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Tensor representation of Oseen-Frank strain energy in uniaxial cholesterics
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de Gennes gave a three-parameter representation of strain energy in a cholesteric liquid crystal

that is second order on the Q tensor, and hence in order parameter. He discarded a term involving

an elastic constant %24 which is relevant at surfaces and disclinations. The splay and bend elastic

constants Kll and K33 are alike in the second-order theory. The complete Oseen-Frank expression

in terms of a director has five parameters, including E24. If uniaxiality, which is implicit in the

director theory, is imposed on the Q tensor, five independent third-order tensor functions are found.

These differentiate between E l l and %33 and show the third-order dependence of the Oseen-Frank

elastic constants on order parameter. Numerical values of these second- and third-order elastic
coefficients of 4-methoxybenzylidene-4'-n-butylaniline (MBBA), p-azoxyanisole (PAA), and E-7
(British Drug House designation of a cyano-biphenyl mixture) are obtained from published values of
the dependence of Oseen-Frank elastic constants and various anisotropies on temperature, and from
a relation of Nehring and Saupe.

BACKGROUND

In order to unify the representation of strain and
thermal free energy in cholesteiic or nematic liquid crys-
tals, de Gennes' wrote a second-order Landau-tensor rep-
resentation of strain energy density. The Landau tensor Q
is symmetric and has zero trace. If Q corresponds to a
uniaxial liquid crystal its diagonalized form is

Qii ———S/3,

Q22 ———S/3,

Q33
——2S/3 .

S is the directional order parameter of the uniaxial liquid
crystal. de Gennes's expression for the combined thermal
and strain free energy of a cholesteric in the absence of an
electric or magnetic field may be written

y'= Fo+g (T)Q +g (Z')Q +g ~(Z')Q + ~

(2) (2)+Ci Qij, kQ|jk+&2 Q&JJQa k

+C4 'e jk Q jQjj,k =Fr++. (2)

In this and succeeding expressions a subscript after a com-
ma represents differentiation with respect to the corre-
sponding rectangular coordinate. Also, «Jk is the perfect
antisymmetric tensor, which is 0 if two or more subscripts
are alike, 1 if they are in the order 123, 231, or 312, and
—1 otherwise. Summation over repeated indexes is to be
understood when not stated explicitly.

In de Gennes's approximation there are three parame-
ters related to elastic energy, which we have called C~ ',

C2, and C4 . The Oseen-Frank expression in terms of(2) (2)

director variation contains five parameters: the helicity qo
and four elastic constant X», X2z, EC33, and E2& (see Refs.
2—4). The last constant %24 goes with a divergence term
that de Gennes discarded from his simplified Landau
theory. Static equilibrium configurations surrounded by
boundaries of predetermined orientation are not affected

DIRECTION REPRESENTATION OF STRAIN
ENERGY

I

The Oseen-Frank strain energy of a uniaxial cholesteric
may be represented by a sum of five vector functions Vi
to V5 multiplied by material parameters E~ to E& that are
functions of qo and the four K|j, as follows:

5

gZ;V, , (3)
i=1

where

Vi ——(divn) /2,

V2 ——(n curln) /2,

V3 = ( n X curl n ) .( n Xcurl n )/2

V4 ( i,j J J iljij J)/2

V5 ———n.curln .

(4)

n is the local unit vector in the direction of the principal

by the omission of that term but it has an effect on con-
figurations bounded by free or elastically attached surface
layers, including some theories of the blue phase. 5'6

As pointed out by de Jeu, a second-order expansion
yields the same value for E» as for %33 so that the two
should approach one another as temperature rises and or-
der parameter decreases. This accounts for the second
missing parameter in de Gennes's expansion.

