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Anomalous diffusion in steady fluid flow through a porous medium
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Diffusion in steady fluid flow through a porous medium with large fluctuations in the pore diam-
eters is studied. For incompressible fluids, there are singular corrections to hydrodynamics in three
dimensions and logarithmic divergences in d =2. When the constraint of incompressibility is re-

laxed, we recover recent results for diffusion in a random environment.

I. INTRODUCTION

It has long been known that convective coupling of a
scalar contaminant to a sufficiently chaotic velocity field
can dramatically enhance diffusion. Strong turbulence,
for example, can decrease mixing tiines by many orders of
magnitude. Even in equilibrium, thermal fluctuations in
the velocity lead to long-time tail anomalies in the hydro-
dynamics of diffusion in dimensions d &2 and logarith-
mic divergences in d =2. A more striking breakdown of
hydrodynamics occurs for dimensions d & 2.2

Turbulent and thermal fluctuations are chaotic in both
space and time. One might ask just how chaotic a flow
need be to significantly effect the long wavelength proper-
ties of diffusion. In this paper we investigate diffusion in
the presence of a spatially chaotic but time-independent
velocity field and show that spatial chaos by itself modi-
fies the infrared properties of diffusion much as thermal
fluctuations do.

The physical system which we have in mind is a porous
medium through which fluid is pumped at a slow, con-
stant rate. We shall examine how a passive contaminant
moves under conditions of steady, laminar flow. A crude,
microscopic model of such a system is a network of nodes
connected by pipes of random length and diameter
through which fluid is steadily fiowing (Fig. I). The ran-
dom pipe diameters and directions lead to static velocity
fluctuations about the mean-flow velocity. We shall be
interested in diffusion on length scales that are large com-
pared to the spacing between pipes. We shall further as-
sume that fluctuations in the pore diameters are large, so
that there are correspondingly large fluctuations in the lo-

cal flow velocity about its mean value.
To study the hydrodynamic limit, note first that in the

absence of diffusion, the equation

)+V (fv)=V (DVQ), (2)

where the diffusion current has been expanded in gra-
dients of P, and D ( x) is the diffusion constant which in
principle may have the form D(x)=D+h(x), where
h(x) is a random variable of mean zero. We will later ar-
gue that both 6 and the higher-order gradient terms are
irrelevant to the long wavelength physics in the
renormalization-group sense, as are all cumulants of v
higher than the second. We shall work in the limit of
small mean flow velocities, which allows us to neglect an-
isotropies in diffusion parallel and perpendicular to the
flow. Accordingly, we inv'estigate the model

P+ v o.V Q+—V (Pv )=D V g,at

where v(x) is a Gaussian random variable with zero
mean, and vo is the average velocity. For vo much less
than the speed of sound, one usually expects the fluid to
be virtually incompressible so that

at /+V (Pv)=0

expresses the conservation of P, given that the convective

f current is Pv. In the above, P is a coarse-grained con-
centration of material, and v is the microscopic velocity
field averaged similarly. Adding diffusion to the problem
leads to the modified equation

( vj(k)vt(k ') ) =2f (k)PJt(k)(2m )"5(k+k '), (4)

FIG. 1. Portion of a two-dimensional network of randomly
placed nodes connected by pipes of random thickness.

where PJt is the transverse projection operator, Pjt(k)
=5Jt —kjktlk, and the 5 function expresses the transla-
tion invariance of the velocity-velocity correlation func-
tion. It can be shown that if f(k)=F+O(k ), only F is
a relevant variable at long wavelengths. Accordingly, we
set f(k)=F. The effect of small deviations from in-
compressibility is discussed below.

Our model is related to the continuum limit of the
"general nonsyrnrnetric hopping model" introduced by
Derrida and Luck. Their model describes the diffusion
of particles on a cubic lattice where the probability for
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hopping from site A to site B is not equal to that of going
from B to A. After identifying a parameter vp as the
average rate of particle flow, Derrida and Luck show that
the theory is singular in the vp~0 limit in d =2 e—di-
mensions. Luck" then argues that the continuum model

P + v p. VP + V (P v ) =V' P,

( uj(k)ui(k ')) =2F5jt(2m )"5(k+k ')
(5)

(vtu~ )=0,
(7a)

(ut ' (k)vj ' (k')) =2F ' Pi&' (k)(2n. )" 5(k +k'),

Pjt =5Jt kJ kt Ik,—Pjt =kl ki/k (7b)

where A, and A, are dimensionless coupling constants in-
troduced to keep track of the strengths of the couplings
between the velocity fluctuations and g, while F and F
measure the absolute size of the transverse and longitudi-
nal fluctuations. This case of diffusion in a highly
compressible fluid might be physically realized by pump-
ing gas through vycor. By varying the gas density, the
compressibility and hence the ratio of F to F can be
changed.

