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Dissipative dynamical systems with two competing frequencies exhibit transitions to chaos. We
have investigated the transition through a study of discrete maps of the circle onto itself. The tran-
sition is caused by interaction and overlap of mode-locked resonances and occurs at a critical line
where the map loses invertibility. At this line the mode-locked intervals trace up a complete devil’s
staircase whose complementary set is a Cantor set with fractal dimension D ~0.87. Numerical re-
sults indicate that the dimension is universal for maps with cubic inflection points. Below criticality
the staircase is incomplete, leaving room for quasiperiodic behavior. The Lebesgue measure of the
quasiperiodic orbits seems to be given by an exponent 8~0.35 which can be related to D through
the scaling relation D=1—/v. The exponent v characterizes the cutoff of narrow plateaus near .
the transition. A variety of other exponents describing the transition to chaos is defined and es-

timated numerically.

I. INTRODUCTION

Our quantitative knowledge about highly nonlinear
dynamical systems is very meager. In a few cases exact
solution of the dynamical equations exist, but their
behavior is atypical—the very possibility of obtaining
analytical solutions excludes the occurrence of chaotic
motion which is of importance in any “truly” nonlinear
system. A major breakthrough came—especially through
the work of Feigenbaum'—with the realization that one-
dimensional maps are an important laboratory for non-
linear studies. Not only do these maps qualitatively
model the kinds of behavior found in dynamical systems,
but, more astonishingly, scaling behavior found in the
maps carry quantitatively over to real systems.

In this paper and the following one (denoted II) we
shall study scaling behavior for one-dimensional circle
maps and show that the same scaling exponents can be
found in dissipative dynamical systems that exhibit mode
locking. Mode locking is a resonant response occurring in
systems of coupled oscillators or oscillators coupled to
periodic external forces. In general, resonances occur
whenever the frequency of a harmonic, Pw;, of one oscil-
lator approaches some harmonic, Qw,, of another; and in
the resonant region the frequencies of the two oscillators
locks exactly into the rational ratio P/Q.

The mechanism, in these systems, leading eventually to
chaotic behavior is interactions between the different reso-
nances, caused by the nonlinear couplings, and overlap be-
tween the resonant regions when the couplings exceed a
certain critical value. In some sense the mechanism is the
analog, for dissipative systems, of Chirikov’s instability of
quasiperiodic orbits in Hamiltonian systems.?
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In II some specific systems from condensed-matter
physics (Josephson junctions in microwave fields, charge-
density waves in periodic electric fields) and from classi-
cal mechanics (the “swing” or the damped driven pendu-
lum) will be considered. The main result is that the
behavior of these systems, including the transition to
chaos, can be described by one-dimensional discrete maps
of the circle onto itself, the so-called “circle maps,” which
is the subject of this paper. In general, circle maps are de-
fined through

On+1=S0(60,)=0,+Q+g(6,), (1.1)
where
g(6,)=g(6,+1) (modl) (1.2)

and can thus be thought of as “lifts” of mappings from
the circle to itself. The advantage of studying simple
maps on this form is obvious. It is much easier to identi-
fy periodic, quasiperiodic, and chaotic solutions by iterat-
ing the map than by a cumbersome numerical integration
of the underlying differential equation. The variables 6,
represent the phase of the oscillating system measured
stroboscopically at periodic time intervals t,=27wn/w,,
using the frequency of the external force, or one of the os-
cillating parts as a clock. A phase shift 6,—6,+1
represents a full rotation; hence the periodic property (1.2)
of g. The map has a linear term 6, and a bias term Q
representing the frequency of the system in the absence of
the nonlinear coupling g.

To study the mode locking in the circle map we consid-
er iterations of the map, 6, f(0), fX6),..., or 6y, 6,,
03,.... The iteration of the map is conveniently
described by the winding number
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W=n1im [(f&—6)/n]. (1.3)

The winding number is the mean number of rotations per
iteration, i.e., the frequency of the underlying dynamical
system, so W=Q in the absence of the nonlinear cou-
pling. Under iteration the variable 6, may converge to a
series which is either periodic, 0, .o =6, + P, with ration-
al winding number W'=P /Q; quasiperiodic, with irration-
al winding number W =gq; or chaotic where the series
behaves irregularly.

