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We have studied the transition to chaos caused by interaction and overlap of resonances in some
condensed-matter systems by constructing and analyzing appropriate return maps. In particular,
the resistively shunted Josephson junction in microwave fields and charge-density waves in rf elec-
tric fields may be described by the differential equation of the damped driven pendulum in a period-
ic force. The two-dimensional return map for this equation is shown to collapse to a one-
dimensional circle map in a parameter regime including the transition to chaos. Phase locking,
noise, and hysteresis in these systems can thus be understood in a simple and coherent way by taking
over theoretical results for the circle map, some of which were derived in the preceding paper. In
order to understand the contraction to one dimensionality we have studied the two-dimensional
Chirikov standard map with dissipation. A well-defined transition line along which the system ex-
hibits circle-map critical behavior was found. At this line the system is always phase locked. We
conclude that recent theoretical results on universal behavior can readily be checked experimentally

by studying systems in condensed-matter physics. The relation between theory and experiment is
simple and direct.

I. INTRODUCTION

'rhe purpose of this paper is to demonstrate that there
exist some simple condensed-matter systems which exhibit
a transition to chaos caused by overlap of resonances with
universal critical behavior as described in the preceding
paper. Differential equations for the dynamics of these
systems can be represented by one- and two-dimensional
discrete maps, permitting direct confrontation of recent
theories with experiment, and providing an understanding
of phase locking, hysteresis, and noise phenomena which
have been observed.

In the 17th century Christiaan Huyghens noted that
two clocks hanging back to back on the wall tend to syn-
chronize their motion. ' More generally, strongly coupled
damped oscillators tend to lock into commensurate
motion where the ratio of their frequencies is a rational
number. This phenomenon is known as phase locking and
it is generally present in dissipative dynamical systems
with competing frequencies. The two frequencies might
arise dynamically within the system (as Huyghens's cou-
pled clocks) or through the coupling of an oscillating or
rotating motion to an external periodic force—as in a
"swing. " In many-dimensional systems the effective loss
of degrees of freedom through dissipation may reduce the
phase-locking phenomenon to basically two coupled oscil-
lators.

If some parameter is varied, the system may pass

through regimes which are phase locked and regimes
which are not. For weakly nonlinear coupling the phase-
locked intervals will have small measure. The motion is
either (with small probability) periodic or, more likely,
quasiperiodic, i.e., the ratio between the two frequencies
co~/co2 is irrational. As the nonlinearity increases, the
phase-locked portions increase and chaotic motion may
occur in addition to the periodic and quasiperiodic (in-
commensurate) motion. The onset of chaos is basically
caused by the growth of the phase-locked intervals until

they eventually overlap, musing hysteretic response as
well as truly chaotic behavior.

In the preceding paper (I) we gave strong numerical evi-
dence for universal scaling behavior of the phase-locked
steps on the critical line of the one-dimensional (1D) circle
map. We shall here give evidence that the same scaling
behavior should be found for the dissipative phase-locked
systems described above. In particular, the theory applies
to the resistively shunted Josephson junction in a mi-
crowave field, and sliding charge-density waves (CDW) in
rf electric fields. The return maps for these systems are
two-dimensional maps which collapse to 1D because of
the dissipation. A short account of some of our results
has already been published.

For the circle maps studied in I the critical line is just
E= 1, but for higher-dimensional systems no such simple
relation exists in general. We shall present evidence, how-
ever, derived from a two-dimensional dissipative map that
a "critical line" does exist where the measure of the
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phase-locked intervals is 1 and above which the intervals
start to overlap. Most importantly, this line seems to be a
continuous function of the parameters in the sense that
the high-order mode-locked intervals determine a smooth
critical curve (see Fig. 1). Along this line the complement
to the locked portions is a measure-0 Cantor set, and we
find the fractal (or Hausdorff) dimension of the set to be
the same universal number D-0.87 as found for the cir-
cle map.

Schematically, the connection between the physical sys-
tem and the circle map can be represented as follows:

Physical system

(pendulum, CDW, Josephson junction)

Differential equation

C)o
2D discrete return map
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FIG. 1. Critical curves for 2D standard map with dissipa-
tion, calculated as discussed in Sec. V. (a) The curve was calcu-
lated for b=0.25; (b) the curve is a magnification g of (a); {c)the
curve was calculated for b =0.5, T & 8' & 3 .I 2

1D circle map (universal behavior)

The physical system is described by a differential equa-
tion; the return map for the differential equation is a
two-dimensional (2D) discrete map; finally, the 2D return
map collapses to a 1D circle map exhibiting universal
behavior, i.e., there exists a 1D invariant curve.