Generally, the quantities of interest in this theory can

be defined as follows. Let P( k, to) be the Fourier
transform of g(x, t)8(t), where 8(t) is the unit step func-

tion, and let Pp(k)=g(k, t=O). Then for v(k)=0,

fp(k)
(8a)—iso+i v 0'k+Dk

g(k, tp) =

In the presence of velocity fluctuations, we define

D~(k, co) and vz(k, co) by

(P(k, co) )—:gp(k)/( iso+i vs k—+k Dtt ) . (8b)

Accordingly, k Dtt(kco)+, ik vie is the Fourier trans-
form of the diffusion kernel of the effective integral equa-

tion for (itj(k, t) ). The more physical quantities to calcu-
late are the normalized moments of (P(x, t)). Let gp(k
=0)=f

droop(r)=tPp

and define the normalized mo-

ments of (P(x, t)):
xz(t)= J dxx„(P(x, t))/gp=tvg(t),

xz„(t)=f dxx&x, (P(x, t))leap, (9b)

(9a)

Ax„„(t)=x~„(t) x~(t)x (t) =2tDg (t)5—~„.

reproduces the most singular part of the hopping model in

perturbation theory as vp —+0. Thus (5) is the correct
continuum limit of the hopping model. Model (5) has
also been recently analyzed by Fisher in the case of
vp ——0. One immediately sees that (5) describes diffusion
in a frozen random velocity field which is so compressible
that the transverse and longitudinal fluctuations in v are
given equal weights. We'interpolate between our model
and (5) by introducing a generalized model:

r

at
+vp V DV g= ——A, V (v g) A, V.(v—P), (6)

For the case v(k)=0, standard diffusion in a system
moving at velocity vp results, and we can easily show that

vg =vo, Dg =D . (10)

With the randomness added, one expects the behavior of
Dz(t) and vz(t) to be more complex

As in the special case A, =A, ,F =F~ investigated by
Luck and Fisher, we find in general that perturbation
theory breaks down below two dimensions. To see this,
consider an expansion of Dtt—:DR(k=O, co=0) for the
case of vp=O to O(A, ). One can easily show that

Dtt ——D+2 fd —1 ~'rFr d'q

2 ~rFr, d'2 L L q 0 4

d D qr

Note that that transverse fluctuations promote mixing
(i.e., D increases), while longitudinal fluctuations cause D
to decrease. For d &2, the coefficients of A, r and Ar
diverge and perturbation theory breaks down. Because
the transverse and longitudinal terms come in with oppo-
site signs, cancellations can occur, and (11) is indeter-
minant. One needs a renormalization group to sort out
the true, asymptotic behavior.

We find that the general model (6) can exhibit behavior
quite different from that reported by Luck and Fisher5
for model (5). Let XT r, A, T r, (Fr—,—r. /D)' . Below two di-
mensions, the isotropic A,r, ——A, T ——v'2m. e fixed point

, analyzed by Fisher remains stable in the more general
context of model (6), and will control the very long-time
diffusive behavior Dtt(t) of any fluid which starts with
both A,L and A, T nonzero. However, there is an additional
fixed point at A, T ——v me, Xr ——0 which describes an in-
compressible fluid. For Xr «A, T, this fixed point will

X T/XLcontrol Dtt(t) for intermediate times t« t, -e in
d =2. In d =2, for instance, this transverse fixed point
leads to the "super-diffusive" behavior, D(t)-D(lnt)'~
for an incompressible fluid, in contrast to the result
D(t)-D(1+4/1nt) reported by Fisher for isotropic ve-
locity fluctuations.

