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We investigate the connection between two recent investigations on flux-periodic effects in one-

dimensional normal-metal rings with inelastic diffusion length larger than the size of the ring.
Buttiker, Imry, and Landauer have pointed out that closed rings, driven by an external flux, act like

superconducting rings with a Josephson junction, except that 2e is replaced by e. Gefen, Imry, and
Azbel considered such a ring connected to current leads and found a flux-periodic electric resistance.
We establish a connection between these Aharonov-Bohm-like effects by demonstrating that the
transmission probability of the ring, which determines the electric resistance, exhibits resonances
near the energies of the electronic states of the closed ring. It is the flux dependence of the reso-

nances which gives rise to the strong oscillatory behavior of the electric resistance.

I. INTRODUCTION

The purpose of this paper is to make a connection be-

tween two Aharonov-Bohm-type phenomena in conduct-

ing rings: The Josephson-like effects proposed in Ref. 1

for a closed ring, and the oscillations in the electric resis-

tance of such a ring connected to current leads as suggest-
ed in Ref. 2. Reference 1 considers a small strictly one-

dimensional normal-metal ring driven by a magnetic flux

4 confined to its hole. It is pointed out that the single-

electron states of such a ring can be obtained by consider-

ing the band structure of a "crystal" V(x)=V(x+L),
where V(x) is the potential around the ring and L is the
circumference of the ring. The electronic states of the
ring, shown in Fig. 1, are given by

En(ko@/@o)=En(ko(4+Co)/@o) ~

where 4o——hc/e is the flux quantum associated with a
single charge e, ko 2m/L is the w——idth of the Brillouin
zone of the associated crystal, and the E„(k) are the ener-

gy bands of this crystal. For weak elastic scattering, the
gaps in Fig. 1 will be small. For strong elastic scattering,
the gaps in Fig. 1 will be large giving rise to bands which
depend only weakly on the flux @. The electronic states
are thus periodic in the flux with period @0. For a con-
stant flux, the current at T~0, j= (e /L )g„u„
= —c g„M„/8@ (where, n numbers all occupied states

up to the Fermi energy EF), is also a periodic function of
the flux with period @0. For a flux which is not equal to
a multiple of @o/2, Ref. 1 predicts a persistent current. If
the flux increases linearly in time, the induced electromo-
tive force F =(I/cL)d@/dt gives rise to an oscillating
current with a Josephson frequency co =e V/A', where
V =FL. It is argued, in Ref. 1, that these Josephson-like

R,i@=
T(Et,,4) (1.2)

I(E

FIG. 1. One-electron energies of the closed ring as a function
of flux. The case of zero scattering is represented by the dashed
lines.

effects survive even in the presence of modest inelastic
scattering, i.e., when the inelastic diffusion length is much
larger than the circumference of the ring. Reference 2
considers current leads connected to such a ring and em-
ploys the Landauer formula
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to calculate the electric resistance. T (E,4) is the
quantum-mechanical transmission probability for elec-

trons with incident energy E to traverse the ring. The
main result of Ref. 2 is that this resistance is periodic in
the flux, with period @p,

R,i(@)=R,i(4+Cp) . (1.3)

II. ELECTRONIC STATES OF THE CLOSED RING

In this section we derive an eigenvalue equation for the
energies E„[Eq.(1.1}]of the closed ring. Instead of a po-
tential V(x), we describe the elastic scattering in the ring
with the help of a transfer or t matrix. Since we consider
a one-dimensional system, the t matrix is given by

1/t* —r*/t*
r /t 1/t— (2.1)

and relates the amplitudes P,P' of the wave function to
the left of the scatterer to the amplitudes P,P ' to the right
of the scatterer, see Fig. 2. Here

(2.2)

is the transmission amplitude of the scatterer, T, the

i8& —i82 .
The flux 4 introduces phase shifts e ' and e ' in the
two branches of the wave function along the ring where

Oi+ 82= 2'lr@/tI p. This modifies the interference of the
electron waves at the point of connection to the leads and
thus leads to Aharonov-Bohm-like oscillations in the
transmission probability through the ring.