Although the question of the existence of smooth
behavior in circle maps has very much the flavor of the
general problem of the existence of smooth invariant tori
in dynamical systems [the Kolmogorov-Arnol’d-Moser
(KAM) problem], much stronger theorems® due to
Arnol’d* and Herman® hold for the one-dimensional circle
maps. As long as f(0) is a diffeomorphism, i.e., smooth
and invertible, these theorems guarantee that no chaotic
motion can occur.

The nontrivial scaling behavior that we shall discuss
occurs precisely at the point (subsequently denoted the
critical point) in parameter space where f(0) loses its in-
vertibility. In that case the theorems mentioned above
break down and not much is known in general. The first
exposition of interesting scaling behavior at the critical
point was given in a numerical investigation by Shenker®
followed by renormalization-group treatments by Feigen-
baum, Kadanoff, and Shenker’ and by Rand, Ostlund,
Sethna, and Siggia.® These studies concentrated on specif-
ic well-behaved winding numbers—mostly on the “golden
mean,” (V'5—1)/2—and showed that nontrivial scaling
behavior is found when the golden mean is approached
through a sequence of rational winding numbers.

In our work we have generalized these ideas and asked
for the global scaling properties of the mode-locking pat-
tern. From the outset it was not clear whether any simple
universal properties should exist globally since the
renormalization-group treatments”?® are only valid for a
measure-zero set of winding numbers. We do, however,
find strong numerical evidence for nontrivial scaling
behavior, and from this we can derive general universal
“average” exponents distinctly different from their
golden-mean values. A short account of these findings
has already been published.’

Most of our results are obtained for the sine map

6, 1=ra(6,)=0,+Q—(K /21)sin276, , (1.4)

but in order to check universality we have also investigat-
ed maps in which the sine function has been replaced by
higher-order polynomials (Sec. IV).

The mapping (1.4) is sketched in Fig. 1(a) for 2=0.2
and K=0.9. Because of the periodicity of the map we
have reduced it to the square 0<6,<1,0<6, ,;<1. We
see two branches in the unit square. When K <1 the map
is strictly monotonic. At K =1 [Fig. 1(b)] the map
develops a cubic inflection point at 6=0, so the map is
still invertible but the inverse map has a singularity. For
K > 1 [Fig. 1(c)] the map develops a local maximum and a
local minimum and is no longer invertible. The figure
shows a chaotic trajectory.

We shall here be concentrating on the situation for K
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FIG. 1. Evolution of iterations of the circle map (1.3) for
Q=0.2 and (a) K=0.9, (b) K=1.0,and (c) K=1.1. For K>1
the map develops local maxima (and minima) and chaotic
behavior may occur.

equal to or slightly below 1. For 0 <K <1 it has been
shown® that the winding number locks-in at every single
rational number P/Q in a nonzero interval of Q,
AQ(P/Q). For K close to zero all intervals are quite
small so the probability that the winding number for a
random value of € is rational is almost zero, i.e., the
probability of hitting an irrational winding number is al-
most one. However, with increasing K the widths of all
the phase-locked intervals increase (Fig. 2), so for K =5
the probabilities of observing rational and irrational wind-
ing numbers are almost equal. For K ~1 the probability
of finding a rational winding number is close to 1. The
regimes in (Q,K) space where W assumes rational values
are called “Arnol’d tongues.” Clearly, the widths of the
resonances cannot grow indefinitely: at some point they
will -overlap. It will be shown numerically that at K=1
the resonances will completely fill up the critical line, con-
fining the quasiperiodic orbits to a Cantor set of zero
measure.
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FIG. 2. Schematic phase diagram for circle map in (Q,K)
space. Note the Arnol’d tongues where the winding number as-
sumes locked rational values. The winding number assumes ir-
rational values (such as the golden mean) along one-dimensional
curves ending at K =1.

