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Coherent propagation and optical pumping in three-level systems
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We develop a theory to take into account the effects in coherent propagation of a small overlap-

ping of the pump and probe pulses in a three-level system. The Maxwell equations reduce to cou-

pled equations for variables which are related to the time-integrated field envelopes. We make com-

parisons of the propagation results to the Burnham-Chiao theory for a two-level amplifier and can
predict when this theory breaks down. An application to superAuorescence is presented where a
lengthening of the delay time is found. We treat Doppler broadening and find simplified equations
in two cases: (a) a very broad line and (b) a very narrow line where the initial and final states are de-

generate. For the broad-line case, with an appropriate choice of initial parameters, we can make the
probe pulse approach any desired area for certain configurations of the levels.

I. INTRODUCTION

There are many situations in quantum optics where one
deals with three-level systems, for example, Raman ampli-
fiers, simultons, and superfluorescence. Some of these,
particularly amplifiers and superfluorescence, have been
treated in the past with the use of two-level models'
which ignore the pumping process that inverts the popula-
tion in the system. Since this pumping is inherently part
of the dynamics of the system, it can have profound ef-
fects on the system's evolution. Two-level models cannot
take these effects into account.

One method of inverting the system is to use a laser
pulse resonant with the pumping transition frequency. A
treatment of coherent resonant propagation for nonover-
lapping pulses in a Raman amplifier has been given by
Sobolewska et al. ' This paper is an expansion and exten-
sion of that work. (Exact solutions for some propagation
problems in three-level systems have also recently been
found. ' '

) Here we treat all configurations for a three-
level system. Population is pumped from the first to the
second level by an input pulse. Then the second-to-third
level transition is investigated by injecting a probe pulse.
In the ideal case the pump and probe pulses are complete-
ly separated in time. Thus the probe pulse will only in-
teract with the population transferred by the pump. In
actuality, however, the pump pulse changes in time due to
propagation and the two pulses will not remain complete-
ly nonoverlapping. In this paper we develop a theory to
take into account the effects of a small overlap between
the propagating pulses.

In Sec. II the notation and the atomic equations of
motion on resonance are defined. In Sec. III approxima-
tions are used in order to solve for the time development
of the atomic system. The expressions obtained for the
dipoles are incorporated into the Maxwell equations in
Sec. IV where the "partial area" equations are derived.
Numerical solutions of the partial area equations are com-
pared and contrasted to the exact solutions and to a two-
level theory in Sec. V. An application of the theory to a
calculation of the delay time in superfluorescence is given

in Sec. VI. Section VII treats Doppler broadening. We
summarize our results in Sec. VIII.

II. RESONANT ATOMIC EQUATIONS OF MOTION

I?
lF

cascade A cascadeB

FIG. 1. The different level configurations treated in this pa-
per. Level

~
2) is always dipole coupled to levels

~
1) and

~
3).

Transitions between levels
~
1) and

~
3) are forbidden. We

make the distinction of two arrangements for the cascade con-
figuration depending upon whether the energy of level

~
1) is

greater (cascade A) or less than (cascade B) the energy of level

~

2). We do this since we will always take the initial population
to be in level

~
1). Thus cascade A is an amplifier while cas-

cade B is an absorber.

We will concern ourselves only with plane-wave propa-
gation of electromagnetic radiation in an atomic or molec-
ular medium with three energy levels. The levels are
numbered so that levels 1 and 2 are dipole coupled as are
levels 2 and 3; however, transitions between levels 1 and 3
are forbidden. Levels 1, 2, and 3 are defined to have ener-

gies Picot, irtco2, and Rco3; respectively.
The levels can be arranged in three distinct ways ac-

cording to the relationships among the energies of the lev-
els: A, V, and cascade. We take the cascade to have two
variations according to whether co~ &co2 or co~ &co2. These
are called cascade A and cascade 8, respectively. The
configurations for the different cases are shown in Fig. 1.

We will only treat systems whose homogeneous decay
times are much longer than the input radiation pulse
lengths. Thus we can neglect decay mechanisms such as
collisional broadening or radiative decay and deal ex-
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elusively with coherent propagation. Under these condi-
tions the interaction picture will be used, since this will al-
low for us a simple interpretation of the results. Inhomo-
geneous broadening wiB be treated in Sec. VII.

We will denote the atomic states with energies 1rtco1, fm2,
and fico3 by

~
1),

i
2), and

~
3), respectively. During the

time scales of interest we will assume these states form an
orthonormal complete set, with the state

~
1) initially oc-

cupied.
We will use the dipole and semiclassical approxima-

tions' and treat the electric field E as a classical variable.
The Hamiltonian of each atom is given by

Ur(t) =P exp[ —il182(t) —ii381(t)],

where

~ Qj(t')
8~(t) = I dt', j=1,2

(2.7a)

(2.7b)

l3 =i(o'21 c—r12), (2.7c)

l1 ——t(cr32 —cr23) .

