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The theory of line shapes in monomode weak-gain gas lasers which we have developed recently
shows that asymmetries of Lamb dips are governed by opposite lens effects which arise from popu-
lation and saturation inhomogeneities. The competition between these effects depends on the
geometrical characteristics of the laser. It is our aim in this paper to illustrate experimentally this
fact with the 3.39-um line of a He-Ne laser. To get a strongly diverging beam we have chosen a
quasihemispheric resonator whose length (57 cm) almost equals the radius of curvature of the con-
cave mirror (R =60 cm). The amplifying tube is about 20 cm long and is placed on the side of ei-
ther the plane or the concave mirror, thus allowing us to vary the saturation inhomogeneity. In the
first case the inhomogeneity is stronger and causes the maximum of intensity to be on the low-
frequency side of the line, while in the second case population and saturation inhomogeneities are of
the same order. We have repeated the experiment with two tubes having different internal diam-
eters (8 and 4 mm) in order to vary the population effects. In the case of the narrower tube one ob-
serves a gradual passage from a low- to a high-frequency type of asymmetry when the discharge
current is increased. This observation is explained by an increase of the lens effect due to saturation
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which overcomes the one due to population.

Applying our previously developed theoretical

methods, we find the results in qualitative agreement with these experiments.

I. INTRODUCTION

Since its discovery in 1964 the Lamb dip,!~3 a prom-
inent feature of line profiles in weak-gain monomode gas
lasers, has been studied extensively. Many phenomena
contribute to the formation of line shapes and their inves-
tigation is still going on. We wish to recall briefly some
of the main steps in the history of these investigations.

Lamb’s theory of the mean saturating field predicted a
symmetric line shape. However, experimental studies by
Szoke and Javan,>* by Smith,> and by Cordover and
Bonczyk® showed an asymmetry which was first attribut-
ed to collisions,>~7 i.e., to a microscopic origin. The
asymmetry was also observed in a two-mode laser by Fork
and Pollack,? but it varied from author to author and was
not even observed in some cases.’ Accordmg to experi-
ments by White,!? the center of the Lamb dip is displaced
when current or pressure are varied. Theories used in
these studies are based on the model of a “homogeneous
laser:” The field is modeled by plane waves and the opti-

cal properties of the amplifying medium do not depend on

coordinates.

However, several authors, such as Troitskii and Chebo-
taev,!! Mazanko et al.,'? and WOolff et al.!® measured the
transverse and longitudinal variation of the linear gain in
gas lasers and found that at weak discharge currents it
was parabolic with a maximum on the laser axis. At
strong currents the gain was found to decrease towards
the axis. This phenomenon is due to the inhomogeneity
of the population caused by collisions of atoms with oth-
ers and with the wall. The radial profile of the level 1s;
of neon has been measured by Schlie and Verdeyen'* who
found that the distribution was a parabola which had the
zero at the wall of the discharge tube. The inhomogeneity
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of the population of excited atoms was linked to the
discharge current by Bennett.!®

Concurrent with this work, the distribution of the elec-
tromagnetic field in the laser was studied, for instance, by
Fox and Li'® and by Kogelnik.!” The latter author
developed a matrix method which allowed calculation of
the beam parameters in a cavity containing lenses.
Casperson and Yariv'® extended this linear theory to the
case of a laser cavity with-two plane mirrors. The ampli-
fying medium is represented by a complex index of refrac-
tion with quadratic transverse variation. The asymmetry
of the line profile is explained by the vanatlon of the
volume of the mode.

The population inhomogeneity is a linear effect, but
there is also a nonlinear inhomogeneity effect due to the
saturation of atoms which is proportional to the intensity
of the field. It was invoked to explain the mechanism of
filamentation of light in high-gain lasers'>?° as a process
of self—trappmg or self-focusing. Freed and Haus?' dis-
cussed the origins of Lamb-dip asymmetries in CO: They
pointed out that a competition can occur between focus-
ing and defocusing effects due to these linear and non-
linear transverse inhomogeneities. Maeda and Shimoda?
introduced in the laser equations a transverse distribution
of the population inversion and considered also the trans-
verse inhomogeneity of saturation. Their conclusion was
that the ‘“self-focusing effect and the geometry of the
resonator are found to significantly influence the shape of
the Lamb dip.” The influence of a diaphragm in a laser
was noted by Garside.?> The lens effects due to saturation
vary with frequency and give rise to variations of the di-
ameter of the mode. Diffraction losses caused by a dia-
phragm are then frequency dependent and thus another
cause of asymmetry.
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Summing up the history of work on asymmetries of line
shapes, one may say that at the end of the 1970s the basic
macroscopic effects which shape spectral lines in gas
lasers were known, but had not been dealt with in a sys-
tematic or quantitative manner. Nevertheless, the interest
in predictions of line shapes exists. For instance, a secon-
dary frequency standard may be based on a He-Ne laser
which is stabilized on the 3.39-um absorption line of
methane. Barger and Hall** as well as Kramer et al.?’
observed an asymmetry and a displacement of the max-
imum of that line.

In 1981 Stephan and Taleb®® described a theory of
Gaussian beams in gas lasers where the field parameters
are numerically calculated under the assumption that a
homogeneous medium fills the entire cavity and that dif-
fraction effects can be neglected. The complex lens effect
of the amplifying medium modifies the wave-front curva-
ture and the diameter of the mode, and the asymmetry of
the line depends on the variation of these two parameters.
The measured line shape then depends on the method
which is used in the measurement.”’ The Garside effect
has been observed in a monomode laser by Le Floch
et al.,”® who also studied experimentally?® the influence
of the distance between the mirrors on the line shape. The
role played by length and position of the amplifying tube
has been investigated by Stephan®® and by Cérez and Feld-
er3! In this work the saturating fields have been
represented by their mean values.