Schicle and Trimper recently extended the tensor
theory to third order in Q for nematics. They showed that
one of the third-order terms will remove the degeneracy
between E» and EC33 but they followed de Gennes in dis-
carding K24 and the associated divergence term. In this
paper we will show the relation between all five of the
Oseen-Frank terms and all of the second- and third-order
terms in the Landau expansion of the strain energy for a
uniaxial cholesteric.
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TENSOR REPRESENTATION OF STRAIN ENERGY

In a uniaxial region of a cholesteric or nematic liquid
crystal when a director n has its ordinary meaning, the or-
der tensor elements may be expressed as

QIj ——S ninJ— lj

3

de Gennes made the theory simple by discarding terms
higher than second order in Q in the strain, and also by
omitting a term that would contribute to V4. In the nota-
tion we shall adopt, de Gennes's strain terms are

and

(2)Gi =Q;,;kQ;,;k,
(2)G2 =Q,J.,jQ;k, k

(2)G4 eljkQII Qjl, k

(7.1)

(7.2)

(7.3)

The order of the first two indexes on Q is irrelevant since
Q and its derivatives are symmetric.

The second-order expression in Q that de Gennes dis-
carded is

G'3" =Qij, kQIk, j . (7.4)

G3 ' makes possible the separation of the divergence term
from the rest of the energy but it still does not differen-
tiate between splay energy Ki Vi and bend energy K3 V3.

By algebraic manipulation or by comparing of numeri-
cal values for various strains it can be shown that if the
order parameter S is invariant and the Q tensor is uniaxi-
al,

Gi '=4S [(Vi+ V3)+ V2+ V4],

G2 ' ——2S (Vi+ V3),
(8)

G3 ' ——2S [(Vi + V3 )+ V4],
G4"' —S'V, .

Note that there is no way to separate V~ and V3 among
Eqs. (8). Conversely,

axis of the uniaxial liquid crystal.
The parameters E; of Eq. (3) are related to the Oseen-

Frank elastic constants and helicity as follows:

sc, =sr„,
X2 ——E22,

K3 ——%33,

&4 =&2&+&24

K5 ——qpE22 .

The term E4 V4 is often omitted because its contribution
to total energy may be changed from a volume to a sur-
face integral by the application of Gauss's theorem. Con-
sequently, if the surface orientation is predetermined the
equilibrium configuration does not depend on V4. This
argument does not apply if the surface orientations are not
fixed.

V2 ——(Gi ' —2G3 ') j4S

V4 ——( —G2 ' + G 3
'
)l2S

(3)Gl =Qij Qik, jQkl, l ~

(3)
G2 Qij Qik, kQjl, ! ~

(3)G3 =QijQik, lQjk, l ~

(3)G4 =Qij Qik, lQjl, k

(3)
G5 =Qij Qik, IQkl j

(3)G6 Qij Qkl, iQkl, j

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)

There is also a helicity term that is third order in Q,

G7 eijkQilQjm Qkl, m
(3) (10.7)

The algebraic derivation of the relation between GJ
'

and of the vector terms V, is extremely tedious. We origi-
nally obtained them by computing numerical values of V,
with Eqs. (4) for several independent forms of strain, then
computing values of GJ

' for the saine strains with Eqs.
(7), and finally solving the resulting set of linear equa-
tions. Results were further verified by numerical evalua-
tion of V; and GJ

' with other, different strain fields.
We find that if the order parameter S is invariant and

the Q tensor is uniaxial,

G'i ' ——2S ( —Vi+2V3),

G2 ' ——2S (V, —2V3),

G3 ——2S ( Vi + V2+ V3+ V4),

G4 ' ——2S (2Vi —V3+2V2),

G5 ' ——2S ( —VI+ 2V3 —V4),

G6 ——4S ( —Vi —V2+2V3 V4),(3)

G',"=S'V, y3 .

Since there are seven tensor functions, GJ ', and only five
vector functions, V;, the tensor functions are not all in-
dependent for uniaxial liquid crystals with invariant order
parameter. We need use only the first four tensor func-
tions to give the inverse relations

THIRD-ORDER TERMS IN THE Q TENSOR

In the preceding section we listed the four independent
second-order functions GJ '. To extend the series to third
order, we have made an exhaustive search of all nondegen-
erate third-order scalar contractions of the general form
Q,&QkI Q ~, with the restriction of uniaxiality. Each
subscript appears twice in the contractions, as they do in
Eqs. (7). As shown by Schiele and Trimper, the Oseen-
Frank elastic constants E~~ and E33 are not degenerate in
such third-order terms.