In this paper we make the same restrictive assumptions
as in Refs. 1 and 2, i.e., we consider strictly one-

dimensional rings, and proceed to point out a connection
between the two. Such a connection is established by
looking at the resonances of the transmission probability

T(E,4) of the ring. The understanding of these reso-

nances is a necessary step in order to treat the many-
channel case. The effects of resonances on electrical con-

duction in small systems has been extensively treated in

Ref. 3. We show that sharp peaks in the transmission

probability are of the Breit-Wigner form~

r'„(e)
T(E,4)=T,~ (1.4)

[E—E„(C )—EE„(4)]'+I'„(4 )

Here, T, & 1 is the value of the transmission probability
at resonance. E„(4)is the energy of an electronic state of
the closed ring [Eq. (1.1)] and EE„ is a small shift away

from this energy. I „ is the width of the resonance. In or-

der to obtain sharp resonances, as given by Eq. (1.4), the
width I „has to be small compartxl to the gaps E„—E„+i

in the electronic spectrum of the closed ring. Below we

investigate these conditions in detail.
The resonant behavior of the transmission probability

given by Eq. (1.4} will show up in the electric resistance
of the ring [Eq. (1.3)] if the Fermi energy Ez lies close to
a band E„(N) or more strongly if E~ falls within a band.
In this case the resistance varies strongly as a function of
the flux and reaches a minimum for value of flux given by
EI E„(4)+b,E„(4}.——

FIG. 2. Schematic representation of the potential V(x) in the
ring. The transfer matrix relates the amplitudes P,P' to P,P '.

transmission probability, and P, the phase change in the
transmitted wave (index s for scatterer). An incoming
wave, from the left of the scatterer, of amplitude 1 gives
rise to a reflected wave with amplitude

—i~/2g &/2 '~s '~o (2.3)

, =0. (2.5)

Equation (2.5) has nontrivial solutions only if

det(t —le' ) =0 . (2.6)

To make this equation more transparent we can use Eq.
(2.2) and find from Eq. (2.6)

cosP, =T,' cosEL . (2.7)

Both P, and T, are functions of the energy. For fixed K,
~/I. &K (~/I. , Eq. (2.7) yields a discrete sequence of

eigenstates E„(k), Ei &E2 &E3, . . . which, when con-
sidered a function of K, gives rise to bands over a Bril-
louin zone of width kp =2'/I. (see Fig. 1).

For our purpose of comparing the closed ring to the
connected ring, we want to consider a closed ring, as
shown in Fig. 3(a), which has a scatterer in each branch,
denoted by t

&
and t 2. t

&
and t 2 give the amplitudes of

the wave functions to the right of the scatterers in terms
of the amplitudes of the wave functions to the left of the
scatterers. If we denote the transfer matrix which yields
the amplitudes to the left of the scatterer in terms of the
amplitudes to the right by t z, the two transfer matrices
give rise to the combined scatterer t=t 2 t ~. The eigen-
value equation of this ring is thus given by

det, (t 2 t i —le' )=0 . (2.8)

Here R, =1—T, is the reflection probability. For an in-

coming wave to the right of the scatterer,

r F e
—i'/2g ~/2~ ~$ ~Q

S

is the amplitude of the reflected wave.
Consider now, as in Ref. 1, a periodic arrangement of

the scatterer along x with period L, equal to the cir-
cumference of the ring. According to Bloch's theorem,
the amplitudes of the wave functions in unit cells one
lattice-period apart are given by P=e' P, P'=e' P'.
Thus, for the periodic array of scatterers, the amplitudes
of the wave function obey
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omitting the scatterers t 1 and t 2 completely. Here, as in
Ref. 2, we take the opposite viewpoint, keeping the S ma-
trices as simple as possible and retaining completely gen-
eral scatterers t 1, t 2.

A real S matrix symmetric with respect to the two
branches of the- ring is of the form

(a +b) ~1/2 ~1/2

~1/2 (3.2)

Probability (current) conservation requires

(a+b) +2m=1,

a +b +a=1.
(3.3)

(3.4)

(b)

Orthogonality is satisfied by the solutions of Eqs. (3.3)
and (3.4). The coefficients a and b can be expressed as
functions of e by using Eqs. (3.3) and (3.4),

aI

a',

I

Q2

Q2

and

a+ ——+ —,
' (V'1 —2e —1),

b+ ——+ —,
' (v'1 —2m+ 1),

a+ ——+ —,
' (V'1 —2m+ 1),

b+ ——+ —,
' (&1—2e —1) .