We have recently proposed a theory of a monomode
laser’? in which both the transverse inhomogeneities of
the population and the transverse and longitudinal varia-
tions of the saturation are taken into account, as well as
the influence of the Garside effect, the geometrical pa-
rameters of the resonator, and diffraction by a diaphragm
on the field distribution. Our methods allow for the nu-
merical calculation of the spatial distribution of all pa-
rameters characterizing the field. We have applied our re-
sults to the question of whether a cavity geometry exists
such that on one of the mirrors the beam has the same
complex curvature g as the beam in the same passive reso-
nator or, as we say, a geometry which stabilizes the trans-
verse parameters of the output beam. The answer to this
question has led us to a particular geometrical configura-
tion®® which has been successfully tested by experiments.
There is another special case in which we have verified
our theoretical results. As the asymmetry of a line de-
pends on the competition between the inhomogeneities of
population and saturation, we have looked at the case
where the lens effects due to these inhomogeneities are of
the same order, but opposite to each other. In that case
one finds a quasisymmetric line. By varying the discharge
current, an asymmetry of the line shape in either sense
can be created.’* Experiments on asymmetrical Lamb
dips in a xenon laser have been published simultaneously
to our work by Asami et al.*> Their analysis includes the
spatial gain distribution of the laser medium, the homo-
geneous broadening of the spectral line, and the saturation
and atomic collision effects but neither the geometric nor
self-focusing effects.

The purpose of this paper is to give some additional ex-
perimental proof for the applicability of our general

theory.3? It is to be understood that we are concerned
here with macroscopic properties of the laser which act on
line shapes. We do not consider any property such as
those described by Bordé et al.3® We are using a laser
with strong transverse and longitudinal variations of the
field distribution. This feature allows us to change the
relative weight of the contributions of the two types of in-
homogeneities by varying the position of the amplifying
tube. This tube is short as compared to the length of the
resonator. In addition, we have used two tubes of dif-
ferent diameters to show the dependence of the effect on
the radial distribution of population.

To render this paper more explicit we recall in Sec. II
the principal ideas and equations developed in previous
work. Then, in Sec. III, we describe our numerical and
experimental results. We give a qualitative comparison
between the observed asymmetries and the line shapes cal-
culated for different values of the gain. We also give the
variations of the diameter of the mode in different cases,
showing that, in agreement with a previous prediction?
by Le Floch et al., it varies along the laser axis. Further-
more, we numerically calculate the variation of the curva-
ture of wave fronts and show that it agrees with the pre-
dictions obtained from the Gaussian beam model.

II. RESONATOR WITH AN INHOMOGENEOUS
AMPLIFYING MEDIUM

In this section we recall some of the main equations and
approximations which we have introduced in our previous
work?®>33 to which we must refer for details. We are con-
sidering the model of a gas laser which is based on spatial
distributions of fields, losses, and population.

The conditions for the field inside the cavity are ob-
tained from Maxwell’s equations by means of the parax-
ial approximation. We are using scaled coordinates
p=r/W, and E=cz/wW}3, where r and z are cylinder
coordinates, W, is the beam-waist radius, and o is the an-
gular frequency of light. Quantities belonging to the for-
ward beam (in positive z direction) are distinguished from
those belonging to the backward beam (in negative z
direction) by subscripts f and b, respectively.

Let F(p,$) be the electric field strength after separation
of the factor exp[i(kz —wt)]. We write the electric field
strength in the continuous-wave regime as

E(T,t)=F(T)expli(kz —wt)] . ~ (1)

In paraxial approximation, the equations for the functions
F characterizing the forward- and the backward-prop-
agating wave are then

Ff ’ (Za)

2 a
V3-Fy(p,£)+2id:F;(p,6) = —%W% [1+6—f
0

2
V3Fy(p,£) —2i3.Fy (p,£) = — % w2 F,. (2b)

a
1+—
€o

The operator V7=32+p~'9, is the Laplacian in the
transverse plane {=const.

On the right-hand side occurs the polarizability ay,
which, in the weak-gain approximation, consists of a
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linear part and the saturation term which contains the in-
tensities of the electric field. In a three-step procedure
ay,p, will be approximated by simpler expressions, better
tractable in analytical and numerical calculations.

Step 1. We recall that both the linear polarizability and
the coefficients of the electric field intensities in the sa-
turation term are proportional to the population differ-
ence between higher and lower energy states [see Ref. 37,
Eqgs. (A2), (A15), (A16), (A22), and (A23)]. In terms of its
on-axis value N this number is given by

N =Ny(1—up*)=No(1—r2/r}), s

where u is a dimensionless parameter depending, e.g., on
the diameter of the tube.

At a point (p,£) the polarizability in the forward and
backward beams can thus be written in the form

aslp,O)=[ao+Bi | Ef(p,)|?