Let us briefly summarize our findings. Figure 3 shows
the winding number as a function of () at K =1. The pla-
teaus in this function forms a complete “devil’s staircase,”
a structure which has previously been found in quite dif-
ferent contexts, such as the one-dimensional Ising model
with long-range interactions,'® the Frenkel-Kontorowa
model of atoms adsorbed on a periodic substrate,!! and
the three-dimensional (3D) Ising model with competing
interactions.?

The complementary set (on the Q axis) to a complete
staircase is a Cantor set of fractal dimension D <1. For
the staircase of the circle map we find D ~0.87; this
number is the universal index characterizing the transition
to chaos by mode locking.

For K <1 the staircase is no longer complete; there is
room for quasiperiodic orbits. Near K=1 we find that
the integrated measure M of the quasiperiodic orbits is
described by an exponent [3:

M~(1—-K)#,

where f3 is related to the fractal dimension D through the
scaling law D=1—/v. Here, v is an exponent charac-
terizing the cutoff of narrow plateaus versus (1—K), i.e.,
v is the exponent for the crossover between the critical
behavior with D ~0.87 at the transition and the regular
behavior with D =1 below the transition. Hence, below
criticality the resonances are separated by quasiperiodic
orbits, at criticality the resonances fill up the critical line,
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FIG. 3. Winding number W vs Q for the circle map at
K =1. Steps with A(P/Q)>0.0015 are shown. The inset
shows intervals with A >0.00015. Note the self-similar nature
of the staircase under magnification.
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and above criticality the resonances overlap. The chaos
occurring in the supercritical region is a “frustrated”
response of the system due to the overlaps: the orbit
jumps between resonances in an erratic way.

The remaining part of the paper is organized as follows.
In Sec. IT we present the numerical methods; in Sec. III
the scaling of resonances at the critical line is investigated
for the sine circle map. In Sec. IV the universality conjec-
ture is tested by investigating circle maps with different
periodic functions. In Sec. V additional critical exponents
are defined and derived; in particular, we calculate the ex-
ponent B characterizing the integrated Lebesgue measure
of the quasiperiodic orbits below criticality. Finally, in
Sec. VI the scaling near rational winding numbers is in-
vestigated.

II. NUMERICAL METHODS

In order to find the widths of the various resonances
AQ(P/Q) we consider the stability of an orbit with
rational winding number. The cycle 6;,0;,...,60g
(=0,+P), with period Q is stable as long as

4By —ﬁfn(e )<1.

46, 1 (2.1)

Thus, the endpoints of the plateaus are determined by
the condition df§(6;)/d6; =1, together with the condi-
tion f8(6;)=6;+P. From the condition f(6*)=6* and
f'(6*)=1, we find analytically that

AQO/1)=(—K /27, K /27)

for the map (1.7). The stability of a general P/Q step is
found by a two-dimensional Newton iteration method
We define the functions

£16,Q)=£8(0)—6—P,

2 (2.2)
dfg(o)
32(0,9)=—"—‘d0 -1,
or
. gl(O,Q)
g(e,ﬂ): gz(e’ﬂ)

The stability criteria can be expressed simply as
B(6*,Q*)=¢*=0. Expanding g* around the initial
point of the iteration, g(6%,Q°% =%,

E*~8,+AM, 2.3)
where
K=(6*,9*)—(6°0°) (2.4a)
and
9e1 31
M 3620 2.4b
Y=g, ag, |- 249
30 230

—

we find (for g*=0)
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the periodic orbit with W=P/Q =2,

A~—M-'E,, 2.5
and so, as the first approximation,
(6*,0*)~(6',Q")= —M ~'§,+(6°,0°) . (2.6)

Iterating the equations (2.5) and (2.6), it is possible to lo-
cate the endpoints of a P/Q interval even when Q is very
large (Q ~4000). Note that all derivatives can be derived
recursively

3fat'(o 3f (6
T—[I—Kcos(Zer,«)] 30’

_— ‘ ) ; 2.7
*fa (6) 5 9fq(0) daf(0)
W—Z’FK sm(217'6,~) 30 3Q

3%f0(0)

+[1—K cos(276;)] 3000

To initiate the iteration is is always convenient to locate
the superstable point (6,Q)=(6,,0;), where dfgs(es)/
d9=0. At K=1, ;=0 and Q, is determined by f§ (0)
=P. This point is always close to the midpoint of the
interval. Figure 4 shows the variation of df§(0)/d6
within the stability interval. This function has infinite
slope at the end points of the interval and is close to a
half-ellipse.