Even without a renormalization-group analysis, one can
see a lot of what is happening physically in the fluid
directly from Eq. (11). Just as in turbulence, the trans-
verse fluctuations shear the fluid, and enhance diffusion.
In contrast, longitudinal fluctuations tend to suppress dif-
fusion. This suppression can be explained by considering
what happens when a compressible fluid runs into a par-
ticularly constricted part of the network of pipes. Be-
cause the fluid is compressible, its density will be driven
up and a "traffic jam" develops. Because the contaminant
gets stuck in the "jams" convective mixing becomes less
efficient, and the diffusion constant is reduced. Equation
(11) shows that the actual diffusion is the result of a com-
petition between shear mixing and traffic jams.

The effect of nonzero vp is to ultimately cut off the
logarithmic singularities discussed above. To see this,
note that because the random field has very short-range
correlations, one would expect that any anomalous dif-
fusive behavior is caused by a blob of material remaining
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—2&=Dvp (12)

in the same region long enough to interact strongly with
the same quenched random velocity. If the blob is being
quickly convected along by vp, it will sample a region
which is large compared to the correlation length of the
randomness in the time the blob takes to appreciably dif-
fuse. In the limit of large vp, effects due to the random
velocity field should cancel out. Equivalently, if we ob-
serve the system on a timescale long enough for the con-
vection by vp to matter, we should see conventional dif-
fusive behavior. If we look at shorter times, we should see
anomalous diffusion caused by the randomness. As a
rough guide, the convective flow vp should become im-

portant at a time ~ such that the rms distance a blob has
diffused is equal to the distance it has convected:

We indeed find this crossover behavior for asymptotically
small vp and 1/t. Criteria (12) is valid for d &2. Below
the critical dimension d =2 there are O(e) corrections to
the exponent —2.

II. RENORMALIZATION GROUP

To analyze model (7), we first Fourier transform using
the conventions

f ( k, ro) =f d x dt e'"' " ' " 'f(x, t),

Here, the A is a cutoff initially of order ap, where ap is
a microscopic length scale. Equation (7) now becomes

g(k, to) = gp(k)+ —f [A, v (k —q)+A, v (k —q)]P(q)—ia)+ik vp+Dk
(16)

V' +

= g(k, ~), fo (k)
I(d + I k' vo + Dk

which can be written graphically as in Fig. 2(a). The for-
mal iterative solution of (16) is shown in Fig. 2(b). The
series obtained by averaging over the velocity field is
displayed in Fig. 2(c). I.et g(k, co) be the sum of the
one-particle irreducible graphs with one arrowed line run-
ning through them [Fig. 2(d)]. Then the standard resum-
mation using geometric series gives

(P(k, to) ) = gp(k)

iro+D—k +ik vp g(k, ro—)
(17)

Thus g(k, to) directly yields the renormalized velocity
and diffusion kernels. The upper critical dimension of the
theory is suggested by evaluating the leading contribution
to g(k, to). For d & 2 naive perturbation theory works in

the k —+0, co—+0, vp —+0 limit, while for d(2 the loop
integrals are infrared divergent.

Following methods developed by Forster et al. , we
formulate a renormalization group to calculate properties
of (f) for d near 2. First we set 4= 1 for simplicity.
We define a family of effective theories parametrized by l

by averaging all components of v ( k ) such that
e &

~

k
~

& 1 and then rescaling. We find that D and vp
are renormalized by the graph in Fig. 3(a), A, ' by the
graph in Fig. 3(b), and F ' by the graphs in Fig. 3(c).
We rescale using

J + + + Ik'=e k, co'=exp z(l')dl' co,
0

P'(k', to') =g(k, co),

(18a)

(18b)
+ u +

(c)

Z(k~I=~+ + - +

-+ '

v ' (k)=exp w ' (l')dl' v'~r(k') .
0

Now, we set e=2 —d, and introduce rescaled couplings

A,L QFL A,

THEFT

D ' D

FIG. 2. (a) Graphical representation of Eq. (15). (b) Graphi-
cal solution of Eq. (15) by iteration. (c) Average over the veloci-
ty Auctuations in Fig. 2(b). (d) Graphs contributing the self-

energy g( k, co).