If we also define

(2.7cl)

where P is the Dyson time-ordering operator. ' Now we
may write

H& =Ho +Hr = g ficoj&rr
—d E

j=l l2 ——i( &13—&31) (2.7e)

3

~j~jj [(d12+12+d23~23)+ 1 E
j=1

then
(2.1)

where the &jk ——
~
j)(k

~

are the atomic projection opera-

tors and d =g k drk&rk is the dipole moment. In the in-

teraction picture, the evolution operator obeys the
Schrodinger equation

~ ()
iA—UI=VrUr ~ (2.2)

where

AAPAAA A
Vr = UOHr Uo Uo=exp . Hot

iA
(2.3)

For an electric field propagating in the s direction, if E
has components oscillating only near frequencies co and co'

we may write
III. APPROXIMATIONS FOR

TIME DEVELOPMENT

[lr, i1, ]=il~, j,k, m =1,2, 3;2,3, 1;3,1,2 (2.8)

that is, l1, l2, and l3 are angular momentum operators.
These angular momentum operators are the generators

of infinitesimal rotations and thus Ur(t) is a (time-

ordered) rotation operator in a three-dimensional space
spanned by I ~

1),
~
2),

~

3) I.
—i/i.It is easy to verify that the operator e ' will rotate a

vector
~
g) through an angle p about the j) axis. The

extra factor of i is used—in (2.5b) because it leads to rota-
tions with real angles. We will use this information in
Sec. III to develop approximate solutions for the effect of
the evolution operator on a given initial state for the case
of small overlap of the pulses Q1 and Q2.

E= I e18'1exp[ is1(cot ——kg )]

+ e2N 2exp[ —is2(co t —k g)] I + C.C. (2.4)

where k=co/c, k'=co'/c, and N'r ——g'j(t, g) is the jth
pulse s amplitude which is taken to vary slowly in an opti-
cal cycle. sr is defined to be the sign of the energy differ-
ence A(cor+1 cur ) =Sieur +—1 r. We will choose the fields I'1
and 8'2 to be tuned on resonance with the 1~2 and 2~3
transitions, respectively, by taking co =

~
co21

~

and
co —

~
co32

~

~ Then, combining Eqs. (2.1), (2.3), and (2.4)
and using the rotating-wave approximation' (RWA) we
obtain

iA
Vr —— [(Q1&21+Q2&32)—H. c.], (2.5a)

where the Rabi frequencies, chosen to be real, are defined
with an "extra" factor of —i for convenience:

Since there are no losses from the system, the length of
the state vector

~
1it) will remain constant throughout the

propagation and retain its initial value of V'(g
~
P) =1.

Thus, from Sec. II, the effect of the operator Ur(t) an the
initial state

~ f) will be to rotate the vector
~
g) to some

point on the unit sphere. It is also possible to reach the
same point by performing two successive rotations on

~ P) about two orthogonal axes through two different an-
gles. [This is merely a consequence of the fact that the
angular momentum operators form a Lie algebra. We can
then find coefficients b;(t) such that we may write

exp(a1l1+a2l2+a3l3) =exp(b1l1)exp(b2l2)exp(b3l3) for
any coefficients a;(t). ] For example, if

~
1l ) is initially

the state
~
1), then any point on the unit sphere can be

reached by first rotating about the
~
3) axis and then

about the
~
1) axis. Specifically, there exist angles $1 and

p2 such that

2d21'e1 N 1 2d32 e2@2
Q) ——,Q2 ——

iA
'

iA
(2.5b)

3

~
p(t)) = g gj(t)

~j ) = Ur(t)
~
1)

The solution for the interaction evolution operator is
then given by the time-ordered expression

=e e ~1)
—i/~i) —ip)l3 (3.1)

Ur(t) =P exp f Vr(t')dt'
iA

(2.6)
(see Fig. 2). If

~
g(t)) is expanded on the basis set

[ ~
1),

~

2),
~

3) ], this can be written as the matrix equa-
tion
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I
=(2& =(2&

t)ti(t=O) & =
I &

(b) = (2& - (2& = (2&

fact(t=O)&= I&

Flax. 2. Time development of the state vector
~
g). (a)

~
g) evolves under the action of the time evolution operator UI going ini-

tially from
~ p) =

~
1) at time t =0 to

~
1( ) = 01(t~ )

~
1) at time t =t, Tip of. the state vector traces out a path on the surface of the

unit sphere. (b) We can have
~

t( ) reach the same point of the unit sphere at time t, by first rotating about the
~
3) axis through an

angle P~ and then about the
~
1) axis through an angle Pz. P~ and Pz are just the polar and azimuthal angles, respectively, of the state

vector with reference to
~
1) as the polar axis.

P&(t) 1 0 0
fz(t) = 0 cosPz —sinPz

$3(t) 0 sinPz cosgz
J

cosP~ —sinPt 0

sing ) cosf ) 0 0

0 0 1

(3.2)

a
at 2

(cosP&) = — cosPzsinPt,

0) Qg

Qt 2 2(cosPzsinP ) ) = cosP ( — sinPzsinQ ),
Qz

at
(sinPzsinP&) = cosPzsinP~ .

2

(3.5a)

(3.5b)

(3.5c)

We therefore obtain the following set of equations relating
the P's to the P's:

We may integrate Eqs. (3.5a) and (3.5c) to obtain the im-
plicit solutions

f&(t) =cosP&(t),

gz(t) =cosPz(t)sing, (t),
$3(t) =sinPz(t)sing&(t) .

(3.3a)

(3.3b)

(3.3c)

~ Qi(t')
P&(t) = f cosPz(t')dt', (3.6a)

t Qz(t')
sinPz(t) =cscP&(t) f cosPz(t')sing&(t')dt' . (3.6b)

2

a
at

fL) Qg

t 2 2
IPz(t) — i(](t) $3(t)

(3.4a)

(3.4b)

Thus P, and Pz are just the polar and azimuthal angles,
respectively, of the state vector

~
g), taking

~

1) as the
polar axis.