With this numerical method we have found all inter-
vals with 0<P/Q <+ and Q <95 giving 1388 intervals
A(P/Q) in the range between 0.3 and 0.000002. All steps
were found to an accuracy of 103, Due to the symmetry
of the map (1.4) as 6— —0, the staircase is symmetric
around Q=+, s0 A(P/Q)=A(1—P/Q).

III. SCALING OF THE STAIRCASE
AT THE TRANSITION TO CHAOS

All the intervals with Q <95 were found to be stable in
a nonzero interval for K=1. Figure 5 shows the widths
of the steps A(P/Q) versus P/Q. Note the self-similarity
of the function under rescaling. We conjecture that even-
tually A(P/Q) >0 for all P and all Q. By including more
and more steps, with higher Q and smaller widths the ()
axis becomes more and more “filled up.” This is not dif-
ferent from the situation for K < 1.4
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FIG. 5. A(P/Q) vs P/Q. Note the self-similarity of the dia-
gram under scaling.

However, one might speculate that eventually the
mode-locked intervals will cover the entire { axis. In this
case the staircase is called complete. To investigate wheth-
er or not this is the case we have calculated the total
width S(7) of all steps which are larger than a given scale
r. We are interested in the space between the steps,
1—S(r), and have measured it on the scale » to find the
“number of holes,” N(r)=[1—S(r)]/r. Here the Q in-
terval is of length 1, in general, the interval may have any
length €, and the number of holes is N(r)
=[Qo—S(r)]/r. In Fig. 6 log;oN(r) has been plotted
versus logjol /7 for 40 values of 7 in the interval (0.0009,
0.000017). The points fall excellently on a straight line
indicating a power law
D
N(r)~

(3.1)

From the slope of the straight line we find
D=0.8700+3.7X 10~*. The uncertainty on D was found
from a standard linear regression -analysis. The result
(3.1) means that the space between the steps vanishes as

1—S(r)~pri-D (3.2)

as r—0. We, therefore, conjecture that the staircase is
complete. The exponent D is the fractal dimension!® of

NI(r)
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FIG. 6. Plot of logioN (r) vs logio(1/7) for the critical circle
map. The slope of the straight line yields D =0.8700
+3.7X107%
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FIG. 7. Plot of log;oV,(r) vs logo(1/7) for the critical circle
map. The slope of the line yields D; =0.870+2.5X 10~3~D.

the staircase, or rather the fractal dimension of the Cantor
set of zero Lebesgue measure which is the complementary
set to the mode-locked intervals on the Q axis.

The fractal dimension can be determined by an alterna-
tive method by simply counting the number of steps
N;(r) which are larger than a given scale r.!° This num-
ber is given by the equation

AN\ 1as(r 13,
—=—" ~= ~r= 77, 3.3
or r or . r Or 4 (3.3)
so the total number of steps wider than r is
‘ oN
Nl(r)=fr0 3 Ldr=r—P4const . (3.4)

To investigate whether or not N, fulfills the condition
(3.4), we have counted N,(r) for several values of r. Fig-
ure 7 shows log;oN(r) plotted versus log;o(1/7). Again
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FIG. 8. Plot of 10g10(AQ(Q)>p vs Q. The slope of the line
yields 8=2.292+3.4x 1073,
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the points fall on a straight line so
Dy
(3.5)

Nl(r)"'

with D;=0.870%2.5X1073~D as it should be. The
latter method seems easier to use when analyzing experi-
ments since uncertainties in the determination of the
stepwidth are not accumulated as when S(7) is calculated.
On the other hand, even if N(r) obeys the simple power
law (3.5) there is no guarantee that the staircase is com-
plete. Integration of (3.5) leads to

S(r)~r-P4+C,

where C is an integration constant. Thus, the power law
(3.5) does not rule out a finite probability ~(1—C) of
quasiperiodic orbits, so the two methods are equivalent
only when the staircase is known to be complete.