The close resemblance between real coupled oscillator
systems and the one-dimensional circle maps which we
are suggesting might —from a mathematical viewpoint—
seem to be a strange result. For the one-dimensional
maps there exist strong theorems guaranteeing that any
monotonic, smooth map exhibits only periodic or quasi-
periodic behavior. On the other hand, for higher-
dimensional maps the analog [Komolgorov-Arnol'd-
Moser (KAM) -like] theorems only prove the existence of
quasiperiodic motion (invariant tori) for maps that are
"sufficiently close" to the trivial ones and no simple cri-
terion for the breakdown of tori exists.

What we find here is the following: If, instead of look-
ing at the original two-dimensional map, we project out
the angular variable and consider the corresponding one-
dimensional map (termed the. "reduced map" in Sec. III),
the criterion for having smooth invariant tori is—just as
for the circle-map case—that this map be monotonic. Of
course, we do not in general know where the monotonicity
breaks down in terms of the parameters of the original
map, but it does tell us that the situation, in terms of re-
normalized parameters, is very close to the 1D case.

The layout of this paper is as follows. In Sec. II we
shall discuss the Josephson junction in microwave fields
and sliding CDWs (as found, for instance, in niobium
triselenides, NbSe3) in applied dc plus ac electric fields.
These systems are described by the differential equation
for a damped pendulum driven by a constant plus a
periodic torque —so, in principle, our results can be tested
on this simple mechanical device. We hope that experi-
ments on Josephson junctions and CDW's be performed
since they can be done with great precision.

In Sec. III we discuss general properties of return map
for dissipative dynamical systems. We show numerically
that the 2D return map of the equation for the Josephson
junction reduces to a 1D map.

In Sec. IV we shall discuss in general the "criticality"
for a 2D map which collapses to a 1D circle map, taking
as the basic definition that the map becomes critical when
the smooth invariant curve disappears.

As a concrete example we shall study a particular 2D
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map, the "Chirikov standard map with dissipation" in
Sec. V. We present numerical evidence that the critical
line is sinooth and that there is scaling behavior of the
mode-locked intervals as for the circle map.

E =A+ B sin~t

II. PHASE LOCKING
IN JOSEPHSON JUNCTIONS AND CDW SYSTEMS

Phase locking is basically a resonance effect between
two oscillators. Even simpler, one can consider systems
where one of the oscillators is replaced by an external per-
turbation; this also facilitates quantitative measurements
of high-order locked motion since one of the frequencies
is given as a parameter. The ubiquitous differential equa-
tion

a8+P8+y sin8=A +8 costot (2.1)

is precisely of this form. It describes a periodically
forced, damped pendulum, with mass a, damping coeffi-
cient P, and gravitational field y. The equation is also—
among other things —believed to give a fair description of
a Josephson junction when the current has both a super
and a normal part, and of sliding CDW s in electric fields.

It should be emphasized at this point that the precise
form of (2.1) is immaterial for our investigation. Our aim
is to find universal properties which should be indepen-

dent of additional nonlinear terms in the equation, substi-
tution of other periodic functions for sin 8, etc. We have
chosen (2.1) as the simplest form to capture the essential
physics. Figure 2 shows the equivalent electric diagram
for the Josephson junction. Here, .8 is the phase difference
across the junction, and it is seen that a =iiiC/2e,
P=A'/2eR, and y is the critical current I, . Finally, A and
8 are the amplitudes of the dc and ac microwave com-
ponents of the current through the junction. This model
is usually referred to as the resistively shunted Josephson
junction (RSJ) model, and a vast literature exists about it.
For certain values of the parameters the junction can be
driven to a noisy state, ' and indeed numerical simula-
tions have indicated that the noi.se arises as chaotic solu-
tions to the differential equation. '0 A sequence of bi-
furcations leading to chaotic behavior is known in a quali-
tative way from Refs. 7 and 11.

. In the CDW systems, 8 is the position of a sliding

«+PS+ y sin8= E

FIG. 3. Sliding charge density wave in ac plus dc electric
field, and a quenched impurity pinning potential. For a single-
domain sample the pinning potential could be a contact poten-
tial. The motion is that of a particle rolling down an oscillating
washboard.

CDW relative to an "impurity" pinning potential (Fig. 3).
For a single-domain sample, the pinning potential is prob-
ably a contact potential. The parameters a, P, and y are
phenomenological parameters representing the effective
mass, damping, and periodic potential i2, i3 3 is a dc elec-
tric field which depins the CDW when it exceeds a critical
value, and 8 is the amplitude of an oscillating rf electric
field.

In those systems the phase-locking phenomenon shows
up as tendency of the average (angular) velocity (8) to
lock into rational multiples of the frequency of the exter-
nal field,

(2.2)

Why does this mode locking occur? For small torque A
on the pendulum (or dc current in the Josephson junction,
or dc voltage in the CDW system) the pendulum stays
near its downward position. When A exceeds a critical
value, the pendulum enters a running "rotating" mode
with average velocity -A/P (for y and 8 not too large).