Now,
~
P(t) ) also obeys the Schrodinger equation gen-

erated by the Hamiltonian Eq. (2.5), and using Eq. (3.1)
we derive for the g's

~ Qi(t')
P,(t)= f, dt', (3.7a)

These equations are exact. We see from Fig. 2(b) that
when Pz is a small angle, f3 will also be small and thus
the induced polarization in the second transition, propor-
tional to Pzg3, will have a small magnitude. Since Pz be-
comes nonzero only after Qz arrives we see that we can
describe the beginning of the amplification (or absorption)
process in the second transition by taking

~ Pz
~

&&1.
Under this approximation we can set cosPz-I and
sinPz-Pz and then Eqs. (3.6) become

Qp

aj 2
$3(t)= pz(t) .

Hence from Eqs. (3.3) and (3.4)

(3.4c)
~ Qz(t')

Pz(t)=cscP~(t) f sing&(t')dt'
2

and for consistency we require

(3.7b)
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or

~ Q2(t')
cscpi(t) f sin/i(t')dt' «1, Ql = —

S IKI (&12 &

Z

8
Q2 s2K2& ~23 &

Z

(4.1a)

(4.1b)

~ Q2(t')f sing, (t')dt' «
~
sin&I(t)

~

&1 .
2

However, it is obvious that

~ Q2(t') ~ Q2(I')
sin )

t' t'(

(3.8)

(3.9)

where

~1 d21 el I

'
I
~

I
~l d32 e21'I ~'

I

K&= K2= (4.1c)
E'pter 6'AC

and ~ is the number density of atoms (or molecules) in
the medium. We have transformed to the moving frame
by the relations

Thus a sufficient condition for the relations (3.7) to hold
1s

z=@, ~=t —g/c . (4.2)

Since we are taking the system to start in the state
~

1 &,

~
g& is given by Eqs. (3.3):

~
g(~) & =cosp, (~)

~

I &+cosp2(~)sin/I(r)
~

2 &

+sin/2(7. )sin/i(7. )
~

3 & . (4.3)

Q2(t') ((1, (3.10)

i.e., the integrated magnitude of the second pulse envelope
is required to remain small. '

We can relax our requirement of small $2, thus allow-
ing for an arbitrary polarization in the second transition,
as follows. When the pulses are completely nonoverlap-
ping, i.e., when there exists a time tp such that
Q, (t & to) =0 and Q2(t & to) =. 0, then Eqs. (3.6) reduce to
the quantum-mechanical pulse areas. Let us assume that
the pulses overlap until a time to after which QI(t) =0,
and that during the overlap, f ~

Q,(I')/2
~

dt' && 1.
When these conditions hold we will say that the pulses
have small overlap. For times t & Io, the angles pl(t) and

$2(t) are given by Eqs. (3.7) while for times t & Ip we have

~ QI(t')
$1(I)=PI(to)+ f, (3.11a)

Thus

ei2& = &y I
»&2

I y& =cosyicosy2slnf1

= —,
' sin(2/1 )cos$2, (4.4a)

(o 23 &
=

& It
~
2 & & 3

~ g &
=»n'P icos&2sin&2

=—,
' sin oisin(2/2) . (4.4b)

Using the small-overlap approximation Eqs. (3.7), which
we can write as

QI(~) =2 PI(r),
7

(4.Sa)

I

(4.5b)Q2(~) =2 cscpl(r) [$2(~)sin/I(~) 1,8
81& Q2(t')

$2(I)=$2(I, )+ f, dr'. (3.11b)
and combining these with Eqs. (4.1) and (4.4) gives us

~ Q2(t')
=cscp, (I) f sin&I(t')dt'

2
(3.12)

since $1(t &ID)=pi(to). Thus for the case of small over-
lap of the pulses, the solutions (3.7) are valid even for
large $2. Since we now have an approximate expression
for the tiine development of the system when it starts in
the state

~
1&, we may compute the polarization of the

medium in terms of the derived angles pl and $2 in order
to calculate the effects on the propagating fields.

IV. PARTIAL AREA EQUATIONS

The reduced Maxwell equations for the fields Ql and
Q2 are easily derived under the slowly varying envelope
approximation (SVEA). We find

Hence Eq. (3.11a) is identical in form to Eq. (3.7a) while

Eq. (3.lib) can be written as

& Q2(t')
$2(I & Io) =$2(to)+cscpl(to) f sin/I(to)dt'

0

~ Q2(t')=$2(IO )+oscar i(I ) f sin&i ( I ' )dt
0 2

Kl
$1=—s 1 sin(2$, )cosp2,

BzB'r (4.6a)

3 K2 2

az 91.($2

sin/i�

) = —s2 sin oisin(2/2) . (4.6b)

If we define "areas" A 1 and A2 such that

A 1
——2/1, A2 ——2/2,

then Eqs. (4.6) become the partial area equations

(4.7)

(P K 1 A2
A

&
———s

&
sinA icos

BzBt 2 2
(4.8a)

A)
csc A2sin

Bz 2 c}~

A)= —s2 sin sinA2 . (4.8b)
2 2

We call A ~ and A2 areas in analogy to the two-level case
where A 1

——f QI(~', z)dv' Thus any . explicit reference to
the atomic variables is eliminated in this approximation
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and we are left with two coupled nonlinear partial dif-
ferential equations which refer only to the electric field
envelopes of the laser pulses.