Another dimension D, can be calculated as follows.
The mean values of steps with a given denominator Q,
(AQ(Q)) p, can be found by averaging over the numerator
P. Figure 8 shows log;o{ AQ(Q))p versus log;,Q, again
indicating a power-law behavior,

rog=(AQQ))p~Q 8 (3.6)
with §=2.292+3.4X 1073, The exponent & is related to a

. dimension D, in the following way. The number of ra-

tionals with denominator Q, is approximately (3/72)Q,.
The total number of rationals with denominator smaller
than Q, is thus

9
No~ [ Qd0~0}
and D, is defined as
_ logioNo _ 2logioQ0 2
logml/ro 810g10Q0 o)

=0.873+2.1x 103 . 3.7)

We stress that since A(P/Q) is a function of both P and
Q, not only of Q; it is not a mathematical necessity that
D,=D; it is not even a certainty that D, is well defined
even if D is. However, our numerical results are con-
sistent with D, being identical to D.

For intervals A(P;/P; ), where P; are Fibonacci num-
bers, converging to the inverse golden-mean winding num-
ber, Shenker® found

A(P/Q)~Q~ %, §=~2.16,

so the average exponent found from (3.6) is distinctly dif-
ferent.

When passing beyond the K =1 line the steps continue
to increase. Since they fill up the whole  axis for K =1,
they must necessarily overlap for K > 1 (see Fig. 9). In an
experimental situation, the transition to chaos is most
easily identified by considering hysteresis involving the
smallest steps. As soon as two steps overlap, an infinity
of smaller steps in between are squeezed out. The overlap
regimes correspond to chaotic or hysteretic solutions. The
“in between” steps yield an infinity of metastable solu-
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- FIG. 9. Phase diagram for the sine circle map. The dotted lines indicate overlap of resonances.

tions which may all be observed in a numerical iteration
process just by varying the initial point 6, Chaotic
behavior arises because the orbit jumps between the vari-
ous overlapping resonances in an erratic way. The transi-
tion to chaos is caused by overlap of resonances. A transi-
tion of this type has been observed in a variety of physical
systems as for instance Josephson junctions in microwave
fields'* and sliding charge-density waves;!® we will discuss
these systems in the following paper. Most nonlinear
periodic systems perturbed by an external periodic field
(sinusoidal or pulsed) will probably exhibit a transition to
chaos caused by overlap of resonances as described here.
For K>1 the map develops quadratic maxima and
minima. It is well known from the work of Feigenbaum!
that iterations of this type of mapping exhibit infinite
series of period doubling leading to chaos. This type of
chaos (associated with instabilities near the superstable
points—not the edges of the steps) has been studied in de-
tail by Glass and Perez!® and by Kaneko.!” Bifurcations
of a P/Q cycle lead to the cycles 2P/2Q, 4P/4Q,
8P/8Q, ..., sothe winding number is unaffected.

IV. UNIVERSALITY

It is important to know whether or not the critical
behavior at the transition to chaos is “universal,” i.e.,
whether or not it depends on the specific function f(6) in
(1.1). In an experiment we do not know the function
f(0), and it is unlikely that it is a simple sine function
(see the following paper). For the theory here to be
predictive in such cases it is imperative that the critical
behavior is universal. To check the universality of the
scaling dimension D ~0.87, we have studied a class of
mappings

f0.4(0)=0+0Q—(K /27)[sin(270) +-a sin’(276)] . (4.1)

For —4 <a <+ the function f is monotonic and has a
cubic inflection point at 6=0. Generally, the details of
the staircases are different from the staircase shown in
Fig. 3. Some steps become wider, some become narrower.
The scaling behavior, however, remains the same, in-
dependently of a. Figure 10 shows logio[1—S(r)/r]
versus logo(1/r) for a=—0.8, —0.25, and 0.15. The
points for a=0.15 seemingly exhibit a crossover from
D ~0.81 to D~0.87." We shall return to this point short-
ly. Again we find that the points fall on a straight line
with slope D=0.870. The staircases of the maps (4.1)
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FIG. 10. log;oN(r) vs logio(1/r) for the map (4.1) with (a)
a=-—0.25, (b) a=—0.8, and (c) a =0.15, and for the map (4.2)
with (d) b=0.2.
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also obey the symmetry A(P/Q)=A(1—P/Q). In order
to check that this symmetry does not influence the fractal
dimension, we have studied the map

f0,5(0)=04+Q—(K /2m)[sin(276) + b sin*(270)] 4.2)

for 5=0.2 and K =1. Due to the even term the staircase
is not symmetric but it is still complete with D ~0.87 [see
Fig. 10(d)].