(a) (c)

FIG. 3. (a) Graph which renormalizes D(l) and vo(l) to
O(e). (b) Graph which renormalizes AL, (l) and A, T(l) to O(e).
(c) Graphs which renormalize F (l) and F (l) to O(e).
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To 0 (e,A, z, X L ), no new interactions are generated.2 2

After choosing z(l) and w ' (1) to fix D(1) and F ' (1) at
their initial values, we find the recursion relations

d vp

1
=(1—Adk, z. ) vo, (20a)

d~L i — d —2 —2
A, TA, L, (20b)

and

dXT
22 e~T Ad~ T+ XLX T ~

2
(20c)

z(1)=2+BdA, L Adk, z—, w ' (1)=—+O(A, ) .
2

(21)

The constants Ad and Bd are related to the surface area of
a d-dimensional sphere, sd =2M /I (d/2), by

to the transverse fixed point. If A, T
——0, the flow remains

on the XL axis, but flows to large values of Xz —i.e., out-
side of the regime of validity of our O(e) analysis. It
should be noted that all flows approach the isotropic fixed
point on paths asymptotically parallel to the line
XL —X T ~

2 2

In d =2, the isotropic and transverse fixed points col-
lapse to the origin which attracts all flows. Now, for
large enough 1, any flow for which both X and X are
both nonzero comes into the origin asymptotically parallel
to the A, L

——A, z line, so that its long-wavelength behavior
will be that of the isotropic case. The A, z axis flows along
itself into the origin and so has a different transverse
long-wavelength behavior.

In both d =2 and d =2—e, we can estimate how large
1 must be, for a given initial condition XL « A, T, in order

0 0
that the fluid stop acting transversely and begin to appear
isotropic. By examinin~ (20c), it is clear that this will
happen when A,LA, T-Xz or A,L-A, T. For A,L(l) «A, T(l),
Xz (1) satisfies

Ad ——2(d —1)Sd/d (2m)", Bd ——2Sdld (2m )" . (22)
dk, T = —,ezT —WdX T (23)

Note that Ad Bd =1/2——m in two dimensions. A discus-
sion of irrelevant variables is given in the Appendix.

The recursion relations (20) can be used to analyze the
flows in the (Xz),(AL) plane. Above d =2, there is a
stable fixed point at A, T

——A,L
——0. Thus, the randomness is

irrelevant and the theory is diffusive. The d =2—e flow
diagrain is drawn in Fig. 4. There are two new fixed
points, a stable "isotropic" fixed point at A,L ——A, T ——v'2me,
and an unstable "transverse" fixed point at A,L

——O, A, T=~a For larg. e enough 1, any initial condition with
both A,L and A, T nonzero flows to the isotropic fixed point.
If XL ——0, there the flow remains on the A, T axis and flows

One then can notice that

A, T (1)
AL(1) =AL e"~

T0

1/2

which leads to

Xz, /XL, -e ' /(e)', d &2

X /X -1,', d =2.

which integrates to

eel
AT(1)=XT e 1+2AdXz;

—1/2

(24)

(25)

(26)

I

27TH

FIG. 4. Flow diagram in the (XL,XT) plane for d =2—e.
XL (X z ) is vertical along the dashed line ( ———), and hor-
izontal along the dashed-dotted line ( —~ —~ —~ ). The isotropic
fixed point is marked by 0, while the transverse fixed point is
marked by O. Notice that all flows enter the isotropic fixed
point tangential to the line X L,

——X z .

We will later use the above result to estimate at what time
a given fluid diffusive behavior Dzi(t), Vzt(t) crosses over
from transverse to isotropic.

The result that slightly compressible fluids behave at
long wavelengths as if they had equal longitudinal and
transverse velocity fluctuations can be understood on
physical grounds. Any small amount of longitudinal fluc-
tuations in v(r) will lead to a low density of traffic jams.
Rescaling the theory just raises this density. But, dif-
fusion in a fluid with a large density of such "slow re-
gions" can be well modeled by a random walk between the
randoinly placed jams with random probabilities of jump-
ing between jams. This is precisely the model which
Luck showed to correspond to the case of isotropic ve-
locity fluctuations, A,L ——A, T =—k.