Due to the periodicity of y sin8 and 8 cosset the config-
uration space (8,t) should really be thought of as a period-
ic lattice on which the motion takes place as shown in
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FIG. 2. Diagram for the resistively shunted Josephson junc-
tion, driven by a constant current A and a microwave current

with amplitude 8.

FIG. 4. Phase versus time for rotating pendulum, for a
torque A (or dc current I in the Josephson junction or dc field E
in the CDW systems) exceeding the critical value. The time is

measured in units of 2~/co, i.e., the external force is used as a
clock. The dotted curve indicates quasiperiodic motion, the
solid curve periodic motion.
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Fig. 4. Alternatively, one can pick out a rectangle of this
lattice and identify opposite sides, thereby obtaining a
two-dimensional torus which then forms the configura-
tion space for the equation (Fig. 5). The dotted motion in
Fig. 4 is quasiperiodic or incommensurate because its
periodicity is unrelated to the underlying lattice, and on
the torus the orbit would be dense and never close on it-
self. When the nonlinearities y and B become large there
will be a more pronounced tendency of the motion to fit
into the lattice (as for the commensurate-incommensurate
transition in adsorbed monolayers, etc. ' ) as shown by the
solid. curve. Here there exist integer numbers X and M
such that

I50—
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50—

« = I3/)6
« = 25/52
« = 3/4

or

(2.3) I I
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v (nv)
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I.O

(2.4)

V= g,
2e

(2.5)

so a locking of (8) implies a locking of ( V) and steps
will be seen in the I-'V characteristics. For M=1 these
are the Shapiro steps, ' but in between them subharmonic
steps (with M& 1) can often be seen. Figure 6 shows the

where T is the "clock" period of the external force.
If the situation (2.3) is realized for a certain parameter

value (for instance a value of A), then there always exist
an entire interval around this value where (2.4) is satisfied
for the same N and M; we have phase locking.

The above argument merely makes it plausible that
locking might occur, and it would seemingly work just as
well for a=O, the zero mass, or overdamped ease, where
the model reduces to the Stewart-McCumber' model. In
fact, it has been shown rigorously that in this limit only
the whole multiples (M= 1) of to survive since (2.1) is then
a linear equation (the Mathieu equation) in disguise. '

The coefficient of the 8 term is thus a measure of the non-
linearity of the system. '

For the Josephson junction the voltage Vis given by the
Josephson relation

FIG. 6. I- V 'characteristics of an g8-Nb Josephson point
junction in 295 6HZ microwave field at T=4.2 K. (Belykh,
Pedersen, and Soerensen, Ref. 7.)

striking experimental observation by Belykh et a1.7 of a
multitude of such substeps in the I- V eharaeteristics of a
Nb-Nb Josephson junction.

In the CDW systems the current carried by the sliding
charge-density wave is proportional to the velocity 8, so
the average current is

IcDw- &8& . (2.6)

Hence, a locking of (8) implies a locking of the current
carried by the CDW (the current carried by the normal
electrons behaves in a smooth way, I„-E). The roles of
currents and voltages are the reverse for Josephson junc-
tions and CDW systems.

It has been suggested that the mass a of the CDW sys-
tems is essentially zero, so there would be essentially no
subharmonic steps in apparent agreement with early mea-
surements. ' ' Recently, however, a multitude of such
steps have been observed in a striking experiment by
Brown, Mozurkewich, and Gruner2' the situations for
CDW systems and Josephson junctions seem to be essen-
tially the same.

III. THE RETURN MAP

The most effective way of studying phase locking of
differential equations such as (2.1) is through their return
maps, i.e., the mapping of the variables 8 and 8 at the be-
ginning of the nth period T =2m. /co to the values of the
variables at the end of that period. In Fig. 5 a plane with
t=const (mod 2n/co) is shown. and the return map R is

0„ G)(8„,8„)
R

G (8„,8„)

FIG. 5. The configuration space as the surface of a 20 torus.
A possible orbit is indicated on the toms, and a plane with con-
stant t mod2m/co is shown, on which the return map is generat-
ed.

where (8„,8„)=(8(t =nT), 8(t =nT)) Since the d.if-
ferential equation is of second order, the two variables 8„
and O„contain all information about the system at a given
time; therefore, the return map is two dimensional.

The functions G& and Gz must be periodic in 8 with
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FICx. 7. Annular map (schematic) showing the invariant cir-
cle and the invariant manifolds. The simplest locked state is
shown with a stable and unstable fixed point.

FIG. 8. Return map calculated for 8 =a=y=1, co=1.76,
P=1.576, 2=1.4. The function f(8„)=8„+iis monotonically
increasing indicating regular behavior. The inset is a magnifica-
tion, emphasizing the one dimensionality of the map.