From these investigations we conjecture that staircases
constructed from maps with cubic inflection points are
complete with a universal fractal dimension 0.87. This
number is thus a universal index characterizing the transi-
tion to chaos.

From the map (4.1) with @ =+ the lowest-order term in
an expansion of f(0) versus 0 is of fifth order. This also
leads to a complete staircase but with D~0.81, so the
fractal dimension depends upon the nature of the inflec-
tion point. This explains the behavior of curve (¢) in Fig.
10 where a is very close to +. We have not studied this
crossover in a quantitative way. Of course, in an experi-
mental situation one would not expect the first-order term
and the third-order term to vanish simultaneously, so the
generic critical exponent is D ~0.87.

Clearly, it is a local property of the map, namely the
behavior around the inflection point which determines the
fractal dimension. The behavior of the map away from
the inflection point does not affect the scaling properties
associated with very-high-order iterates.

We would like to stress that although the dimension
was calculated by considering steps in a large interval of
Q, it is a well-defined number at any point on the transi-
tion line. The index D expresses the self-similarity every-
where. In principle, we could choose any infinitesimal in-
terval AQ around this particular point and derive the scal-
ing properties. We have checked this by investigating the
scaling properties of steps in different small intervals of Q
on the critical line. If the scaling index is universal a scal-
ing law for an interval must necessarily apply to any part
of the interval. Also, in principle, the locality of the scal-
ing behavior implies that the same scaling behavior would
apply if A(P/Q) is considered as a function of a variable
Q' which is a smooth function of Q. This is of impor-
tance when analyzing experiments since the effective
which enters the circle map is generally a complicated
function of the variables in the experiment, such as
currents and voltages in Josephson junctions and charge-
density-wave (CDW) systems.

The transition to chaos is caused by the competition be-
tween two temporal periods. There is an analogous situa-
tion in condensed-matter physics where mode locking and
chaos occur as a consequence of competition between spa-
tial periods, namely the commensurate-incommensurate
transition. In the Frenkel-Kontorowa model!! and the ax-
ial next-nearest-neighbor Ising model'? there is a competi-
tion between the lattice constant and the periods of
structurally or magnetically ordered structures. The latter
model has a phase diagram almost identical to Fig. 9:
There is a regime with regular incommensurate (“quasi-
periodic”) structures between commensurate (“periodic”)
structures, and a regime with overlapping metastable
commensurate and spatially chaotic structures, separated

(probably) by a line along which a staircase is complete.
The critical properties are not universal, but depend on
the actual interactions in the models,!° probably because
the discrete mappings constructed from these models are

‘Hamiltonian and not dissipative.

V. CROSSOVER BEHAVIOR FOR K <1

The steps do not fill up the entire Q axis for K <1 and
the slope D in the log;oN (r) versus logo(1/r) plot must
then necessarily converge towards D =1. In fact, when K
is only slightly smaller than 1 it seems that the scaling
follows D ~0.87 down to a certain scale (depending on
1—K) and then makes a smooth crossover to the trivial
scaling characterized by D =1. In this section we shall
define and estimate the exponents characterizing this
crossover, and the measure of quasiperiodic orbits for
K<1.

