479 (1975); 63, 2484 (1975);
63, 2488 (1975); 63, 2496 (1975).

zR. Gilmore, Catastrophe Theory for Scientists and Engineers
(Wiley, New York, 1981).

P. Salamon, B. Andreson, P. D. Gait, and R. S. Berry, J.
Chem. Phys. 73, 1001 (1980).

4G. Ruppeiner, Phy. Rev. A 20, 1608 (1979}.
5D. Laugwitz, Differential and Riemannian Geometry (Academ-

ic, New York, 1965).
S. Weinberg, Grauitation and Cosmology (Wiley, New York,

1972).
7G. Ruppeiner, Phys. Rev. A 24, 488 (1981).
R. Gilmore (unpublished).
P. Salamon, J. Nulton, and E. Ihrig, J. Chem. Phys. 80, 436

(1984}.