BGi BGi

ee
J=J(8 8 )= det gG gG2 - 2

a8„

(3.2)

must always be greater than zero.
The value of J is simply related to the parameters of

the differential equation, namely

e —(2~/m)/(P/a) (3.3)

period 2nsince th. at period is explicit in (2.1}. Thus the
map R can be thought of either as mapping the plane into
itself, or—identifying 8 values differing only by multiples
of 2ir—as a mapping of a cylinder (or an annulus) to it-
self, as shown in Fig. 7.

Since the points (8„,8„) are points on a solution curve
for a differential equation, the map must be invertible and
orientation preserving. This means that the Jacobian

contracting and hence destroys information on the initial
configuration, so the motion might asymptotically be con-
fined to a smooth invariant curve 8(t) on the torus (Fig.
5). This means, of course, also that asymptotically 8 is
just a given function of 8 so that in terms of the map R
there exists a smooth invariant curve

8„=g(8„) (3.6)

on which the asymptotic behavior takes place. Referring
back to (3.1) and inserting (3.6), we find a unique relation

8, +i =f(8, ) =Gi(8„,g (8„)), (3.7)

where f is a circle map since it is periodic in 8„. We shall
denote this one-dimensional map the "reduced (return}
map. " In the following we shall assume that (3.6) and
(3.7) are single-valued functions although all arguments
below would hold just as well if they were just orientable
curves.

%hether this dimensional reduction actually takes place
depends crucially upon the assumption (3.6) for the ex-

so that J& 1 (the map is area contracting) and indepen-
dent of 8 and 8 because of the simple choice of damping
term in (2.1).

If the motion is phase locked with

~ I'
(8& =—co,

).00—

it means that there exist periodic fixed points (8,8')
such that

CV

-0.50—
+

CP

8" 8' 2~P
g+ g+ 0 (3.4)

For small nonlinearity one expects that any motion will be
either phase locked or quasiperiodic in which case the fre-
quency, or winding number

00 0.50
e„ /2 e

0.75 f.oo

8 = lim (8„/2n.n), (3.5)

is irrational. The initial condition will soon be forgotten
due to the damping of the motion. The mapping is area

FIG. 9. Return map calculated for P=1.253, 2=1.2; other
parameters as in Fig. 8. The function develops a cubic inflec-
tion point indicating a transition to chaos. The inset shows an
enlargement of the curve around f2(8I) where 8I is the inflec-
tion point [f'(8z)-0, f2(81)~~].
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IV. THE "CRITICAL LINE"

To study the region in which the reduced return map f
approaches zero slope, we refer back to Eq. (3.1). Dif-
ferentiating with respect to 8„,using the assumption (3.6)
of a smooth asymptotic orbit as well as the definition
(3.7), we obtain

aG, (8„,g(8„)) aG, (8„,g(8„))f'(8, ) =
~

" +g'(8„) ".' ", (4.1a)
n B8„

0 0.25
I I

.0.50
8„/2 ~

I

0.75
I

I.oo

FIG. 10. Return map calculated for P= 1.081, A = 1.094.
The map develops a local minimum and "wiggles" (insets) indi-

cating chaotic behavior.

istence of an invariant curve, and for given values of the
parameters we do not known whether or not it is satisfied
(except in the limit a «1 where the connection with the
circle map has been established analytically' ). The best
we can do is to generate (3.6) and (3.7) by solving the dif-
ferential equation (2.1) numerically on the computer. Fig-
ure 8 shows the "reduced" map in a situation where this
does indeed happen. The asymptotic form is quasiperiod-
ic and the map is one dimensional (see inset). Changing
some parameters (for instance, increasing A}, we can gen-
erate plots that asymptotically display only a discrete set
of points, namely the Q points 8*, ,8z, . . . , 8& (mod2n)
which are the stable periodic points of the map R [or f in
(3.7)]. The scenario is precisely the same as for the circle
map studied in I. Increasing A still further leads again to
quasiperiodic motion.

As described in I, chaotic motion in circle maps sets in
when the map acquires zero slope somewhere in the inter-
val, thus ceasing to be an invertible diffeomorphism. As
long as the map is everywhere monotonic, erratic behavior
can never occur. Analogously, let us ask about the struc-
ture of the map f at the transition to chaos. Figures
8—10 show a sequence of reduced maps for winding num-
bers around 8'=0.38. In Fig. 8 the motion is regular,
whereas Figs. 9 and 10 correspond to chaotic behavior.
Superficially it appears that the map acquires a zero slope
at the transition to chaos, so the transition would be
described precisely as that occurring in a one-dimensional
circle map.

However, as seen from Figs. 9 and 10 (especially the in-
sets), the behavior off around the transition point is more
complicated: Instead of just turning over to form isolated
local maxima and minima, the curve "crinkles up,

" and
seems to be filled up in an uneven nonergodic way. In the
next section we shall try to understand this behavior.

The most important observation made so far is that the
return map is effectively one dimensional, up to and in-
cluding the transition point. In Sec. V. it will be argued
that the critical behavior is indeed that of the circle map,
despite the different features of the map near the transi-
tion.