+B: 1 Ey(p,8) | 211 —up?) , (3a)
ay(p,5)=[a0+B: | Ef(p,§) |
+B1| Ep(p,8) | 21(1—up?) . (3b)

The approximation (step 1) consists in assuming that the
coefficients ap, B;, and [, take the same values at any
point in the tube. They are determined by atomic data of
the active medium. Expressions for them can be found in
Ref. 37 (where B, and 8, had been named «; and a,). The
coefficient B; takes care of the self-saturation of a wave,
whereas (3, is responsible for the saturation by an oncom-
ing wave, a phenomenon from which the Lamb dip ori-
ginates. The analysis of the two parameters shows the
form of the sub-Doppler line.*

Step 2. In the saturation term the field intensities are
assumed to have the transverse shape given by a Gaussian,
i.e., the same p dependence as one would find in a passive
cavity. This assumption gives
_21‘2)_ 2

| E(p,§) | *= | E(0,£) | *exp W2

4

Step 3. We consider the dependence of the nonlinear
part of the polarizability on the radial coordinate p which

is of the form
wo
(1—up*exp —2Fp2

In any transverse section we approximate this form by a
parabola 1— A (£)p?. Each parabola may be visualized as
the transverse cut of a two-dimensional coaxial surface
whose equation is p=pW /W), p being a (positive) con-
stant. This means that we define a function A4(§) by
demanding that the condition

(1—up?) | Ef(p,€) |2 =:(1—A(£)pD) | Ef(0,€) |
is satisfied on the surface p=Wp/W,. With (4) we get

p——1 = =2
A =—L— 4 |u—

P
1+4£2 1+4£2

In these equations W ({) represents the beam radius of a

exp(—252) . (5)

fundamental Gaussian mode. We recall the relation
(W /Wy)?>=1+4L% The constant p is a positive parame-
ter whose upper bound is determined by the condition that
the surface on which the equality holds lies inside the
tube. Figure 1 shows the function
(1—up®expl —2p*/(14+4£%)]
14482

together with the approximating parabola for the value
u =8.8 1072 in one laser we are using in our experiment
(to be described in Sec. III). The description of the sa-
turated medium has been simplified since, e.g., neither the
spatial harmonics (saturation gratings) nor the variation
of the collision parameters as a function of intensity have
been taken into account.

The nonuniform parts of the polarizability of the for-
ward and backward waves can now be written as

a,,_,-:eon(g)—pz[uao+A60Tf(§)] y ) (6a)

Y
Y4
Yy 1

08
0.6
0.4

0.2

FIG. 1. Illustration of the parabolic approximation of the
function Y =(1—up?)exp[ —2p%/(1+4£*)1/(1+48%).  Solid
curve: function Y. Dashed curve: parabola Y;=1—A4(¢)p?
with p=1 in A(§) [see Eq. (5)]. Dot-dashed curve: parabola
Y,=1—A(£{)p? with p=1.5. These curves have been calculated
for a quasihemispheric cavity 57 cm long with a concave mirror
having a radius of curvature R =60 cm. In this case
W,=0.376 mm on the plane mirror where {=0. p is the scaled
transverse coordinate such that p=r/W,. Two values of the
scaled longitudinal coordinate §=M/2#W% have been used:
£=0 in (a) and £{=2 in (b) corresponding to z =523 mm near
the concave mirror. The value u =8.8X 1073 has been used in
A (). These curves show that A (&) ensures the same approxi-
mation for y along the entire length of the laser. They also il-
lustrate the spreading of intensity as shown by the different
scales in (a) and (b). ‘
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Qpp =€0Tb(§)—Pz[ua0+A€0Tb(§)'] ) (6b)

where we have introduced the auxiliary functions of a sin-
gle variable:

€T (&)= B1| Ef(0,8) | *+ B, | E4(0,6) | %, (7a)
€Tp(&):= By | Ef(0,8) | >+B1 | Ep(0,6) | 2. _(7b)

The important result of the three-step procedure is the ex-
pressions (6a), (6b) for the nonlinear part of the polariza-
bility showing that in this approximation the response of
the medium is summarized by a quadratic- complex index
which varies along the axis.

We consider now a passive cavity in single-mode opera-
tion. It is well known that the corresponding field is the
“fundamental Gaussian”

Fo=(go/q)exp(—p*q0/q) (8)

whose curvature is given by q/go=1+2i{. The beam
waist is located at £, and its radius W) is related to the
curvature by kW3 =2ig,. The parameters {, and W, are
determined by the radii of curvature and the location of
the mirrors via the boundary conditions. The usual con-
vention is to put the origin of the § axis at the beam waist,
§0_0 At an arbitrary position £ the beam diameter 2 W
is given by the formula (W/ Wo)z—-l—|~4§2 The back-
ward beam corresponding to expression (8) is obtained by
taking the complex conjugate.

If a medium (laser active or not) is introduced into the
cavity, the beam will generally lose its property of being
Gaussian. However, if the medium can be described by a
quadratic index (which is a complex function), the de-
formed beam will also be Gaussian, though with another
curvature, denoted by ¢.

We define the transverse beam parameter variations for
the forward and backward beams by

ny=2iqo(1/qr—1/qz) ,
9
Ui =21q0( 1/2]'1,— l/Qb) .
In order that the deformed beam is Gaussian again, the

two complex functions have to satisfy the nonlinear dif-
ferential equations

4i 0® 2| %
y + — S Wi |—u+ 1
N+ N 21§1’f nf 2 o eou ATy (10a)
: 4 +ni=— 2W2 20, 44T, (10b)
N — zlgnb % 270 b

The equations are independent of each other. Their solu-
tions, however, are coupled by the boundary conditions
which are to be imposed at £; and &, the sites of the mir-
rors. These boundary conditions are

(Mr4+m)e, =0, (Mp+mp)g,=0. (11)

The field in the presence of the medium will be given
by ‘

Fy(p,§)=Fyo(p,§)expl —i(ef— 3p™nf)]
Fy(p,£)=Fyolp,&)expl —i (€, +5p™15)] ,

(12a)
(12b)

with functions €r and €, which have to satisfy the dif-
ferential equations

6_',-+i77f=—%—w7W0Tf, (13a)

A +inb=%%W0Tb (13b)
It is seen from (12) that the two complex functions €, and
€, represent that modification of amplitude and phase in
the beam which is independent of the transverse coordi-
nate p. In many applications the variations of the trans-
verse beam parameters furnish enough information about
the laser beam geometry that one does not have to know
€ and €,. However, if one needs these functions their
boundary values have to be found. They are obtained
from the conditions that first, the losses (e.g., on the mir-
rors) are compensated by the gain and second, the optical
length of the cavity has to be a multiple of the semiwave-
length A/2.