(3.5)

(3.6)

(3.7)

(3.8)

FIG. 3. (a) Closed ring with two elastic scatterers. (b) Ring
connected to current leads with the same elastic scatterers as in

(a).

According to Ref. 1 we obtain the energies of the elec-
tronic states of the closed ring in the presence of flux 4
by replacing E in Eqs. (2.6)—(2.8) by ko@/@0.

III. COUPLING LEADS TO A RING

n'=Sa . (3.1)

Current conservation implies that S is unitary. Time-
reversal invariance when applicable implies, furthermore,
that S*=S ' and, therefore, that S is also symmetric. It
follows that the S matrix then depends in general on five
independent parameters, -which is the number of sym-
metric generators of the Lie algebra SU(3). If we assume
that S is symmetric with respect to the two branches of
the circle, the number of independent parameters is three.
Here we would like to go even further and assume, in ad-
dition, that S is real. These two restrictions may not. be
severe, since the division of the elastic scattering between
the S matrix and the t matrices is arbitrary. A complete-
ly general description of the connected ring can be given
by studying the combination of two general S matrices,

At a junction of a lead with the ring [triangles in Fig.
3(b)], the three outgoing waves with amplitudes (a', P', y')
are related by an S matrix to the three incoming waves
(a,P,y),

Equations (3.5) and (3.6) determine all real 3)&3 S ma-
trices, which are symmetric with respect to two channels,
as a function of a single parameter e, 0 & e & —,'.

Consider the solutions a =a+, b =b+. A wave of unit
amplitude coming from the current lead is reflected back
with probability (a +b) =1 2e and transmit—ted into the
two branches of the ring with equal probability e. For
e= —,, the junction is completely transparent for incoming
electrons and the current lead is strongly coupled to the
ring. It is this strong coupling limit with a =a, b =b
which has been considered in Ref. 2. On the other hand,
for @=0, electrons from the current lead are totally re-
flected and thus there is no coupling between the current
leads and the ring. In this case the transmission probabili-
ty from one branch of the ring into the other is b = 1 and
electrons in the ring do not see the junction. Thus e is a
coupling parameter and the branches a =a+, b =b+
describe the transition from the strong coupling limit
e= —,

' to the weak or zero coupling limit e=O.
The branches a =a~, b =b~ describe a transition from

strong coupling e= —, to a situation where the current
1

leads and the two branches are completely decoupled. For
@=0 we find a =a+ ———a =1, b =b+ —— b=0. —
These latter two branches are of no further interest here.

IV. RESONANCES IN THE TRANSMISSION
PROBABILITY OF THE RING

A. Transmission probability

In this section we derive an expression for the transmis-
sion probability for the ring connected to current leads,
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shown in Fig. 3(b}, which will illuminate the connection
with the resonances. Consider a wave of unit amplitude

ai ——1, incident from the left. To find the transmission

probability of the ring T =
I
az

I
we have to determine

the P"s and y"s under the condition a2 ——0. The reflec-
tion probability is then given by R =

I
a'i

I

= 1 —T.
From the link to the right we find with the help of Eqs.
(3.1) and (3.2)

—i82, —I'g)11=(rie t2t, e gi —~). (4.13)

The transmitted amplitude is found by eliminating yz in
Eq. (4.1) with the help of Eq. (4.2). This yields

We
&2 [(b a)P2+ p2] ~

b
(4.14)

az =~~(P~+}z},

P2 =aP2+bx~

12=bP2+a}'2 .

(4.2)

(4.3)
where

e —I', h

b 2 det(II )

(4 1) With Eqs. (4.10) and (4.12) we obtain

(4.15)

.y2.

with a matrix t i (index I for link) given by

(b a) a-
—a 1

(4.4)

(4.5)
I

Note that det(t &)=1, but t i is not unitary ««&0. F«
the junction to the left we find from Eqs. (3.1) and (3 2),
using n1 ——1,

Using Eqs. (4.2) and (4.3) to express the y's in terms of
the P's yields

y2

1
+-1

h =det(II)(+1, 1)r,ll -' (4.16)

T(E,@,e)=
I
~z

I

'= I'Ii I2

b
I
det(ll)

I

(4.17)

The resonant behavior of the transmission probability is
determined by the poles of the transmission amplitude,
Eq. (4.15). The poles of Eq. (4.15) are the solutions of

Here we have used the relationship b —a =b+ —a+ ——+1
[see Eqs. (3.4) and (3.5)]. The transmission probability of
the ring is thus given by

det[ II(E,4,e)]=0 (4.18)
~i = —(a+»+~~(Pi+ r i),
Pi =v e+aPi+bri,
r'i =~&+b&i+ari

(4.6)

(4.7)

(4.8)

In Secs. IVB—D we will discuss various limits of Eq.
(4.18).