BGz(8„,g (8„))
g'(8„+))f'(8„)=

n

~Gz(8g g(8 ))
+g'(8. )

88„
(4.1b)

f'(8„)=0 .

Then it follows from (4.1a) and (4.lb) that
I

g'(8„+))f'(8„)&0,
since the Jacobian (3.2} is never zero.

Now (4.3) implies that

I
g'(8„+))

I
~~

(4.2)

(4.3)

(4.4)

if f'(8„)~0. Using (4.1a) with n~n+1, we find that

I
f'(8.+i }

I

unless

BG,(8„+„g(8„+,)) =0.
88„+)

(4.5)

(4.6)

Assuming that f'(8„+~) remains finite, we must accept
(4.6), and because the Jacobian is nonzero we obtain

~ Gz (8.+ i g ( 8.+ i }) ~0;ai„,
therefore, from (4.1b) with n +n + 1—

I
g'(8. +z)f'(8. +i) I

because of (4.4). Hence

(4.7)

(4.8)

Now, if we focus our attention on a phase-locked state
with winding number P/Q, the asymptotic motion really
amounts to jumping between the Q different stable
periodic points 8j,8z, . . . , 8& (mod2m), so the question
arises whether g'(8„) has any meaning.

Quite generally, the map (3.1) is a map of the annulus.
Figure 7 shows schematically the fixed-point structure for
a periodic (phase-locked) state. In addition to the Q stable
periodic points (8~,8~), . . . , (8~,8tz), there are also Q
unstable periodic points (8~,8t},. . . , (8&,8&). The un-

stable manifold of these unstable periodic points [i.e., the
point set for which R "(X) approaches the unstable
periodic cycle as n ~ oo ] is by definition the invariant cir-
cle of the map. The coordinates of this invariant circle
are precisely (8,g(8)).

Having now given meaning to g'(8) [and therefore to
f'(8)], we shall see that a zero slope for f (8) leads to
trouble. Thus assume that
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I
g'(0. +2) I

~ ~ (4.9) CO
00
CO

Iterating this argument we see that in the generic case
f'(0„)—+0 implies f(8„+&)~ 00, as indicated numerically
for the return map of the differential equation (2.1) (see
Fig. 9). If the derivatives aG) (8„+J,g (8„+J) )/ae„+J
vanish for j=1, . . . , Ã exceptionally, we will find that
f'(8„+i), f'(0„+i), . . . , f'(8„+&) remain finite whereas

I f'(en+N+i)
I

More precisely, we can follow the large terms in (4.1a)
and (4.1b) as f'(8„)~0. Assuming for simplicity that
aG) /ae never vanishes on the orbit, we find

CG

C)

C)

f'(0.+ i)-—
Gi

ae (e„+,,g(e„+,)) J(8„)
BG) f'(0 )

()g (&„,g (8„))

(4.10)

C)

C)
0.00

C)
CO
CD
CO

C)

0.12 0.25
en

0.37 0.50

Now J must always be positive. If, in addition, the
derivatives of Gi appearing in (4.10) have the same sign,
the coefficient of [f (8„)] is negative. This is certainly
true for a large class of two-dimensional maps showing
phase locking and chaos, so we assume this to be "generi-
cally" true, i.e., only exceptionally violated.

If so, then (4.10) states that

f'(8„)~0+ =-f'( „8+))~—oo . (4.11)

aG, /ae„+g (0„)aG,/ae„

aG /ae„+g'(0„)aG, /ae„
(4.12a)

We now introduce functions m (8) and n (8) through

Consider now the graph of f as a function of a parameter
and assuine to start with that f is an increasing circle
map. Varying the parameter decreases f'(0) toward zero
and by (4.11)f'(f(0)) must approach minus infinity. But
then f'(0) must be zero somewhere in the interval [O,f(0)]
giving another infinite slope, etc. The whole curve crin-
kles up as sketched in Figs. 11(a) and 11(b). Thus, the loss
of monotonicity is tied to the loss of smoothness of the in-
variant circle: If there exists a Ualue of 0 with f'(8) =0,
then the inuariant circle has already broken up and the ini-
tial assumption of a smooth orbital g (8) is contradictory

There is one trivial way in which the curve might avoid
crinkling up, namely if it forms a closed circuit. This
means, however, that we have chosen the wrong variables:
0 does not act as an angular variable and even for small
nonlinearity there does not exist a single-valued g(8) in
(3.6).

A more interesting possibility is that the curve spirals
as shown in Fig. 11(c). Here the analyticity is lost only in
a finite number of points: the stable periodic points of the
map. In this case the breakdown can be located by linear
analysis of the map. To see this we return to (4.1a) and
(4.1b), dividing (4.1a) with (4.1b). We then obtain an
equation containing explicitly only g:

O
OQ
00
CD

C)

C)
C)
00
CQ

CO

CO

.4560 0.4595 0.4630
8„

0.4665 0.4700

C)

CO

o
C)

C)
C)
C)

(c)C)

D
I —0.25 0.27 0.45—0.08

n(e„„). „n(0.)