In this section we are using the linearized version of the
beam parameter variation equation (10) whose right-hand
side is approximated by a polynomial of second degree in
the function (W,/W)?. This equation has already been
motivated, discussed, and solved in previous work.’%33
Here we need the solution for a quasi-semihemispheric
cavity with the plane mirror at {=0, the concave mirror
at &,, and the tube between §; and {;. The beam parame-
ter variation 74, at the concave mirror (§=¢,) is found to

be

144£%)?
W(+§4)

=—i—
Nr2 c2 0 4z,

Bi+B

€o

EZ

(Cn +C )l (14)

We have set | Eqr | 2= | Eqp |2 =: E§ (cf. Ref. 33, p. 3454),

Cp=5 16465 —3)~&:(4£3-31,,
C,, =u exp( —2p 2)(£4—E3+arctan2f; —arctan2s,) ,

;3 _ §4
1+48  1+48

1—e~ %"

P’

C=

The three real coefficients C,, C,,, and C; are largely of
geometrical nature, depending on the positions of optical
components in the cavity. C, and C; belong, respectively,
to the terms of population and saturation. C,, belongs to
a term where both population and saturation influence are
mixed. We are introducing these quantities only for
reasons of convenience.

The beam parameter variation 7 represents the change
of the curvature parameter caused by the optical action of
the medium. In order to know the corresponding change
of the beam width and the curvature of the wave fronts
we have to calculate the real and imaginary part of 7. We
indicate them by superscripts » and i. The imaginary part
is related to the change of the beam radius by
8W /W?3=—n/;/4W}. On the concave mirror we have
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2 (144 2)2 r r+
c? 165, € €o

(15)

One notes that the variation of W is dispersion shaped.
This is not the case everywhere inside the cavity because,
in general, the geometric factor of ay (or B; and S,) is
complex [see Eq. (22) of Ref. 32].

The variation of W has an effect on the output intensi-
ty of the laser (Garside effect?®): If W decreases (§W <0),
diffraction losses are weaker and the field intensity is
stronger. In order to see the predictive power of the above
formula and the validity of the model leading to it, we
have numerically calculated the various coefficients ap-
pearing in (15) for the experimental cases described below
(Table I). For instance, if we find that the term C, is pos-
itive and greater than the terms C,, or C;, we conclude
that SW will have a dispersion shape fixed by ag, with the
maximum on the high-frequency side. Consequently, the
diffraction losses will be maximal on this side, causing the
maximum of intensity to be on the side of low frequencies
(If type). Table I shows various situations leading to vari-
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ous asymmetries. Experiments described in the next para-
graph show good agreement with predictions obtained
from the above formula, though the saturation term has
been underestimated. Comparison with numerical results
(where terms 7} and 77} were included) also shows satis-
factory agreement. One may conclude that formula (15)
together with the Garside effect can give a good qualita-
tive prediction of the type of asymmetry.

The real part of the beam parameter variation is related
to the variation of the curvature of wave fronts in the for-
ward beam by 8(1/Rs)=cn; /oW}. We find on the con-
cave mirror

1 4 212 i i 1
o I+46)7 | a0 B“:m(cm+cs) .
0

1/R;)== —C,+E?
8( / f) ¢ 4§2 60 p+ 0

(16)

At that point of the laser, the variation of curvature is ab-
sorption shaped. Since oy is negative we have 8(1/R) <0
in the case where the population term is dominant. This
fact is confirmed by the numerical results given in the
next section.

FIG. 2. Laser output vs frequency for configuration 1 of Table I (tube 1 on plane-mirror side). Intensities are in arbitrary units.
Frequencies increase from left to right. For the cavity used, ¢ /2d =263 MHz indicating that a division on the horizontal scale is 45
MHz [in (a) and (c)]. Doubling and deformation of the curves result from hysteresis and nonlinearity effects of the piezoelectric
ceramic. (a) and (c) show entire line shapes while (b) and (d) are magnifications of Lamb-dip regions [ X X2.5 and Y(,) X5 for (b) and
Y(¢) X 10 for (d)]. A diaphragm 3.5 mm in diameter is set on the concave mirror and this feature is the same for the other experimen-
tal results given in this paper. Results are shown for two values of the discharge current: i;=11 mA [in (a) and (b)] and i, =13.5 mA
[in (c) and (d)] where intensity is two times greater. The asymmetry of the line is of If type. It is due to saturation inhomogeneity and
increases linearly with intensity. The factor of asymmetry as defined by Freed and Haus (Ref. 21) is f =2(H —h)/(H +h), where H
and # are, respectively, the intensities at If and hf maximum. In (a), f =2.2%, in (b), f =4.2%.
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Ouput  power A/Rp ) (10 ® rril)