Using Eqs. (4.7)
the y's yields

13'i b —a y1

1 +tI
y1

(4.9)

and (4.8) to express the P's as function of

t I =+I (4.19}

B. Weak coupling limit

For a=0 the current leads and the ring are decoupled.
We have a =a+ ——0, b =b+ ———b =1, and thus

and the amplitudes of the lower branch are related by
Ir

y1 g y2
=e 't

2
.y2.

(4.11)
yl

Note that here we have used the t matrix which transfers
the amplitudes from right to left. Using Eqs. (4.4) and
(4.9)—(4.11) yields an equation for P'i, Pi alone,

P'i ~e b —a
(4.12)

P1 b

As we follow the wave function around the ring, the
phase of the wave function changes by 2m @/@p, where N
is the applied flux. The phase changes 8i, 8z both taken in
a counterclockwise sense, along the two branches of the
ring, depend on the length of these branches or, if we as-
sume the ring to be circular, on the position of the links.
But 8i+82 =277 I~/4 p in any case. Thus the amplitudes
in the upper branch are transferred according to

Pz , Pi
(4.10)

2.

In this case

det[II(e=O)]=det(e t z t i —I.), (4.20)

E„(@)+DE„(@,e)+i 1 „(C&,e) (4.22)

giving rise to a Breit-Wigner expression for the transmis-
sion probability. Since the numerator in Eq. (4.17) is to

and Eq. (4.18) is just the eigenvalue equation of the closed
ring [Eq. (2.8)]. Thus the poles of the transmission ampli-
tude are the eigenvalues of the closed ring. Therefore, for
e=O, the denominator of Eq. (4.17) is proportional to
[E—E„(4&)] for E=E„. For small e we can expand Eq.
(4.12) [Eq. (4.17)] in powers of e (v e). To lowest order
we obtain

T(E @ )
e' Ih(e=O}

I (4.21)
b

I
det[II(e=O)]

I

Since
I
det[II(e=O)]

I
~(E E„) for E=E„,—Eq. (4.21)

is singular at the eigenvalues of the closed ring. As we in-
crease the coupling e, the solutions of Eq. (4.18) move
away from the real axis into the coinplex energy plane and
are of the form
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P, =nm,

P;+——
2 in[(a +b cos28)

+t/(a~+& cos28) —(1—2e)] .

(4.29}

(4.30)

ty can no longer be related in a simple way to the energy
spectrum of the closed ring. For later reference we note
here only that in the strong coupling limit e= ~, Eqs.
(4,29) and (4.30) yield one pole at P„=nm, with a finite
lmagmary part

The behavior of these solutions as a function of e is illus-

trated in Fig. 5. For small c, Eqs. (4.26) and (4.27) can be

expanded in E,
P; + ———,lncos18 . (4.34)

y„=8 — e'+0 (e'),
8 sin8

p,.= ——,'[e+CI+O(e')j . (4.32)
1 —2e= —,ln

2cos 8

(4.31)
and a pole whose imaginary part,

(4.35)

The poles move away from the real axis proportional to
e. Poles associated with eigenvalues 8 in the interval

O, II/2 move toward $„=0proportional to e . Poles asso-

ciated with eigenvalues 8 in the interval n. /2, m move to-
ward p, =II. The real part of the pole of the eigenvalue

8=m/2 is independent of e. To order e in the numerator

and tllc dc1101111Ilator Eq. (4.25) ls glvc11 by

2 ' 22@
T($„8, ) = . . . , (4.33)

(2sin285$) +e sin 28

where hP=P, —8. At resonance 6/=0, the transmission

probability is T,~= I —O(e ). As e increases further, the

poles move further away from the real axis. At e=e* two

poles coalesce and their real part is located at P„=nm
For e & e', the poles are far away from the eigenvalues of
the closed ring (see Fig. 5) and the transmission probabili-

tcllds to lllfllllty as e' apploaches 2 . In Scc. DID we in
vestigate how elastic scattering in the two branches of the
Itng IIlodlftcs tllls picture.