(g )
D(X„) (g )—— (4.13)

0.10
en

'FIG. 11. Loss of smoothness of the invariant circle shown by
different reduced return maps for the map (5.1) with b=0.25.
(a) The curve crinkles up close to criticality ( E= 1.1, Q =0.292).
(b) Magnification of (a). (c) The map loses smoothness at the
periodic point (EC= 1.25, Q =0).

g'(8) =m (8)/n (8),

and rewrite (4.11a) as

(4.12b) where X„=(8„,8„) and D is the Jacobian of the map
(3.1). This defines n and m coinpletely once they are
specified at some initial point [for instance by n (00)=1,
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n (8„)
=M(Xg» ~ ~ ~ «Xi} (g )m n

(4.14)

where g„and 8„+&——8i (mod2n. ).
Now M is a real matrix and has either two real eigen-

values A, i )A,2 or a complex conjugate pair. In the former
case almost all initial choices (n (8),m (8)) will lead to

n (8„+~g)
e

m „+ (4.15)

where ei ——(ei,ei ) is the eigenvector of M corresponding
to the largest eigenvalue and a is the projection,

a =(m (8„),n (8„)}.ei .

Hence g' converges to the value

(4.16)

m (8„+&) ei
g'(8, +g)=g'(gi )= (4.17)

n (8„+g)
When the eigenvalues are complex conjugate pairs no sim-
ple asymptotic relation like (4.16) exists and g'(gi) be-
comes undefined. The map loses its smoothness at the
limit cycle fixed-point when the eigenvalues of the product
of the "Jacobians" at the limit cycle points are identical,

V'detM .
In the next section we shall look at a particular two-

dimensional dissipative map. Since we are looking for
universal behavior we might as well choose a simple ana-
lytic map instead of doing cumbersome integration of the
differential equation. For that particular map we shall try
to locate the critical line, i.e., the line in parameter space
where the smoothness breaks down.

The fundamental question is whether the critical line in
any sense defines a smooth curve in parameter space. One
might fear—since the condition of criticality at the
periodic points relies upon properties of the matrix M de-
fined in (4.13) and which explicitly depends upon Q, the
denominator of the winding number —that the critical
curve would be fundamentally fractal. Our finding —for
the particular map which will be studied —is that it is not
fractal: The dissipation present in the map secures that
the critical line defined through the very high-order ra-
tional steps is smooth.

V. SCALING BEHAVIOR
OF THE "DISSIPATIVE STANDARD MAP"

/

In this section we show numerical results for a particu-
lar two-dimensional map which could in principle be the
return map of a second-order differential equation such as
(2.1). The map is defined by recursion relations in two
variables 8 and r:

8„+i ——8„+Q (K/2m. )sin(2m 8„)+—br„,
(5 1)

r„+i br„—(K/2m)sin(2m. g„——),

m (80)=g'(80)]. If the parameters are such that the map
is periodic with winding number P/Q, the asymptotic
behavior of ( n, m) is given by

n (8„+&) n (8„)
(g )

=D(Xg)D(Xg i) ' ' ' D(Xi) (gm „+g m

where b is between 0 and 1. The equation has the re-
quired symmetry in t9 and the variable r„plays a similar
role as 8„ in (3.1). Note that we have inserted 2m's in the
argument so that the map is periodic mod1.

The Jacobian matrix of the mapping is

1 —K cos(2@8) b

Kc—os(2~8) b
(5.2)

with detD =b, showing that b(1 indeed defines an area
contracting map corresponding to a dissipative dynamical
systein. When b~0 we recover the sine circle map (see
I), and when b~1 we obtain the so-called standard area
preserving map (Chirikov, Ref. 25).

In this case (4.10) reduces to

bf (8««+1) f«(g
(5.3)

8' =8'+ II — sin(2n. g*)+br*,2'

r* =br* — . sin(2n. g ),
2m

(5.4)

glvlng

2m Q(1 b)—
sin 2~ E

(5.5)

Indeed, (5.5) has either 0 or two solutions, the latter be-
ing the case when

fQ/ (0,—= K
(5.6)

The eigenvalues of the Jacobian matrix D are

A, = —,(1+b Kcos(2+8)—
+ j [I+b —K cos(2m. g)] —4b j

'~ ) (5.7)

and the line confining the region where there exists a
stable fixed point is found by solving

iA,
i
=1. (5.8)

as f'(8„)~0, so the conclusions below (4.10) are certainly
valid in this case.