There are six different third-order expressions that are
not identically zero and that are second order in deriva-
tives of Q. They are
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I

V, =(6', '+26' ')/2S

V2 ——3( —26'i ' —62 '+2G3 ' —64 ')/4S
(12}

PARAMETERS ESTIMATED FROM
PUBLISHED DATA

V3 ——(26'i '+G2 ')/2S

V„=3( —6,"'+6,"')/4S' .

We may also show that for uniaxial tensors,

6()+(6 6, }/2

66 ' ——461 '+2G2 ' —263 ' .
(13)

The last two relations would not apply in a theory that did
not make the liquid crystal strictly uniaxial. Two more
elastic constants would appear in such a more general
third-order Landau theory.

Schiele and Trimper give three rather than only two re-
lations among the first six third-order expressions. Their
expressions for 6'i ', G2 ', 6') ', and 62 ' are equivalent to
ours. Their expressions for 66 ' would be equivalent to
ours if we were to assert that V4 is zero. They actually
use only Gp', G2 ', and G6 ', which suffice to lift the de-

generacy between I(. » and K33 in their final discussion.

CONSTANTS FOR THE THIRD-ORDER
LANDAU THEORY

4 4~ C(3)6(3)+C(3)6(3)
7 7

(14)

Comparing this with Eq. (3) we may conclude that

sc, =s'sc"'+s'sc,"'+ . . (15)

By turning Eqs. (9) and (12) around it can be shown that
the constants CJ" of Eq. '(14) are related to the constants
K ") of Eq. (15) as follows:

We have shown that the Landau expansion for the
strain energy of a strictly uniaxial cholesteric liquid crys-
tal may be expressed in the form

r

Published data for MBBA and PAA (see Ref. 9) and for
E-7 (see Ref. 10) will now be analyzed to obtain estimates
of the elastic constants associated with the third-order ten-
sor theory. Since these liquid crystals are nematic the
chirality constant K5 is 0. Unfortunately there are no
published measurements of K; for cholesterics so we are
unable to give examples of the complete theory. The data
for PAA, MBBA, and E-7 include the first three Oseen-
Frank elastic constants E1-, K2, and K3, and the magnetic
anisotropy or, for E 7, the -dielectric anisotropy, as func-
tions of temperature. The nematic-to-isotropic transition
temperature i.s also given.

We may reasonably assume that magnetic or dielectric
anisotropy is nearly proportional to order parameter in
these materials. In order to get the constant of propor-
tionality we have assumed that the order parameter at the
highest temperature for which the data were tabulated is
given by the Maier-Saupe theory. "' The data are prob-
ably not precise enough to warrant a correction for
thermal expansion.

We wish to determine the coefficients in a power series
of the form shown in Eq. (15). We have plotted the ratio
of the three known elastic constants to the square of the
order parameter versus the order parameter in Figs. 1—3.
We should obtain horizontal lines if there were no term of
higher order than second, E ', or straight sloping lines if
there were no term of higher order than third, X 3', in the
Landau expansion of the terms in a particular elastic con-
stant.

In fact, nearly all the curves show unmistakable upward
curvature. We could simply add a second-order polyno-
mial term to fit this upward curvature. Instead, we have
chosen to use a function for the last term that diverges
when the order parameter, S, approaches unity. The par-
ticular form we have chosen is

( (2) g (2)/4

C2 ——(I(.P E4 )/2=(1(. 3
'——X4 ')/2,

(16}

O K„
o K&&

o Kpp
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1
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FIG. 1. Variation of Ef; /S2 with S for MBBA (see Ref. 9).
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FIG. 2. Variation of E;g /S with S for PAA (see Ref. 9).

squares fitted to the data. The solid curves are obtained
from a least-squares fit with the condition that Kii and
E33 must converge at S=0. - The dashed curves are least-
square fits without that condition. The data for Kii and
%33 are weighted in inverse proportion to the rms error in
the fit on the dashed curves before getting the solid
curves. The result of this weighting is that the rms error
of each curve is increased in the same proportion. The in-
crease in rms error in the solid curves is well within the
uncertainty of the fit in each case. The parameters deter-
mined by the fitting are listed in Table I.