Each of these equations is similar in structure to the
two-level result (the sine-Gordon equation ). In fact, set-
ting A2 ——0 in Eq. (4.8a) yields the usual equation. The
cosine term is a modification of the polarization for the
first pulse due to the fact that there is population
transferred between levels 2 and 3. The sine-squared term
in Eq. (4.8b) has a similar interpretation for the second
pulse.

These equations are highly nonlinear and we cannot
solve them in general analytically. We therefore must
resort to computer calculations in most cases and results
of the numerical integration of the equations are given in
Sec. V. Nevertheless, it is clear that the equations are
simpler to deal with and have fewer variables than the full
Maxwell-Bloch equations. In addition to this, certain
cases can be treated analytically, as shown in Sec. VI, and
this general technique also allows the derivation of ap-
proximate area theorem s in the inhomogeneously
broadened case.

V. NUMERICAL INTEGRATION OF THE
PARTIAL AREA EQUATIONS

It is evident from Eqs. (4.8) that a complicated relation-
ship exists between the areas A& and A2. Many three-
level problems have been treated by two-level models in
the past, and this interaction between the pulses has usual-
ly been ignored. It is possible that solutions to Eqs. (4.8)
will show a significant modification of the corresponding
two-level results. With this in mind, we will present our
calculations in the following way. First the integration of
the partial area equations will be compared to the numeri-
cal solution obtained by integrating the exact coupled
Maxwell-Bloch equations [Eqs. (3.4) and (4.1)]. Next,
where appropriate, comparisons will be given between the
partial area equations and the corresponding two-level
model. The two-level model used for comparisons will be
that given by Burnham and Chiao in which the second
level is populated by a 5-function pulse excitation.

Figure 3 shows the comparison between the solutions of
the partial area equations and of the Maxwell-Bloch equa-
tions for the cascade-A, cascade-B, A, and V configura-

0
2-

C3

a. 0
E

2

Z=O

Z=2

(0)

a 0

0

0

—2--'
0

~, I ~ ~

IO

/Ts

I

l5 20
—

I0 5 I0 I 5 20
T /vs

(c)
2

a 0
I'-

CL

0E

I-

0

I l ~ ~ I ~ ~ ~

5 10
T/Ts

I

l5 20

o. 0
E

0

—2 ~ s t ~ ~ ~ ~ I

IO l5
Tlrs

20

FIG. 3. Comparisons of the time evolution of the propagating pulses Q~ predicted by the partial area equations [Eqs. (4.8)] to those
given by the Maxwell-Bloch equations [Eqs. (3.4) and (4.1)] for the different level configurations for Z=za2r, =0,2,4. Input pulse en-
velopes are Cxaussians with equal standard deviations r, : QJ(r) =Qjexp[ —

z [(r—rj)/r, ] J where QJ is the peak amplitude of the jth
pulse. Relative time delay of successive inputs is 10~,. Time is measured in units of ~, . First pulse always has an initial area of 0.9m.
Solid line is the Maxwell-Bloch result while the dashed line is the partial area result. Propagation distances for all plots are labeled as
in (a). For each plot we list the configuration, initial area of the second pulse [A2(0)] and the gain ratio (a''/a'): (a) cascade A,
A2(0) =0.1m, ~2&) ——10; (b) cascade 8, A2(0) =0.9m., ~2/~) ——1; (c) A, A2(0) =0.1m, ~2/~) ——10; (d) V, A2(0) =0.9~, ~2/~) =1.
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tions. The solid lines are the solutions of the exact equa-
tions while the dashed lines are the solutions of the ap-
proximate equations. We have chosen the initial area of
the first pulse to give a large population transfer to the
second level [A i(0)=0.9m] so that the interaction between
the pulses will be strong. The agreement between the two
calculations is excellent. In fact, the dashed- and solid-
line results for the V and cascade-A cases are virtually in-
distinguishable, which justifies in this and similar cases
the use of the partial area equations.

The comparison to the Burnham-Chiao theory is given
in Fig. 4, in the cascade-A and A cases. The Burnham-
Chiao result is given by the dashed-dotted line. For the
cascade-A case, all three theories give virtually identical
results; however, for the A case the Burnham-Chiao result
quickly deviates from the exact solution as the pulses
propagate in z. The reason is easy to understand. Since
the Burnhain-Chiao theory acts as if the gain for the
second transition were constant, it cannot take account of
the dynamics of the first pulse which changes the gain.
That the agreement is so good for the cascade-A case is
also easy to explain. If we refer to Fig. 3(a) we see that
the first pulse has hardly changed its shape during the
propagation. The gain for the second pulse is thus, for all
practical purposes, constant. Therefore all three theories
give the same result. With longer propagation distances,
however, the first pulse will eventually change significant-
ly due to the amplification process. Then the Burnham-
Chiao result will start to become noticeably different from

the other two theories. For the choice of parameters
given in Fig. 3(a) this occurs at about Z =8.

It is fairly easy to predict when the Burnham-Chiao
theory will give reasonable results and when it will not.
Obviously, if the first pulse is sufficiently narrow and re-
tains its initial area during the region of interest of propa-
gation, the gain for the second level will be fairly con-
stant. Then the two-level theory will give good results. If
the area changes significantly, however, then so will the
gain, and the evolution of the second pulse can be quite
different from the Burnham-Chiao prediction.