D. Strong coupling hmit with scattering

Sharp resonances in the strong coupling limit do occur
if the states of the closed ring are sufficiently localized.
Such states are rather insensitive to the perturbation
caused by coupling the current leads to the ring. We
demonstrate this by studying again a simple example and
consider a symmetric ring with two equal scatterers:

&r =t2= T e ~& =~2=~i =re =e
=1—T» and 81——82 ——8. For thts case Eq. (2.8) becomes

=0

Q&/2

TS=O

Gos Pq =Tgcos 8 .

For T, =l, Eq. (4.36} is identical with the free-electron
spectrum given by Eq. (4.23) and shown in Fig. 1.
T, &1, the spectrum obtained from Eq. (4.36) exhi»ts
gaps at 8=II~(k =0}. However, since the ring with two
equal scatterers corresponds to a "crystal" with two iden-
tical "atoms" per unit cell, no gapa appear at the Brillouin
zone boundary, +kc/2, or 8=+m/2(2n+1). Here, we
are interested in the limit of strong scatterers, T, « 1. In
this case the gaps at k =0 are large and of the order of
the level spacing. For T, «1, the solutions of Eq. (4.36)
ale

FIG. 5. Poles of the transmission amplitude in the complex

P, plane. The full lines give the poles of the perfect symmetric

ring (Sec. IVC) for 0=m j4,(4=@0/4), as a function of the
coupling parameter e. In the zero coupling limit a=0, the poles
are on the real axis corresponding to eigenstates of the closed
ring. With increasing e, the poles move away from the real axis.
For e*, two poles coalesce. For e& e, the real part of the poles
is P, =nm and one pole moves deeper into the complex plane,
whereas the other one moves toward the real axis as e increases.
e= T indicates the strong coupling limit. The dashed lines give

the poles of the symmetric ring with elastic scattering in the two
branches (Sec. IV 0) as a function of the transmission probabili-

ty T*, of the scatterers. The arrow points in the direction of in-

creasing elastic scattering (decreasing transmission probability

T, ).

PE ——(2n +1)n./2+hPs,

cos8+ , T, / cos'8+O(T—3~1). (4.38)

T, (sing, +R,' )cos8
CKp =

(sing, +R,' )+ —,
' iT,e 'sin 8

(4.39)

giving rise to a transmission probability

Equation (4.15) yields an amplitude for the transmitted
%Pave
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T, (sing, +R,' ) cos 8
1/2 2 2 i/2 1 2(sing, +R, ) —T,sing, sin 8(sing, +R, )+—,T, sin 8

(4.40)

In Eqs. (4.39) and (4.40) the upper signs are obtained by
using the S matrix specified by a =a+ ————,',
b =&+ ———,', and the lower signs from the S matrix given
by a =a = —,', b=b = ——,'. For simplicity we will
concentrate on the first case (upper signs). Note that in
the limit T, = 1, Eqs. (4.39) and (4.40) are identical with
Eqs. (4.24) and (4.25) for @=—,

' .
To find the resonances of Eq. (4.40), we have to search

for the zeros of Eq. (4.18), i.e., of the denominator of Eq.
(4.39). We find for the real part,

g 1/2
S

sin „=— - Z &/2'(1—T,sinz8)'/2
(4.41)

and for the imaginary part

P; = —,
' ln(1 —T,sin 8) . (4.42)

For T, =1, the poles determined by Eqs. (4.41) and (4.42)
are the same as the poles giv'en by Eq. (4.34). For T, = 1,
the real part of these poles is P„=nn. As the elastic
scattering is increased, T, decreased, the real part of the
pole with P„=m at T, =1 increases to'P„=3m/2 at T, =0.
The pole with $„=2m at T, =1 decreases to P„=3m./2 at
T, =0 (see Fig. 5). The imaginary part of these poles de-
creases with increasing scattering and becomes zero in the
limit T, =O. For T, «1, the solutions of Eqs. (4.41) and
(4.42) are given by

t)I„+——2m+2mn—+[ T,' .cos8+ ,' T, (1+2 s—in 8)

+0(T,")], (4.43)

P;= ——,
' [T,sin 8+ —,

'
T, sin 8+0(, )] . (4.44)

l.O"

0.8 "

0.6 "

0

4=0.laic
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I

C =0.4e
I

I, I

I
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I

0.2 "
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FIG. 6. Transmission probability of a symmetric ring with
equal elastic scattering in both branches in the presence of a flux
@=0.1+0 and 4=0.4@0. Here the scatterers have a transmis-
sion probability T, =0.25.