First, let us follow the consequences of treating Q as a
“scaling variable” as in (3.6) and (3.7). Thus we assume
that the average widths at criticality have the scaling
behavior

(AQ(Q))p~Q
A plausible scaling ansatz for K <1 would be
(A0(0))p0*"P? ~exp[ —a(1—-K)*Q] . (5.1)

We, therefore, plot the quantity on the left-hand side of
(5.1) versus Q (Fig. 11) for 10 different values of (1—K)
ranging from 0.0025 to 0.1, using staircases found by
means of the numerical methods of Sec. II. The linear
behavior indicates that

(AQ(Q)) 0P

Figure 12 shows logj o4 (K) versus (1—K). From the
slope of the apparently straight line it seems plausible that
the ansatz (5.1) indeed holds, with ¢ ~1, in agreement
with the nonsingular behavior of the widths of the pla-
teaus as K approaches 1 (see Fig. 9). Somewhat surpris-
ingly, this means that the functional form of A(P/Q) for

~?/P) p,~D~0.87.

~exp[—A4(K)Q] . (5.2)
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FIG. 11. Plot of logi{ AQ(Q,K))»Q>""? vs Q for various
values of (1— K).
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FIG. 12. Plot of log;po4 (K) [where A4 (K) are the slopes of the
straight lines found in Fig. 11] vs log;o(1 —K). The straight line
is consistent with an exponent ¢ ~ 1.

K <«<1 is the same as for K=1: for small K,
A(P/Q)~K2=e2"K which becomes ¢2'~X) for K ~1.
The Arnol’d tongues grow in a uniform way from K=0
to K=1.

Equation (5.1) indicates that steps with @ >1/(1—K)
are effectively cut off for K < 1, leaving room for quasi-
periodic orbits. The integrated measure M (K) of the sup-
port of these orbits becomes

®© —2/D
M(K)= fQ:l/(l—K)dQ 00 2

where the exponent 3 obeys the scaling law

~(1-K", (53

By= L—2=8—2~0.29 .

D, (5.4)

r(N,1-K)
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FIG. 13. (a) Scale r for which there are N intervals wider
than r plotted vs (1—K). (b) Plot of log;ob (N ), defined by Eq.
(5.5) vs log1oN;. !

This approach seems not entirely satisfactory: there is
no a priori reason why Q should be the natural scaling
variable and thus for the scaling ansatz to make sense.
The considerable spread around the straight line in Fig. 12
also points in that direction.

A more natural choice of scaling variable is the actual
width of the resonances, the quantity that directly enters
into the calculation of M (K). Hence, for various values
of (1— K) we have calculated the scale r (N,K) such that
the number of resonances in the interval [0,1] which are
wider than r is precisely N;. Obviously, this function is a
decreasing function of (1—K) since the intervals become
narrower. Figure 13(a) shows log o7 (N,K) versus 1—K
for several values of N;. The straight lines indicate ex-
ponential behavior:

r(N;,K)=r(N,0)exp[ —b(N{)(1—-K)] . (5.5)

Figure 13(b) shows logob (N ) versus log;oN;. The linear
behavior allows us to define an exponent v:

b(N,)~N1""", 1/Dv~0.44+0.02 . (5.6)

Equations (5.5) and (5.6) give a cutoff of the number of
resonances, Ny(K), which give a contribution to the in-
tegrated measure below criticality:

No(K)~(1—K)™Pv . (5.7

These N, resonances which survive below the transition
are precisely those which are wider than a scale r( at
(1—K)=0, with N, related to ry through Eq. (3.5), so

ro~(1—K)", v~2.63. (5.8)

In other words, the plateaus which are narrower than rg
at K =1 are effectively cut off at a value of K <1 given
by (5.8).

In a sense, (1—K) plays the role of the reduced tem-
perature near a second-order phase transition, and 1/rg is
the “correlation length” which diverges at the transition.
The measure of the quasiperiodic orbits is a valid order
parameter for the transition since it is zero above the tran-
sition and nonzero below the transition. This measure is
precisely the measure of the periodic orbits which are cut
off below the transition:

ME)= [T~ aé\:‘ rdr
~(1—K)"1-D)
=(1—-K)?, B~0.34+0.02 . (5.9)
Equation (5.9) defines the scaling relation '
D=1-B/v (5.10)
“ which is very similar to the relation
D=d—-B/v (5.11)

which has been derived for second-order phase transitions.
Here, d is the Euclidean dimension. The exponent 8 de-
fined here seems to differ somewhat from the exponent 3,
derived from (5.4). We believe that the equation (5.11)
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FIG. 14. Plot of log,,d(Q), defined by Eq. (5.5), vs log;oQ.
The slope yields an exponent a=0.421+2.5X10~3 for a =0.
The curve (b) is calculated for a = —0.25 in Eq. (4.1).