The evolution of the first pulse is determined by the
sine-Gordon equation

/Ci
A

&
———s~ sinA ~

dZ8'7 2

before the pulses start to overlap. Since the method of
solution of this equation is known, ~ this information can
be used to determine the change of area over the distance
of propagation and therefore to predict when the
Burnham-Chiao theory will break down.

Even when the first pulse area does not change, the
Burnham-Chiao theory will give incorrect results when
the first pulse width is comparable to the time delay be-
tween the pulses. This will generally occur due to spatial
evolution in transitions with gain since the first input
tends to broaden, while the delay of the amplified output
will reduce during propagation.

VI. APPLICATIONS TO SUPERFLUORESCENCE
I

-{o)
2-
I-

0
CL

E 2-
I-

0

—2
IO

. (b)
2-

cua
0

CL

E 2-
I-

0

'lo

I

12
I

I4 l6
I

l8

I I I

l2 l4 l6 l8

20

20

The general superfluorescence problein is one of spon-
taneous emission from a group of atoms with a popula-
tion inversion. This is a transient process occurring over
time scales much shorter than one-atom spontaneous
emission, for atoms sufficiently close together. Since su-
perfluorescence is intrinsically quantum mechanical, we
can no longer accurately describe the system by the semi-
classical equations used in the preceding sections. We
must now take into account the vacuum fluctuations
which initiate the process. We can treat these fluctuations
by using either operator equations of motion or operator
representation theory. The latter choice allows us to
derive equations which are formally similar to those of
the semiclassical treatment and thus we can use the ap-
proximations made in Secs. III and IV to investigate the
superfluorescence problem. This simplification is made
by taking a coherent representation for both the field and
atomic variables.

We will treat an open system without mirrors and take
the active medium to be a large number of three-level
atoms in a pencil-shaped volume, excited by a pump trav-
eling in the + g direction. Under these circumstances, it
has recently been shown that the quantum initiation and
propagation of the superfluorescent radiation in the pump
direction is described by the following propagation equa-
tion:

FIG. 4. Comparisons of the Maxwell-Bloch equations, the
partial area equations, and the Burnham-Chiao two-level theory
for the time development of the second pulse Q2. Parameters
are the same as those given in Fig. 3. Dashed-dotted line is the
Burnham-Chiao result. We have (a) cascade A and (b) A.

l AJsjQJ(r)= ViQJ(r)
4m

2'—sJ. 5' (r —r~)g& (r)g&+i(r), (6.1)
7J
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where the coupling to any counterpropagating field is
neglected and rz is the center of a spatial volume VJ hav-

ing Nz atomic inhabitants. The wavelength is AJ for the
jth transition, and l is the length of the superfluorescent
medium which defines the relevant

superfluores

cenc
time:

medium is treated under the assumption of total separa-
tion of the pump pulse and the superfluorescence pulse.

Provided X~ is large, the polar and azimuthal angles,
$„$2 now have an extremely small initial value. Also, in
the Jth volume VJ,

(6.2)
(y, (0)y,*(0)&

= l,j)1. (6.6)

We note here that Kj 7j can be related to the Einstein A

coefficient TJ for the jth dipole transition as

=3A,
~
nl /8nTJ, .

(6.3)

aj ——3A,J~n/4vrTJ .

Here, QJ is the parameter which describes the coherent
state of the jth field while the quantum state of the Nz
atoms is represented by the SU(3) coherent-state vector

~
1t ) whose coefficients are given by the fz's. It should

be noted that, unlike the semiclassical case, the field 8'z
must now be parallel to the 2-3 dipole since this is its
source, and also the fz's must now in general be taken to
be complex to allow for random initial polarizations
caused by the vacuum fluctuations.

The new feature which is not present in our previous
equations is that the initial values of the coherent-state
vectors are distributed in a 5-correlated way. The distri-
bution is described by

—'S 5(y& (p)y&'~(p)) N JE mn~

1+0(1/N ), m, n = 1 .

Therefore, up to 0(1/N), the atomic coherent-state pa-
rameters 1tj obey equations identical to Schrodinger's
equations (3.4) and thus, to the same order of approxima-
tion, the partial area equations should hold for evolution
from the initial state as long as the overlap is not large be-
tween the input and superfluorescent output fields.

For simplicity, we restrict our calculations to plane-
wave propagation only. Thus. the volumes Vz will be tak-
en to extend over the full area of the superfluorescent pen-
cil and only the average Rabi'frequency will, be computed
after integrating over the pencil area A:

However, the result of Eqs. (3.7) is obtainable from in-
tegrating Eqs. (3.5) just as before, except with a correction
due to the initial value. Hence, for

~ g3 ~
&& 1, we obtain

r Qp(r')
$3(r) =$3(0)+ f S111$)(r')dr (6.7)

where P&(r) is given by Eq. (3.7a).
Here, given a large pump area P&, the initial value gz(0)

has a negligible effect and can be ignored. On the other
hand, $3(0}greatly modifies the effective rotation due to
Q2(1 ), which initially has a very small partial area. How-
ever, $3(0) is complex valued. This implies that Q2 must
be taken as complex also. Provided only a linear approxi-
mation is employed for Qz, this does not change the re-
sulting equations which are now

~ Q2(r', z) A)(r')
$3(r) =1(3(0)+ f sin dr',

2 2
(6.8a)

a = ~l J
72 Q2(r, z)=2 +5(z —zj)$3(r)sin

az

A )(r)
2

Az(T, Z)=A2(T, Z)+AD(Z), (6.10a)

( A (Z)A'(Z') }=—5(Z —Z'),
N

where

(6.10b)

(6.8b)

Here, hl is the length of the volume element Vz and we
have taken the second transition to be amplifying
(s2 ———1). Next, taking the formal limit of 51~0 and
changing to new variables Z and T,

A)(r'}
Z =z/l, T=—f sin' dr', (6.9)

72 0 2

we obtain the final equations
2

Qz(z) =—f f QJ(r)dx dy .1
(6.5) Ai(T')

A2(T, Z)= f rzQ2(T')csc dT'.
0 2

(6.10c)

This approximation neglects diffraction out of the volume
as well as transverse pump inhomogeneities. It is, howev-
er, approximately correct when the Fresnel number of the
superfluorescent field [A/(lA, )] is nearly unity and the
pump is nearly uniform.