This map has been studied earlier both numerically
and by renormalization-group techniques ' and it has
been found that, for a series of winding numbers converg-
ing to the golden mean, (v 5 —1)/2, the scaling is the
same as for one-dimensional circle maps. In the work by
Rand et al. the general structure of the locked steps was
discussed on the basis of earlier findings (for a different
map) by Aronson et al. to which we shall return short-
ly.

As an illustrative example, let us consider the simplest
phase-locked state, namely the one with winding number
8'=0/1. Here the map has two fixed points, one stable
and one unstable. To find these we must solve the equa-
tions
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Setting A, =1 gives us

Q=+Q, , (5.9)

1+b —X cos(2m 0 ) =+2v b, (5.11)

which depends on 8". Inserting (5.5) we can write it as

E Q

(X,—) [K;/2n. ( 1 —b) ]
(5.12)

~here

but iL= —1 leads to a new hyperbolic constraint

E 0
2

=1 (5 10)
[2(1+b)] [2(1+b)/2m(1 —b)]

The criticality condition for the fixed point, A, i
——A,z, can

be written

line follows AA ' (the triangles).
For higher-order locked steps the situation is similar,

but we find that the point A' inoves down towards 0 so
that the critical line touches less of the hyperbola. Fur-
ther, the whole line OA'A becomes flatter: Due to the
dissipation everything is squeezed together in a narrow E
interval, rapidly decreasing with the order of the step.
For high-order steps, the whole picture looks very much
like the "skeleton" diagram for circle maps, with "hy-
perbolas" just touching a smooth line.

For the general phase-locked step P/Q the analogs of
(5.4), (5.8), and (5.11) cannot be solved analytically. If
(9;,r; ), i =1, . . . , Q denote the Q stable periodic points,
the stability condition for the step is that the eigenvalues
of the matrix

(5.14)

(5.13)

D

C)

C4

C)

D
C)
C)

0.00 0.69 2.06 2.75

FICx. 12. Stability regime for fixed point with W=O/1 for
b=0.25). Only one-half is shown since there is mirror symme-
try around the y axis. The straight line through A is the edge
Q =0,. The points marked by triangles indicate where the map
crinkles up. The circles are tips of hyperbolas in the narrow
locked regions just outside the edge. Note that the circles and
triangles together seem to lie on a smooth curve cutting through
the edge at A. This is strong evidence for the existence of a
smooth critical line.

The lower hyperbola (5.13) gives the maximum value of
E for which f is smooth through the fixed point. Figure
12 shows one-half of the phase-locked region for b=0.25
(the other half is the mirror image). The curve through 0
and A' is the (lower) hyperbola and the straight line
through A is the edge 0=0,. In order to locate the criti-
cal line we must know when other parts of the map f lose
smoothness, i.e., at what parameters the more general
crinkling up [Fig. 11(b)] takes place. As found by Aron-
son et al. for a different map, and verified for our map
by Rand et al. this seems generically to happen on
curves connecting the hyperbola with the edge of the
Arnol'd tongue. The triangles in Fig. 12 are points on
this curve intersecting the hyperbola at A'. The lowest
part of the hyperbola (OA') thus actually represents the
critical line, but further away from the center the critical

should have absolute value less than unity and the edges
of the steps are found by solving

~max= 1 (5.15a)

or

A, i ——A2
——QdetM =b~~ (5.16a)

(5.16b)

This curve corresponds to the lower hyperbola for the ()/1
case (Fig. 12). In our numerical work'we have taken the
tip of the hyperbola (i.e., the analog of the point 0 in Fig.
12) simply as the point on the curve (5.16) with smallest
E. Since the hyperbolas are generally tilted this is an ap-
proximation and we shall later explain how it can be im-
proved. We have found these points numerically by a
four-dimensional Newton iteration method (see Appendix)
giving the values 8, r, 0, and IC at the tips of the hyperbo-
las for different P/Q. The resulting critical lines are
shown in Figs. 1(a) and 1(b) for b=0.25 and in Fig. 1(c)
for b =0 5, respectively. .

The important finding is that even though the "curves"
in Fig. 1 are wildly discontinuous at the low-order locked
steps, they seem to approach smoothness very quickly as the
order Q of the resonance increases. Thus on each edge of
a given rational step there is a unique accumulation point
for the tips of hyperbolas coming from very-high-order
rationals converging to the given one, and if a smooth
critical curve really exists, these points are precisely the
endpoints (denoted by A in Fig. I2) of the critical curve
within the step. This is shown clearly in Fig. 12 where the
circles in the right-hand corner are the tips of high-order
hyperbolas close to the locked region. They accumulate to
the same point 2 and seem to form a smooth curve to-
gether with the triangles. Thus one can imagine the criti-
cal line extending outside of the step in Fig. 12, i.e.,
beyond A, where the invariant circle (in some very-high-

(5.15b)