{arb. units) Reduced
frequency
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FIG. 3. Theoretical curves calculated by the method described in Ref. 32 and using numerical integration of nonlinear equations
(10). These curves are calculated for six values of the gain, as indicated on (a), and for configuration 1 of Table I. The value of the
imaginary part of the complex argument of the plasma dispersion function is chosen to be 0.2. (a) shows the ouput power vs frequen-
cy detuning. The maximum of intensity is on the low-frequency side of the line and the Lamb dip is blue shifted. This If-type asym-
metry increases with intensity in good agreement with experiment (Fig. 2). (b) shows the variation of the curvature Ry !(d) of the for-
ward beam on the concave mirror. One notes that A[1/Rs(d)] <0 in agreement with prediction of formula (16) where the factor of
| Eo | ? is negative. Because C,=2.6X 103 is positive, the population factor is also negative (remember ah<0 and B} and 85> 0).
However, absorption-shaped curves predicted by Eq. (16) are strongly deformed by amplification effects. (c) and (d) show the varia-
tions of W? on the plane (c) and concave mirrors (d). When a diaphragm is set on this mirror, (d) shows that diffraction losses are
lower on the low-frequency side giving a If-type asymmetry of the line via Garside’s effect. (c) also predicts the same type of asym-
metry when the diaphragm is placed on the plane mirror; we have also experimentally verified this prediction. One notes that (d)
disagrees with formula (15) which is based on the simple Gaussian linear model and which predicts dispersion-shaped curves. ‘W,
and °W?,, are the unperturbed values for the empty cavity on the plane and concave mirrors.

III. EXPERIMENTAL RESULTS

For the experimental verification of our previous results
we have used a quasihemispheric resonator with a concave
mirror of radius of curvature R =60 cm and a length of
d =57 cm. Reflectances of plane and concave mirrors
were 0.90 and 0.64, respectively, for A=3.39 um. A dia-

phragm of 3.5 mm in diameter was placed on the concave
mirror. With this geometry the beam radius is
W=0.376 mm at the plane mirror and W;=1.68 mm at
the concave mirror. The strong variation (W, /W,=4.5)
of the radius of the mode between the two mirrors allows
us to test the respective influences of the inhomogeneities
of population and saturation by displacing a tube of
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length 20 cm inside the resonator. When the tube is
placed near the concave mirror where the beam width is
large, the light will “probe” the inhomogeneity of popula-
tion over a wider range of the transverse distance. The
population inhomogeneity will, therefore, have a greater
influence on the line shape. In the other experiment, the
tube is placed on the side of the plane mirror where the
beam width is small. In this case it is expected that the
saturation inhomogeneity is predominant.

The experimental results given below show the spec-
trum of the output intensity at the curved mirror as a
function of the resonator length for different values of the
discharge current. We also show enlargements of the
Lamb-dip sections. The doubling of the curves is due to
the hysteresis of the piezoelectric ceramic. The laser is in
monomode operation as shown by the fact that the inten-
sity is zero between two successive modes. The theoretical
.curves are obtained by our previous method,*? but using
the full nonlinear equations for 7 [i.e., Egs. (10)]. We pic-
ture the variations of the diameter of the mode on both
mirrors, the variation of the wave-front curvature of the
forward beam, and the output intensity at the curved mir-
ror (&,) for six different values of the gain. We have used
p=15.

The first tube we used has an inner diameter of 8 mm
(corresponding to 7o=4 mm) and a length of 22 cm. We
recall here that r, is that value of the transverse coordi-

nate for which the number density of the inverted popula-
tion becomes zero. We have u =(W,/ry)* which gives in
our case u =8.8X 1073, The inhomogeneity of popula-
tion is weak. The pressure is 0.6 mm Hg (0.1 Torr for
20N, 0.5 Torr for He).

Figure 2 represents the measured line shapes when the
amplifying tube is on the side of the plane mirror (config-
uration 1 of Table I). They are given for two values of the
discharge current, i =11 and 13.5 mA. The line is strong-
ly asymmetric of the If type (maximum on the low-
frequency side), and the asymmetry increases with the
discharge current. This is in agreement with our interpre-
tation: The asymmetry results here from the saturation
effects which increase with intensity. One notes that the
minimum of the line is displaced towards higher frequen-
cies. The corresponding numerical results [Fig. 3(a)] are
in agreement with both the measured line shape and the
predictions of the Gaussian beam model.

Figures 3(c) and 3(d) show the variation of the spot size
on the plane mirror and the concave mirror. The influ-
ence of diffraction and amplification, which change the
distribution of the field in the laser, results in a strong
modification of the dispersion curve predicted by Eq. (15).
Moreover, a look at Fig. 3(d) shows, in view of the Gar-
side effect,?® that the losses due to diffraction are smaller
on the low-frequency side, in agreement with the mea-
sured line shape (Fig. 2). A diaphragm placed on the

FIG. 4. Experimental line shapes obtained when tube 1 (large bore) is placed on the concave-mirror side (configuration 2 of Table
D). Discharge currents are 11 mA [in (a) and (b)] and 13.5 mA [in (c) and (d)]. Intensities are about five times greater than those given
in Fig. 2. Magnification factors are X X2.5 and Y X5 for (b) and (d). Intensity is two times greater in (c) than in (a). The lines show
a hf type of asymmetry due to saturation. We find f =1.6X 1072 in (a) and f =3.5X10%in (c). In this configuration, pumping of
energy is much more efficient than in the previous experiment because the volume of the mode is greater. This is why the saturation

effect becomes greater than the population one.