Next, in order to obtain analytic results, we suppose
that the coupling coefficient scj is much larger in the su-
perfluorescent than in the pump transition. Accordingly,
the pump depletion will be negligible in a first approxima-
tion. The influence of the incoherent pulse on super-
fluorescence is discussed in Ref. 29, where the problem of
quantum initiation of superfluorescence in a three-level

We note, however, that the description of Eqs. (6.8)
with the volume cells is physically preferable as it shows
precisely how the physical space is divided. Equations
(6.10) can be used directly since they, in fact, give exactly
the same final equation. The crucial difference is in the
redefinition of the time in terms of Q&. If the usual
crossing-time criterion for superfluorescent delay time
were replaced by a criterion for A2(T, Z)=A, as defined
in Eq. (6.10c), then it is clear that the effect of optical
pumping is to lengthen the delay time via the rescaling in-
tegral in Eq. (6.9). In particular, if the equivalent two-
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level delay time were rD and the pump turned on and off
at ~=0 and ~=xi, respectively, the three-level delay time
would be implicitly defined by 7 D3 where

Vt(t, dl, b, ') = [(Q/e ' 'cr/i+Q2e ' 'cr32) —H. c.],2

(7.1)

'T2 'D3 . 2
Ai(~')ln—(A,v'2' )z=rD ——f sjn2 (6.1 la)

where

~=si
I
~

I

—~21 ~ $21~'
I

—~32 ~ (7.2)

or

A )(rq)
&D3 =CSC

2

A )(v')
VD — Sln

0 2 P
d1' +7

rD 3 & rt& ~ (6.1 lb)

Clearly, for an odd multiple of ~ input, short compared
to rD, there is no effect since then sin [A, (~~)/2]=1. On
the other hand, for a short pump pulse whose area is
equal to an even multiple of ~, the delay is greatly
lengthened. In the case of a temporally uniform pump of
Rabi frequency Q~ we have (with A, =Q~~~)

sin(erg) 3)
~D 2 +D3 p &D3

+VAN

(6.12a)

or

Ai
TD3 =CSC

2

sin(A ) )
+D

2
+ 2~ + P

'rD3 & 7p . (6.12b)

VII. AREA THEOREMS

When we include l3oppler broadening in the system, we
must allow for the fact that all the atoms will no longer
be tuned on resonance due to their different velocity com-
ponents. We must then generalize the interaction Hamil-
tonian to include detunings. We therefore get

Thus, the overall effect in this case is a lengthening of the
delay on the average together with a temporal modulation
at the Rabi frequency of the pump. Note that the results
above are restricted to the delay involved in the linear or
initiation region of superfluorescence, not the final non-
linear peak. This implies that they strictly hold for
A, «1. However, as a first step, we can use A, = 1 to
obtain rri in Eqs. (6.11) and (6.12), giving the approximate
delay at the peak of the superfluorescent output which
was not given in previous analyses. Finally, the transfor-
mation outlined here generally is useful in giving equa-
tions of the usual two-level type as a description of a
three-level system. This is a different transformation to
that already employed for Raman-type experiments
and can obviously permit the direct calculation of the out-
put intensity, correlations, and pulse statistics, as well as
the delay time, to extend previous results on the three-
level problem. We note, since we have made the as-
sumption of a plane-wave pump, that to analyze practical
experiments, we would need to perform numerical calcu-
lations.

The analysis of Secs. II and III does not carry through
for this case since now Vt cannot be written solely in

terms of the angular momentum operators l&, l2, and l3.
We will attempt, therefore, to simplify the analysis of the
system by deriving area theorems analogous to that of
McCall and Hahn by integrating the Maxwell equations
in time.

The Maxwell equations become

(7.3b)

+ Q) dt $1K1 (oi2e )ddt
8 1 8

Bg c Bt' 0

(7.4)

If we choose t & g where g is a time such that
Q, (t &g) =Q2(t &g) =0, we may split up Eq. (7.4) into
two parts:

a 1 a
Q~+ — Q~ t = —S ~K& 0 &28

Bg c Bt' 0

(7.5a)

f Q&+—,Qi dt'= —$&K& (o ~2e )ddt
8 1 8 iht*

Bg c Bt'

(7.5b)

The left-hand side (lhs) of Eq. (7.5b) is zero since
Q~(t'& g) =0. Also, o,2(t' & g, h) =cr&2(g&h) since

I
g(t' & g) ) =

I
1(&(g) ) from the Schrodinger equation.