To order T,', Eq. (4A3) is identical with the solution of
the eigenvalue equation, Eq. (4.37). The difference,
P„=PE, with n odd, i.e., the energy shift hE, is propor-

tional to T, . For P, =3m/2+2an, the denominator of
Eq. (4.39) is thus of the form (P, —P„+ i P; )(P—,

i P;—). To order T, , Eq. (4.40) exhibits the
resonant structure

[(h$ —T' cos8) +I ][(h$+T,' cos8) +I ]

(4.45)

where b,P=P, 3n.—/2 2n.—n and I = —,
'

T,sin 8 is
width of the resonances. The resonances are very narrow
for 8=en, i.e., in the center of the Brillouin zone, and
broadest for fluxes (n+ —,')Po, i.e., 8=(n+1/2)n. , at the
boundary of the Brillouin zone. The resonant structure of
Eq. (4.45) is shown in Fig. 6. At resonance, the transmis-
sion probability is given by

16cos 8
(4.46)

16cos 0+T,sin~8

Since T, «1, T„, is close to 1 except near the boundary
of the Brillouin zone. Thus for the S matrix given by
a =a+ ————,', b =b+ ———,', the eigenstates near

P, =3@2/+.m2n exhibiting nodes at the links give rise to
sharp resonances, whereas the eigenstates near
P, =m/2+2mn do not give rise to a recognizable feature
in the transmission probability. For the S matrix given by
a =a = —,', b =b =——,', the eigenstates near

P, =m/2+2m. n exhibiting maxima at the links give rise to
sharp resonances, but the eigenstates near P, =3m/2+2m n
do not give rise to resonances. This example demonstrates
that strong elastic scattering can keep certain poles near
the real axis giving rise to sharp resonances. The com-
plete discrimination between the two classes of eigenstates
appears to be an artifact of the limiting case e~ —,

' and
the symmetry of this example.

V. CONCLUSIONS

We have shown that when sharp resonances exist in the
transmission probability they are associated with the elec-
tronic eigenstates E„of the closed ring. The periodic
dependence' of E„on N in the closed ring is then related,
via the resonances, to the oscillations in the transmission
coefficient (and hence to the oscillations in the conduc-
tance suggested in Ref. 2). We have identified two mech-
anisms which give rise to sharp resonances. If the ring is
poorly coupled to the leads, an electron entering the ring
will spend a long time in the ring before being reflected or
transmitted. Electrons which spend a long time ' in the
ring must necessarily be in an eigenstate of the closed
ring. Only in this case is interference constructive and the
probability to find the electron in the ring large. The
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second mechanism which we have identified is strong
elastic scattering. The small transmission probability of
these scatterers leads to multiple reflection of the electron
in the ring and constructive interference is again only pos-
sible in the case that the electron has an energy E„. Both
in the case of poor coupling and large elastic scattering
the nonresonant transmission will also show oscillations
as a function of the flux @. Since, however, the non-
resonant transmission probability is very small compared
to 1, these oscillations will also be small (see Figs. 4 and
6). In the case of strong coupling and weak elastic
scattering, we could not relate the oscillations in the
transmission probability of the ring to the eigenstates of
the closed ring. In this case electrons traverse the ring
without much scattering. The wires and the ring act in
this case almost like "wave guides" and the oscillations in

the transmission probability are closely related to the
Aharonov-Bohm effect in a vacuum experiment.

The total resistance R,~ [Eq. (1.2)] of the parallel
quantum resistors Ri,&

=(irtm. /e )(1—Ti )/Ti with

Ti ——
~
ti ~, R2,~

——(Rm/e )(1—T2)/T2 with T2=
~
t2

~

[see Fig. 3(b)] is in general not given by the classical com-
position law for parallel resistors. For the case of poor
coupling, or the case of strong elastic scattering, this devi-
ation is extremely marked, when the conditions for being
on (or near) a resonance are satisfied, as is also the case
for series addition of resistors. '
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