The analysis of the model (6) near the isotropic fixed
point has been done by Fisher, and so we proceed to
analyze the behavior for the transverse case. We first note
that the scaling relations (18b) lead to the homogeneity re-
lation for the renorrnalized diffusion constant (with
XL ——0)
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l
l

l
Dtt(k, co,Xz)=exp 2l —f z(l')dl' Dtt ke, coexp f z(l')dl', XT(l) (27)

and for the moments displayed in Eq. (9),

l
x„(t,vp, Az )=e'x„ t exp — z(l )dl vp(l) Xz'(l)

0
(28)

l
Ax&„(t, vp, Xz ) =e Mz„ t exp —f z(l')dl', vp(l), Xr(l) (29)

vp(l') —1 (30)

l
where t(l)=t exp[ —f z(l')dl'], is satisfied. For l laige

0
enough, XT(l) can be made arbitrarily small for e & 0, and
arbitrarily close to A, T

——0(e' ) for e&0. Consider the
case vp

——0. Then, (30) implies t (l*)D-e tD=1, or
et -(tD)'~. For long times t, l* will be large enough
that a perturbative expansion of xz (t (l*)) will work, and
we can set

We now can use the matching procedure of Ref. 2 to cal-
culate the asymptotic properties of the above quantities as
k, rp, and vp go to zero, and as t goes to infinity.

For example, for small e the perturbation theory for
x„„breaks down in the limit of large t and small vp. It is
not difficult to show' that these divergences will be cut off
when l =I' such that the condition

2tDtt(t)5„„

el
=2Dt 1+2Adk, T

1/2

[5„„+0(A,T(l*))] .

(33)

We can now use (30) and (33) in conjunction to extract the
long-time behavior by using the fact that e' =(Dt)'~2.
For instance, if e & 0 we have

D„(t)-D(Dt)"4 as t~~ . (34)

The crossover exponent from t dominated behavior to
vp dominated behavior can also be extracted from (30) for
the case of asymptotically small 1/t and vp. It is helpful
to rewrite (30) as

4
j, l* —2 Uo

exp 2f A rAddl +
(tD)

hx„„(t(I') ) =2Dt (l')5„„[1+0(A,r (l') )] .

The matching condition (30) implies that

(31)
)&exp —4Ad A, rdl =e 4lg

0
(35)

e ' =Dt exp XTAddl
0

(32)

Inserting (31) and (32) back into (29) [after doing the in-
tegral in (32)] yields, in view of the definition (9c),

For e(0 we see that, up to exponentially small correc-
tions, the crossover occurs at t-Dv0 . For e&0, replac-
ing A, z(l) by its fixed point value A, *T ——/2eA idn (35)
gives crossover at t-Dv0 +'

We can also use the matching procedure in conjunction
with Eq. (26) to estimate the critical time t, when an al-

TABLE I. Asymptotic forms for D(k, ~) and hx»(t), and Ax»(t)/d valid in the transverse case
XL ——0, in the limit k, co, 1/t go to ze'ro. Here Ds is the constant part of the renormalized diffusion
constant for d & 2. It can be shown that D~ & D.

e&0

D„(k,o), (u, =o)

=Da [1+{const)k"]
1/2

11n-
k

k

Dg(0, co), (up ——0)

=D [1s+{c sto)neo'~ 2)
' 1/2

11n—

-CO-"4

co —Dk

co Dk k
A

—e/2

Crossover at

co Dk

@&0

a=0

e&0

hx»(t)/d, t «~
=2Dat[1+{const)t '~ ]

—t(lnt)'

t 1+a/4

hx»(t)/d, t »~
=2D„t[1+{const)uo' ]

1/2
1-t ln-

up
—e/2

r(up)

~-D/u p
2

~-D/u p
2

~-(D/u )(AD/u )'/
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most transverse fluid will cease to appear transverse. We
assume t, «Dup for concreteness. Now et'-(tD)'~2,
so plugging into (26) yields

t, -D exp(2A, T /A, L ), d =2

t, -D 'e (A, z;/A, L,), d =2—e .
(36)

If one watched a real fluid, for which 0 & A,L, «Xr, in two
dimensions the diffusion would appear superdiffusive
with DR(t)-(lnt)' for long times. Eventually this pro-
cess will be cut off either by the presence of a nonzero up

when t =&=Du p or by the growth of A,L (I*) forcing the
fluid to appear isotropic. In either case, the fluid will be
forced back to diffusive behavior, D(t)-DR. As r has a
power-law dependence on vo while t, is exponential in
(A, z/A, L, ), expect that there are a large number of fluids
and geometries for which t «r « t, .