Thus we get

f (o),(g, b, )e'~' )t,dt'=0 . . (7.6)

The integration gives

o(2(g, h)e' & =0 . (7.7)
(ei t&.i t fj—

Since this is true for any t &g, we can let t~ ~ and then
using the well-known llmlt34

( 1 eih(t g))—
lim =P ——im.5(b ) (7.8)

1 aQ)+ — Q = —$)K)(o„e—iht
c dt

1 8 —ih't ~z+ ——Q2 = —szKz(o „e
i)g c Bt

where ( )~ ~ denotes the averaging over the detunings
(instead of the velocities), and we write ( &~z) =o 1z& etc

&

for the quantum expectation. We still concern ourselves
, only with times during which we can ignore effects of
homogeneous broadening and natural relaxation processes.
We will perform our calculations for Q, . The analysis
proceeds similarly for Q2.

Integrating Eq. (7.3a) in time gives
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we find

—iP = (o,2(g, b, )e' ~5(b, ) )g

=7rg2i (0)oi2(g, ~ =o} (7.9)

where g2i(h) is the weighting function for the detuning
for the 1~2 transition.

The lhs of Eq. (7.5a) integrates to f (c}/c)g)Qidt' since
0we take Qi(t&0}=0. Upon integrating the right-hand

side (rhs) by parts we find

g
' iag g g eihi'f &»„e' '&zd('= —((»,z(i, k) ) +if (,»;2 )

d(

a
=wg2i(0)o i2(g, b =0)+i

o Bt', ~i2 (7.10)

We may compute (8/c)t')o &2(t', b, ) from

cl
, ai2(t', b, )t'

.~ &[cri2 I't])

I

negligible. The reason for this is that the detuning distri-
bution will be very sharply peaked around 5=0 so that
we may approximate

I,(h+ 5')]t

O)3 t, h

= —,
'

[Q&e ' '(oii —cr22) —Q2e' 'oi3] . (7.11)

Thus the integral on the rhs of Eq. (7.10) becomes

i f (,»»(( 5( ',
)

ch

i
(Qi(o ii —o22)/b ) i(,

dt'
0

~ )fc t= cr i3(t, 0)iT2, erf
T2 i 2 1TC02 i

=0 (7.14)

since co3~
——0 when the levels are degenerate. Here we

have used the definition T2i ——mg2i(0} and the relation
lhI /5 —C032/C02 i

i {6+b,')t'
02o ~3

t' . 7.12
2 0

It is shown in Appendix A that if initially Q, and Q2 are
real, they remain real throughout the propagation. Thus

—f (Qi(crii o22)/h)t, dt'—

Thus for both cases we may write

f (o i2e' ')~dt'=T2i o i2(g, 6=0) .
0

In full we thus have

c} (Q,dr =—s, iciT2icri2(=, 6=0)
c}z

(7.15)

must give no contribution since it is entirely imaginary (it
is, in fact, zero). Therefore

0- eg~t' t

=mg21(0)cri2(g, 6=0)
i(h+S, ')t'

020]3 dt' . 7.13
2

We cannot evaluate the integral on the rhs in Eq. (7.13)
but we may approximate it for two special cases.

Case I. The separation between the pulses is much
longer than T2i, the inhomogeneous lifetime for the 1~2
transition. In this case the contribution of the integral
will be negligible. This can be seen from the fact that in
this regime the source for Q» namely (oi2e' ')a, will
have decayed to near zero by the time Q2 arrives so that
the second pulse causes a negligible modification of the
time development of the o'i2 dipole.

Case II. The pulse widths and separation are much
shorter than T2~ and the first and third levels are degen-
erate (or nearly -so). In this case the integral will also be

= —s, aicri2(:-, 5=0) (7.16}

for cases I and II. a, =+~I d2, .ei
~ ~

co ~g2i(0)/eoirtc is
the Beer's absorption coefficient for the 1~2 transition.
Here we have transformed to the moving frame and let

Similar calculations for Q2 yield

Q2d~'= —s2ic2T32o23(=, b, '=0)
o az

= —s 2a2cr23(, 6 =0) (7.17)

cri2(:-, 6=0)= —,
' sin[2/i(:-)] (7.18a)

for both cases. Here T&2 ——n.g32(0) is the inhomogeneous
lifetime for the 2~3 transition and a2 is the Beer's ab-
sorption coefficient for the second pulse.

In the case where the pulses obey the small-overlap ap-
proximation, we may use the results of Sec. IV. In terms
of the angles (I}i and (I}2 we then have the following.

Case I. Equation (4.4a) reduces to
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since the second pulse will not modify this polarization,
while Eq. (4.4b} remains unchanged:

A i(z) A i(0)
tan

2 2
=tan

ai
exp —si z

2
(7.22a)

cT23(:",6' =0)= —,
' sin Qt(:-)sin[2/2(:-)] ~ (7.18b)

Case II. Here Eqs. (4.4) will remain unchanged. There-
fore

A2(z)
tan

cri2(:-, b, =0)= —,
' sin[2/1(:-) ]cos$2(:-),

0 z3(:",4' =0)= —,
' sin'(() i(:")sin[2/2(:-) ] ~

(7.19a)

(7.19b)

Az(0)=tan
2

a&

Bz 2
A &-—s& sinA i, (7.20a)

a a2

az 2 2
A2- —$2 sin sinA2 . (7.20b)

Case II. We have

a CXi A2

az 2
A &-—s& sinA icos

2
(7.21a)

If we now rewrite the pulses Qi and Q2 in terms of the
areas defined by Eq. (4.7) through the relations given in

Eqs. (4.5), we may obtain the following equations for the
areas.