\
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FIG. 5. Theoretical curves corresponding to the experiment leading to Fig. 4 and to configuration 2 of Table I. (a) shows a prom-
inent asymmetry of the hf type and a red-shifted Lamb dip in agreement with experimental curves of Fig. 4. (b)—(d) show the com-
petition between population and saturation effects. In (b) saturation effects alone would give positive values [the factor of | Ey|? is
positive in (16)] but population effects shift the curves downward. In (d) one sees that the curves result from the superposition of two
dispersion-shaped functions. The first one has its maximum on the low-frequency side and is due to the saturation effect [the factor
of Bi+B5 is positive in (15)] and the second one has its minimum on this side and is due to the population effect [the factor of af is
also positive in (15)]. The same phenomenon, but with a reverse sign, is noticeable in (c). We have verified that it can be predicted
from a formula analog to (15) but calculated for {=0 from Eq. (22) of Ref. 33. We have also experimentally verified that a dia-
phragm placed on the plane mirror leads to a line with an asymmetry of the If type, contrary to that of (a). As in Figs. 2(c) and 2(d),
one sees that the variation of W? does not vanish at line center, contrary to the prediction of Eq. (15). This is because we have used
the nonlinear Eq. (10) for our numerical calculation. The term 7? is then responsible for this discrepancy, and this is its main effect.

plane mirror w111 result in a similar line shape since the
minimum of AW?3 is also on the low-frequency side. Fig-
ure 3(b) shows the variation of the inverse radius of curva-
ture, A(1/Ry), of the forward beam on the concave mir-
ror. One notes good agreement between the observed sign
(A[1/Rf(d)] <0) of the variation and the prediction of
the calculation [Eq. (16)]. The quantity A[1/R/(d)] is
mainly determined by the negative saturation term.

Figure 4 shows the measured line shapes (tube near the
concave mirror) for the same values of the discharge
current as before. One notes that the asymmetry is of the

high-frequency (hf) type and that it increases with the
gain (i.e., the saturation), in agreement with the predic-
tions of Table I. This time the minimum of the Lamb dip
is found on the low-frequency side.

Figure 5(a) pictures the line shapes obtained by numeri-
cal calculation for the same value of the parameter (7o =4
mm) as before. Comparing it with Fig. 3(a), one notices a
rather spectacular change in the type of the asymmetry.
Figures 5(c) and 5(d) show the variations of the spot size
on the mirrors. We note the appearance of two important
phenomena. First, near the center of the line, one ob-
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FIG. 6. Experimental line shapes obtained when the narrow
amplifying tube is on the side of the plane mirror (configuration
3 of Table I). Discharge currents are i, =4.5 mA (a), i,=5 mA
(b), and i,=6 mA (c). While currents are lower, densities are
stronger in this tube than in the other. Intensity in (c) is two
times that of (b) which is also two times that of (a). Asym-
metries are of the If type as in configuration 1 (Fig. 2) but more
pronounced due to a greater gain coming from the greater densi-
ty of the discharge current. In (a), f=3.2X10"% in (b),
f=5.2X10"% and in (c), f=7.2X107? showing that the
asymmetry does not increase linearly with intensity.

serves that AW [Fig. 5(d)] decreases towards higher fre-
quencies, which leads to an asymmetry of the hf type.
The second phenomenon is due to the inhomogeneity of
population which enhances AW} on the hf side and di-
minishes it on the If side. A similar situation exists in the
the outer regions of the line, i.e., at very low intensities,
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where the variation of the diameter of the mode does not
vanish. The described phenomena are also present at the
plane mirror [Fig. 5(c)], however, for AW?3, in the oppo-
site sense. Comparing Figs. 3(c) and 3(d) with 5(c) and
5(d) one observes that the influence of the population in-
homogeneity is more sensible in the latter case because of
the larger width of the mode. Despite this fact, it does
not show in the line shape. The variation of the curvature
1/R of the forward beam is pictured in Fig. 5(b). One no-
tices a change as compared to the preceding case [Fig.
3(b)]. The value of A[1/Rf(d)] is negative at weak inten-
sities (then it must depend essentially on C, >0); with in-
creasing intensity the term C; becomes more important
and pushes the curves upward.

The experiments pictured in Figs. 2—5 show that in the
case of the wider tube it is essentially the inhomogeneity
of saturation which fixes the line shape through the R ef-
fect?” which adds to the Garside effect. The distribution
of the resonant diffracted field influences the sense of the
asymmetry of a line.3* The population inhomogeneity,
though weak in this case, influences the evolution of the
diameter of the mode as well as the variation of the beam
curvature, especially when the amplifying tube is on the
side of the concave mirror.

We now turn to measured data obtained with the
second tube, which has an internal diameter of 4 mm, a
length of 190 mm, and a pressure of 0.5 Torr (0.1 Torr of
Ne). In this case we have a maximal value of
u =0.0353 for ro=2 mm. As the diameter of the tube is
smaller than before, one can predict that an increase of
the discharge current will give rise to a decrease of u (the
distribution of population becomes flatter).

Figure 6 represents the measured line shapes when the
tube is on the side of the plane mirror. These curves, as
those of Fig. 2, show an asymmetry of the low-frequency
type caused by the inhomogeneity of saturation.

The curves picturing output intensities, variations of
spot size, and beam curvature, Figs. 7(a)—7(d), have been
calculated for a parameter value rp=2.5 mm. These
curves correspond to those of Figs. 3(a)—3(d). Changing
the diameter of the tube does not result in new line shapes
[see Fig. 7(a)], simply because the diameter of the mode is
small (2Wy=0.75 mm) in that region and the field does
not “probe” very much the population inhomogeneity. In
contrast, one notes an influence on the values of AW3
[Fig. 7(c)] and AW? [Fig. 7(d)] which are not canceled by
the intensity in the outer regions of the line, due to the
term ag/€y,. This influence is likewise found when Figs.
7(d) and 3(d) are compared, indicating a strong variation
on the hf side. The difference between these curves and
those predicted by the preceding formula is due to the
difference between the amplitude of the Gaussian field
and that of the diffracted field, the latter of which in-
cludes the focalizing power of the diaphragm3* and which
is taken care of in the numerical calculations.