We have used the above techniques on all of the corre-
lation functions defined by (8) and (9). Our results are
summarized in Tables I and II. The properties of the
transverse fixed point are summarized in Table I. In this
case, we always find that x&(t) =upset with no corrections,
as is discussed below. The isotropic correlation functions
DR(t) for the case up ——0 in Table II were calculated by
Fisher. We have used his 0 (e ) value of z(l) valid near
the isotropic fixed point

I
vp(l) = vp exp (z —1)dl'

0

Using (28), we obtain

x„(t)=e vg(l)t(l)=utpt . (38)

It is also interesting to examine the behavior of our
model for totally compressible flows where A, T ——0. Now

in conjunction with our matching procedure to complete
the correlation functions for the isotropic AL ——A, z case.

The exponents in Table II for x "(t) and hxzz(t) for
t»~ and e&0 are directly comparable to Luck's ex-
ponents. Our results for x "(t) agree precisely with those
in Luck's formulas (50) and (51). However, all of our re-
sults for M„„(t), i.e., the exponents which depend upon
Fisher's7 value of 1/2n. in z(l)=2+1 /2H, disagree
with Luck. Luck finds Dtt(t)-D[1 —4/ln(1/vp)] while
we find Dtt(t)-D [1+2/ln(1/up)] in d =2. Additional-

ly, Luck finds DR(t)-vp' for t »~ and DR(t)-t ' for
r» t, while we find in agreement with Fisher that Dtt(t)

up for t »r and Dtt (t)-t for r'» t.26' 2

It should be noted that for the incompressible case
(XL ——0), x (t, up) is unrenormalized. This result is actu-
ally true to all orders in e. When XL, ——0, the self-energy

g is explicitly of order k for any finite l. Thlls vp is
not graphically renormalized and

1 —4z=2+ A,

4
(37) L (39)

TABLE II. Asymptotic forms for D(k, co), x (t), and x»(t)/d valid in the isotropic case

Xt. ——Xr =X in the limit, h, k, and 1/t, go'to zero. Here vR" and DR are the constant parts of the renor-

malized diffusion constant and velocity for d & 2. They can be shown to be functions of e and Xp. One

can further show that D~ &D, and v~ & vp.

a&0

Dg (k, O), ( up
——0)

=DR[1+(const)k "]

Dg(O, co), (vp ——0)

=DR [1+(const)to ~ ' ~ ]

Crossover at

co ~Dk

e&0

t 4-Dg 1+
ln(1/co)

co Dk

2P
co Dk 2

A

@&0
e=O

e&0

x&(t), t «z
=tv [1R+(const)t ' ~]
—tulip/lnt

x I'(t), t »g
= t v[R1 (c+onst)v p]

—tulip /ln(1/vp )

-tu~pu p
P E

v.(up)

~-D/u p
2

~-D/u p
2

2E

~-(D/up )
AD

Vp

@&0

Ax„„(t)/d, t «v
=2DR t [1+(const)t -

~
'

~ "]
hx„„(t)/d, t »v
=2DRt[1+(const)vo' ]

&(up)

~-D/u p
2

e&0

-2DR t 1+I 4
lnt

-Dt'-~

-2Dg t 1+I 2
ln( I/vp)

Dt

~-D/v p
2

(D/up )
AD

Vp
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For d & 2, A,L flows to zero. Thus our previous matching
procedure remains valid for this case. For d =2, howev-
er, the A, T ——0 axis is an apparent fixed line, a result we do
not believe to be true to higher order in e. Below d =2,
the situation is even less well determined. Here, A,L flows
to large values, and so our matching scheme will break
down, because we can no longer compute correlation func-
tions at the matching point in perturbation theory. Be-
cause the leading longitudinal contribution to the renor-
malized diffusion constant is negative in perturbation
theory, we believe this growth of A,l (l) below two dimen-
sions may be indicative of a localization transition. Just
what the behavior actually is in the longitudinal case for
d (2 remains an intriguing question.
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APPENDIX: DISCUSSION OF RECURSION
RELATIONS

To compute differential recursion relations, we use the
procedure outlined in Ref. 2. As usual, we integrate out
momenta between e and 1 and take the limit 6~0. We
also expand the graphs in k, Uo, and co. Because UJ(k)'s
rescaling factors w ' (ll=d/2+0(e) is positive and
chosen to make the two-point cumulant marginal, the
coefficients of higher-order cumulants of v( k ) will be ir-
relevant. Similarly, because z(l) has been chosen to make
D marginal, a random contribution h(x) to the diffusion
constant discussed in the Introduction will also be ir-
relevant at long wavelengths.
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