The Q-cycle fixed point becomes critical along a curve in

(E,Q) space where the eigenvalues of M are equal,
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maps (I). To find the endpoints of the P/Q steps we use
the critical line defined by the highest-order steps. This
was done for b=0.25, —, & W& —, and for b=0.5,

3 in both cases approximately 100 steps were
found. For b=0.25 the edge was found by moving along
a critical line defined by linear interpolation between the
approximate accumulation points on the edges (the points
marked by squares in Fig. 13), whereas the edge points for
b=0.5 simply have X equal to the K values of the corre-
sponding accumulation points (the points marked by plus
in Fig. 13). In the limit the two methods are, of course,
identical. For a given rational step the projection of the
endpoints to the 0 axis determines EQ(P/Q) —the width
of the step. Figure 14 shows the winding number versus
0 on the critical line (for b=0.25)—the "devil's staircase"
similar to the diagram (I, Fig. 3) for the circle map. Fig-
ure 15 shows the widths of the steps b, (P/Q) plotted
versus O'=P/Q; the self-similar structure is quite ap-
parent and the similarity with (I, Fig. 5) for the circle map
is striking. Figure 16(a) and 16(b) shows the "number of
holes" [1—S(r)]/r plotted versus r as for the circle map,
where S(r) is the total width of steps which are wider
than r The p.lot in Fig. 16(a) is for b=0.25; the plot in
Fig. 16(b) is for b=0.5. The linear behavior indicates
scaling behavior at criticality. The slope of the straight
line yields

[1 S(r)]/r r-— (5.17)

with D-0.86+0.01. Hence, the staircase is complete,
and the fractal dimension of the staircase, or the comple-
mentary Cantor set is D -0.86. The accuracy of this esti-
mate is much less than the one for the circle map in I
since (i) a much smaller number of steps were used to esti-
mate D and (ii) there is additional uncertainty related to
the estimate of the critical curve, which was given simply
by %=1 in the circle-map case. Within the uncertainty,
the critical behavior for the standard map is the same as
for the circle map.

VI. CONCLUSION

In papers I and II we have investigated the transition to
chaos caused by overlap of resonances by studying circle
maps, differential equations representing actual physical
systems, and 2D dissipative maps. Our conjecture is that
the critical behavior of all these systems is the same,
namely that of the circle map. We urge that experiments
on Josephson junctions, charge-density-wave systems, and
other systems with two competing periodicities be per-
formed to check our predictions.

We are aware of three experiments which have been
performed since we first announced our results: Kao
et al. and Alstrom et al. ' have studied the differential
equation (5.1) with a "Josephson junction simulator;" they
find scaling behavior as predicted here, with
D -0.91+0.04 and D -0.87+0.02, respectively. More
importantly, Brown, Mozurkewich, and Griiner ' have
measured subharmonic steps in the CDW system NbSe3 in
ac plus dc electric fields; they also find scaling behavior in
agreement with our conjecture, with D-0.91+0.03. %'e
feel that the accuracy of the experiments could be im-
proved; in particular, more work should be done to locate
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APPENDIX: NUMERICAL PROCEDURES
FOR DETERMINING CRITICAL LINE

AND STEP WIDTHS

The critical points, indicated by ~ in Fig. 14, fulfill the
fixed point conditions:

gI =e.—eo —I'=0 (Al)

g2 rn rp ——0, (A2)

and the criticality condition,

g3 —TrM(go, ro)= Tr g D(8;,r; )=2b

The fourth condition is that TrM be a minimum subject
to the constraints (Al) and (A2) for a given IC.

Using Lagra'nge-multiplier technique, we form the
function

g3 ~181 ~2g2 (A4)

where I.I and I.2 are Lagrange multipliers. The con-
strained minimum condition can be expressed as

—I.)
—I.2arp arp arp ar, '

aF aR3 agi
an= an 'an 'an—I.I

—I 2

(A5)

Thik system of equations has solutions for L~ and L2
only if its determinant is zero:

the critical line, following, for instance, the ideas present-
ed here. It would be of interest to measure the return map
directly. The most precise measurements can probably be
performed on Josephson junctions in microwave fields,
but no experiment on the scaling behavior near the critical
point has been reported so far.
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ae, ae, ae,
~g& ~g2 ~g3

arp arp arp

aQ aQ aQ

=0. (A6)

The critical point is the point where the parameters ep, rp,
Q, and E fulfil the conditions (Al), (A2), (A3), and (A6).
This point is found by means of a four-dimensional
Newton iteration method as described in I.

The end points of the limit cycle steps are found by a
similar Newton iteration method. The parameters 80, ro,
and Q must fulfil the fixed-point conditions (Al) and (A2)
in addition to the stability condition

g3 ——TrM(ep rp)=l+b (A7)

Hence, the fourth condition is

g4 ——H =0.
In all cases the quantities ag;/aep, etc. (which involves
derivatives up to third order) can be found recursively as
described in I.
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