In all the examples we have studied K»/S and E33/S
tend to move toward move toward one another as order
parameter approaches zero. Although the data do not
demonstrate that the curves for Kii/S and K33/S con-
verge at zero order parameter, they are consistent with
such a hypothesis in each case.

Since there are no measurements of K24 we shall resort
to the assumption that

K24 =(Kii —K22)/2 .

~(2)+~(3)S+~(4)
g

S
1 —S

2
This relation was derived by Nehring and Saupe4 using a
model involving only nearest-neighbor interactions. If
this model is accurate to third order in Landau theory
then

=E "+KI"'S+K;"'(S'+2S'+3S'+ (18) K(n) (K(n) +K(n) )/2 (20)

The liquid crystal elastic constants should diverge and the
order parameter should approach unity simultaneously if
the nematic crystallizes directly into a solid. If a smectic
phase lies between the nematic and the solid phases, the
bend constant, K33, should diverge at higher temperature
or lower order parameter than the splay constant, K~~. A
"virtual" smectic state may account for the greater curva-
ture in the K33 curves than in the K» curves for most of
the materials listed. However, we do not think either the
data or our choice of divergent function are sufficiently
accurate to warrant using different low-temperature tran-
sition temperatures in our curve fitting.

Figures 1—3 show curves of this form that are least-

5 I I I I l I I I I ) I I I I
) I I I I

) I I I I

TABLE I. Elastic constants and fitting errors. Units are
10 dyn.

MBBA

Fit with E~~ ——K33 at S=O:
] .272

K'i ' —0.072
rms error 0.0013

Best fit:

PAA

2.381
—0.687

0.0010

E-7

1.608
0.379
0.000 56

where n is 2 or 3.
Finally we note that the constants CJ"' in Eqs. (2) and

(14) could depend on temperature as the constants A(")(T)
do. We hope that this temperature dependence is small
enough that the estimation of the constants CJ"' from data
at different temperatures will be approximately correct.

CV
Ch

O~

Cl0 2

K(2)
1

K(3)
1

rms error

K(2)
2

K(3)
2

rms error
Fit with K» —K33

K(2)
3

K(3)
2

rms error
Best fit:

1.213
0.046
0.0012

0.821
—0.041

0.0014
at S=O:

1.272
0.485
0.0026

2.468
—0.886

0.0009

1.267
—0.560

0.0008

2.381
1.280
0.0035

1.622
0.355
0.000 54

1.594
—0.389

0.0026

1.608
1.740
0.0039

I

I I I I I I

0 0.2
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0.4 0.6 0.8
S

FIG. 3. Variation of K;; /S with S for E-7 (see Ref. 10).

K(2)
3

K")
3

rms error
From equation (20),

K(2)
4

K(3)
4

1.388 2.081
0.253 1.960
0.0024 0.0032

assuming X» ——K33 at S=0:
1.046 1.824

—0.056 —0.624

1.514
1.740
0.0038

1.576
—0.045
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CONCLUSIONS

We have written a Landau expansion for strain energy
in uniaxial cholesteric liquid crystals that is complete to
third order in strains. We have verified that the Landau
theory predicts no difference between KP' and Ks ', and
that it predicts five independent third-order terms if the
tensor is uniaxial.

The phase transitions of cholesteric and nematic liquid
crystals are rather strongly first order. The order parame-
ter is usually more than 0.4 just below the isotropic transi-
tion. Consequently a Landau expansion to third order is
not a very precise description of their behavior. However,
it is our hope that a better qualitative understanding of
their behavior near disclinations and in other regions of

high strain can be achieved through the merging of
thermal and strain energies in one unified theory. We be-
lieve that it will prove helpful to have the elastic parame-
ters listed here, imprecise as they may be, in such an en-
deavor. In the neighborhood of a disclination, particular-
ly, the restriction that the tensor Q be uniaxial is also a
severe limitation. However, there are no data at present
that would hint at the magnitude of the two additional
constants that would be required in more general theory
with all seven third-order terms.
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