Figure 8 represents the measured line shapes when the
tube is on the side of the concave mirror. One notes that
the type of asymmetry changes when the discharge
current is increased: At weak currents (i =7 mA) the
asymmetry is of the If type which, as the current is in-
creased, is gradually transformed into the hf-type asym-



30 MACROSCOPIC PARAMETERS AND LINE SHAPES OF A GAS ... 1935

Ouput power

(arb. units)
10L
gain=
’ 164
1.62
(a)

s 160
1.58

i
1.56
2 1.54

-05-025 0 025 05

Reduced frequency ‘

2 0 2 -3 2
wio- W (10 " mm?)

1L

-1 -6
ARy @) 10 mm!)

Reduced
frequency
1 1y

(b)

2 0o 2 -2 2
W d) - W (d) (10 'mm?)

05
Reduced ]
frequency
1 1

FIG. 7. Theoretical results corresponding to configuration 3 of Table I. Calculation has been made with u corresponding to
ro=2.5 mm, i.e., # =2.6X 10~2, Comparison with results of configuration 1 (Fig. 3) shows no new feature on the line shape (a); the
asymmetry is of the If type with a blue-shifted Lamb dip. However, an increase of u results in an upward shift of the curves (b)
[compare with Fig. 3(b)] and a slight modification of the variation of W?. The passage from negative to positive values of A[ wd)]
on the hf side [see Figs. 3(d) and 7(d)] is due to the different values of z; (28 mm and 17 mm) used in the experiment.

metry, a phenomenon which we have already observed
and discussed.>* The explanation is based on the competi-
tion between the population and the saturation effect. At
weak intensities the population term prevails. With in-
creasing current the population inhomogeneity decreases
while the inhomogeneity of saturation increases (because
the intensity increases with the overall increasing gain due
to increasing current) until the latter takes over and
changes the type of asymmetry.

In order to see the influence of a slight change of # on
line shapes, we have made the same calculation as before,
but this time with two values of u. Figure 9 shows
theoretical results with u =2.26 1072 (7,=2.5 mm) and
Fig. 10 with u =1.57Xx10"2 (ro=3 mm). Figure 9(a)

shows clearly the role of a strong population inhomo-
geneity effect in the formation of this line shape. The en-
tire line is red shifted, the Lamb-dip asymmetry being of
the If type. The curves in Figs. 9(b)—9(d) are essentially
shaped by population effects. These results agree with
those of Table 1.

Figure 10(a) reveals a spectacular change of the asym-
metry of the line which comes with an unusual
phenomenon: Here the minimum of the Lamb dip stays
on the low-frequency side, though usually it is found on
the side of the lower local maximum of the intensity.
Comparing this situation with Figs. 5(a) and 9(a) where
the population inhomogeneities are different, we conclude
that the latter fix on asymmetry of the If type which is
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FIG. 8. Experimental line shapes obtained when the second tube is on the concave-mirror side (configuration 4 of Table I).
Discharge currents are ip=7 mA in (a) and (b), i;=7.3 mA in (c) and (d), i, =8.4 mA in (e) and (f), and i, =8.9 mA in (g) and (h). (b),
(d), (f), and (h) are, respectively, magnifications of Lamb-dip regions of (a), (c), (), and (g). Magnification factors are X X2.5 every-
where, Y X2 in (b), Y X4 in (d), and Y X 10 in (f) and (g). From (a) to (c) sensitivity has been divided by two and from (a) to (e) and
(g) by five. The prominent feature of these curves is the passage from the If to the hf type of asymmetry with increasing current. In
(a), f =5.8% 1072, in (c), f =3.4X 1072, in (e), f =0, and in (g), f = —6X 103, The interpretation follows from Table 1. At weak in-
tensities, population effects are stronger and force the asymmetry to be of the If type [(a)—(d)]. However, when the gain is increased,
the saturation effect also increases and changes the type of asymmetry.
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FIG. 9. Theoretical curves corresponding to configuration 4 of Table I, calculated with # =2.26X 10~2 (corresponding to ro=2.5
mm). The high inhomogeneity of population influences line shape [in (a)] very much, giving a If type of asymmetry [compare with
Fig. 5(a)]. It also lowers the curvature 1/R(d) [in (b)], squeezing the curves as compared to those of Fig. 5(b). The same remark can
be made for (c) and (d), where one sees the dispersion part of the curves due to saturation weakened in proportion to the part due to

population [compare also with Figs. 5(c) and 5(d)].

then canceled by the asymmetry effect of the saturation
inhomogeneity, in agreement with experiment (Fig. 8).
The variations of spot sizes and beam curvatures are de-
picted in Figs. 10(b)—10(d). A comparison with Figs.
5(b)—5(d) and 9(b)—9(d) shows the influence of a variation
in the inhomogeneity of population.