gives the proper asymptotic behavior. The expressions
(5.4) and (5.11) are identical only for §=v. We do not be-
lieve that this relation holds; thus the result (5.4) seems to
be spurious due to the use of the wrong scaling variable

Besides the exponent D which characterizes the scaling
in the Q variable, we can also define a scaling index for
the 0 variable. for the superstable cycle of the P/Q step
we find the point 6; of the cycle 0,,...,0p which is
closest to zero, and define d(P/Q)=min(6;,1—6;). For
constant Q, d(P/Q) is averaged over the numerators P:

d(Q)=(d(P/Q))p , (5.12)

and d(Q) is plotted against Q on a log-log scale (Fig. 14).
The straight line indicates

d(Q)~07% a=0.421+£2.5x10"3. (5.13)

This number also seems to be universal as indicated by the
line (b) in the figure which is based on the map (4.1) with
a=—0.25. Our value for « is distinctly different from
the corresponding value for limit cycles converging to the
golden mean found by Shenker® (ag =0.527).

The smallest distance between any two points in the cy-
cle also scales with a power law,

dmin(Q) = <dmin(P/Q) >P ~ Q -
with '~ 1.58.
VI. SCALING NEAR RATIONAL WINDING NUMBERS

(5.14)

Close to the instability point of the (0/1) plateau the in-
crements in phase between two iterations, 6; —0;_,, be-
come infinitesimally small, and the map (1.3) may be
studied in the continuum approximation, 6;=6;_,
~d0/dz:

do K .
— =0—— . .1
7 Q oy sin(270) (6.1
This equation can be integrated to yield
Lt | K _o
0= - tan a0 tan(owz) | , (6.2)

where
 0=[Q2—(K/2m?]/2 .

This equation shows that (6.1) has a transition from
periodic behavior with W =0 to quasiperiodic behavior
with W >0. The critical value of Q is Qy=(K /27). For
Q > Q, the winding number is given by

W=0=[Q>—(K /2m)*]'/?
~[Q—(K/2m)]? . : (6.3)

‘The square-root behavior can easily be identified in Fig. 3.

For the series of rational numbers 1/Q, which converges
to zero, the distance between two consecutive midpoints
of intervals, Q,,(Q) and Q,,(Q + 1), therefore scales as

S(Q)=0,(Q0)—Q,(Q +1)
1 1

~— Q3 6.4
Q2 (Q+1)7? e €4

By expanding around other steps such as P/Q =+, one
finds similar square-root behavior; in fact, the square-root
behavior must occur around every single step. The result
(6.4) has been derived previously by Kaneko!” using a
phenomenological theory.

When the staircase is complete the widths AQ(1/Q)
cannot decay with an exponent which is smaller than 3,

AQ(1/Q)~07%, §>3, (6.5)

since for 8 <3 there would not be sufficient room for in-
tervals on small scales [the widths must decay at least as
the difference S(Q) between steps]. Figure 15 shows
log1p0AQ(1/Q) versus loggQ. The asymptotic slope yields
8’'=3, but the convergence is rather slow. The value of
the exponent 8’ when approaching rational numbers is
thus much bigger then the value 2.16 for rationals ap-
proaching the golden mean, and the value 2.29 for the to-
tal staircase.

AQUQ), T

107 . -
107 -
103 §-30 -

10~L ( —

1
10 100 Q

FIG. 15. Plot of logoA(1/Q) vs log;0Q. The asymptotic
straight line yields an exponent §'=3.
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For the series k/(2k +1) converging towards + we
find AQ(k/(2k 4+1))~(2k +1)73, and similar behavior
around several other numbers such as K/(3k +1):
k/(4k +1) converging towards rationals. In fact, the

convergence seems to be exponential,'®
AQ(P/Q)Q3~4e%e™°,

for these rational series, with nonuniversal constants A4, b,
and c.
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