IV. CONCLUSION

In this paper we have given a series of results which
show the influence of some macroscopic parameters on
the line shape in a laser beam. They illustrate the com-
plexity of the problem. The magnitude of the discharge
current, the diameter of the amplifying tube, and the
properties of the gas determine the inhomogeneity of pop-

ulation. The distribution of the electric field and thus the
inhomogeneity of saturation are determined by the posi-

* tion of the amplifying tube, the length of the laser, the

curvature of the mirrors, and the diameter of a diaphragm
and its position. The asymmetry of a line results general-
ly from a competition between the lens effects induced by
the two types of inhomogeneities. It is that complexity
which limits the usefulness of simple models in the ex-
planation of line shapes. However, we have shown that,
generally, the Gaussian beam model does permit the
description of the variation of the diameter of a mode
and, via Garside’s effect, a qualitative prediction of line
shapes. It should be noted that we have limited ourselves
to the total output power. If one measures the intensity
on the laser axis using a small area detector, it is possible
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mm). (a) shows in this case the same change of asymmetry as that observed in experimental results (Fig. 8): at low gains population
effects predominate and for higher intensities saturation effects overpower them. All curves in this figure picture an intermediate
case between the corresponding ones in Figs. 5 and 9. These figures illustrate the sensitivity of the laser line shape to the inhomo-
geneity of population when the tube is near the concave mirror, i.e., when the field and the population are characterized by a trans-
verse variation length of the same order of magnitude. When comparing these results to those of Fig. 8, one should bear in mind that
an increase of the intensity of the discharge current corresponds to a decrease of the inhomogeneity of population (the transverse dis-
tribution of amplifying atoms is flattened). Then results of Fig. 8 probably correspond to a lower value of u than those of Fig. 6 (or a
higher value of ), which justifies the use of 7o0=3 mm instead of the internal radius (2 mm) of the tube. Moreover, the variation of

asymmetry of Fig. 8 also results from a decrease of u as i, increases.

to find new phenomena due to the variation of the radius
of curvature versus frequency. Such measurements are
actually in progress in our laboratory.

The numerical methods we have recently developed
give results which are in good agreement with measure-
ments. In this work we have tried to explain in a qualita-
tive manner how the different causes intervene in the for-
mation of line shapes. In order to perform more quantita-
tive studies one would have to use a more accurate expres-
sion for the polarizability, including, e.g., the influence of
the field intensity on the lifetime of laser-active states.

With that effort one could perhaps show the influence of
collisions on line shapes, study the microscopic properties
of atoms in the laser, or introduce the geometric proper-
ties of the beam into the study of deterministic chaos, i.e.,
take a new step in the understanding of phenomena
currently observed.
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FIG. 2. Laser output vs frequency for configuration 1 of Table I (tube 1 on plane-mirror side). Intensities are in arbitrary units.
Frequencies increase from left to right. For the cavity used, ¢ /2d =263 MHz indicating that a division on the horizontal scale is 45
MHz [in (a) and (c)]. Doubling and deformation of the curves result from hysteresis and nonlinearity effects of the piezoelectric
ceramic. (a) and (c) show entire line shapes while (b) and (d) are magnifications of Lamb-dip regions [ X % 2.5 and Y, %5 for (b) and
Y% 10 for (d)]. A diaphragm 3.5 mm in diameter is set on the concave mirror and this feature is the same for the other experimen-
tal results given in this paper. Results are shown for two values of the discharge current: i,=11 mA [in (a) and (b)] and i,=13.5 mA
[in (c) and (d)] where intensity is two times greater. The asymmetry of the line is of If type. It is due to saturation inhomogeneity and
increases linearly with intensity. The factor of asymmetry as defined by Freed and Haus (Ref. 21) is f =2(H —h)/(H +h), where H
and h are, respectively, the intensities at If and hf maximum. In (a), f =2.2%, in (b), f =4.2%.



FIG. 4. Experimental line shapes obtained when tube 1 (large bore) is placed on the concave-mirror side (configuration 2 of Table
I). Discharge currents are 11 mA [in (a) and (b)] and 13.5 mA [in (c) and (d)]. Intensities are about five times greater than those given
in Fig. 2. Magnification factors are X x2.5 and Y x5 for (b) and (d). Intensity is two times greater in (c) than in (a). The lines show
a hf type of asymmetry due to saturation. We find £ =1.6> 1072 in (a) and f =3.5X 10~ in (c). In this configuration, pumping of
energy is much more efficient than in the previous experiment because the volume of the mode is greater. This is why the saturation
effect becomes greater than the population one.



FIG. 6. Experimental line shapes obtained when the narrow
amplifying tube is on the side of the plane mirror (configuration
3 of Table I). Discharge currents are i, =4.5 mA (a), i,=5 mA
(b), and i,=6 mA (c). While currents are lower, densities are
stronger in this tube than in the other. Intensity in (c) is two
times that of (b) which is also two times that of (a). Asym-
metries are of the If type as in configuration 1 (Fig. 2) but more
pronounced due to a greater gain coming from the greater densi-
ty of the discharge current. In (a), f=3.2x10"% in (b),
f=5.2x10"% and in (c¢), f=7.2x10"?, showing that the
asymmetry does not increase linearly with intensity.
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FIG. 8. Experimental line shapes obtained when the second tube is on the concave-mirror side (configuration 4 of Table I).
Discharge currents are i;=7 mA in (a) and (b), i.=7.3 mA in (c) and (d), i, =8.4 mA in (e) and (f), and i.=8.9 mA in (g) and (h). (b),
(d), (), and (h) are, respectively, magnifications of Lamb-dip regions of (a), (c), (), and (g). Magnification factors are X X 2.5 every-
where, ¥ X2 in (b), ¥ x4 in (d), and Y10 in (f) and (g). From (a) to (c) sensitivity has been divided by two and from (a) to (e) and
(g) by five. The prominent feature of these curves is the passage from the If to the hf type of asymmetry with increasing current. In
(@), f=5.8x107% in (c), f =3.4x107%,in (e), f =0, and in (g), f = —6x 107>, The interpretation follows from Table 1. At weak in-
tensities, population effects are stronger and force the asymmetry to be of the If type [(a)—(d)]. However, when the gain is increased,
the saturation effect also increases and changes the type of asymmetry.