Case I. We have

A i (0) A i (0)
cos

2 2
+sin

—SiCÃiZ
e

12 2 2a&)

(7.22b)

We will concentrate our discussion on the second equation
since the first is well known.

Two special cases present themselves at once. The first
is when A, (0) is an integral multiple of 2~. Equation
(7.22b) then states that the area of the second pulse
remains unchanged during the propagation. This is just a
consequence of the well known result that a 2nm. area
pulse will return the population to its initial state so that
the second pulse will have nothing to interact with.

When the first pulse has an initial area
A (i0) =+(2n +1)n, Eq. (7.22b} reduces to

a
A2sin

Bz
Az(z)

tan
2

A2(0)=tan
2

CX2

exp —s2 z2- (7.23}

Ai
=sin —s2 sin sinA2

2 2

A2—saba]cos
2 2

sin (7.21b)

These calculations are carried out in Appendix B.
Equations (7.20) have a simple interpretation. Since the

second pulse does not modify the polarization of the first
pulse, Eq. (7.20a) is just the familiar two-level area
theorem of McCall and Hahn. Equation (7.20b) is also a
two-level area theorem but with a z-dependent absorption
coefficient: —s2(ai/2)sin (Ai/2). This is merely a re-

flection of the fact that not all the population is available
for interaction with the second pulse. The sin (Ai/2)
term is a measure of how much population has been
transferred to the second level by the first pulse before the
second pulse arrives.

We may integrate Eqs. (7.20) by elementary means to
obtain the solutions

dAz ai Ai
=sis2 tan sin(A2) .

dAi 2a2 2
(7.24)

We see that the form of the solution will depend only on
the product of signs sisz. However, we will find that the
physical development of the system will depend strongly
on which transitions are amplifying and which absorbing.

which is just the solution to a two-level problem. That
this is so is evident from the fact that a (2n+1)m. area
pulse will completely transfer the population from the
first to the second level.

To discuss the asymptotic limit z —+ Oo we must classify
the system according to which transitions are.absorbing
(s; =+ 1) and which are amplifying (s; = —1). The limits
are easily computed and we give them in Table I.

The interpretation of these limits is most easily made if
we perform an analysis in the Ai-A2 phase plane. Since
the system is autonomous, we may eliminate the z vari-
able by dividing Eq. (7.20b) by Eq. (7.20a) to obtain

r

TABLE I. Asymptotic limits of tan[A&(z)/2] for the first set of area equations [Eqs. (7.20)]. These

-are obtained by taking the limit z~ 00 in Eq. (7.22b).

$2=+1 s2= —1

si ——+1 A2(0)
tan

2

A )(0)
cos

2

A2(0)
tan

2

A, (0)
sec
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(2n —1 )~(Ag(0) ( (2n + 1)~

Aq(0)
2Tan ' tan

sp ——+1

(2n —1)~&A~(0) & (2n +1)m

Ap(0)
2 Tan ' tan

a&/2a&
A i(0)

2

si ——+1

+2n 7T'sec
A i(0)

2
+2nmcos

2n~&A~(0) &(2n+2)m
(2n +1)m

(2n —1)m. & Aq{0) & (2n + 1)m

2n77

in transition just the
1 are unstable and p

en m
' . For an amplifying r ' ' '

e
2 p 1

1)m. or
op

'll t d to d (2r2nm wi e
the

h d elo of
}I diff~

for the
th od 1

tions.
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~ ~ed if hoo t

ofTbl I dH a e te sio
asy

h 11E B. (7.20 to e
fo h A i Fq
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solve them analytically;
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si ———1
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I
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1
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I

I

I

~z
=szs I ta

(Xi

2TT

ddt
dAI

Az

2
(7.25)

Az
tan

Ai

2
+cot

Fi . 7 for the A con-. (7.25) are given in Fig.Solutions of Eq.

I
.
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VIII. SUMMARY

M

7T

tt3 P

0

FIG. 7. Phase plot of A2sin(A~/2) vs A~ for the second set
of area equations [Eqs. {7.21)] for the A configuration. Gain ra-
tio is a2/a~ ——1. Direction of development of the system is
shown by the arrows. Plot is the same for the V configuration
except that the arrows are reversed.

figuration. For the V case, the direction arrows are re-
versed. The gain ratio is a2/ai ——1. The cascade cases are
not shown since for those configurations we cannot have
the

~

1) and
~
3) levels degenerate. The value

&2»n(&i/2)= I Q2(r')sin[A, (r')/2]d~'

is plotted since this corresponds most closely with the area
of the second pulse for this case. We give a comparison to
the numerically integrated Maxwell-Bloch equations in
Fig. 8 for the V case.

We have found from computer runs that in the regions
of the phase diagram where the integral curves resemble
folia, the predictions of this area theorem can be poor.
This is due largely to the fact that in these regions, A2(0)
will generally be large [A2(0) )m.] and the small-overlap
assumption will break down. This is especially true for
the V case where the first pulse increases its area during
propagation by developing a large positive tail.

We have investigated; both analytically and numerical-
ly, coherent propagation in a three-level system when the
pump and probe pulses have a small overlap. We have
taken advantage of the fact that the on-resonance Hamil-
tonian can be written in terms of angular momentum
operators by defining two rotation angles to describe the
time evolution of the atomic system. The small-overlap
assumption was used to rewrite Maxwell's equations in
terms of these angles.

Numerical computations show that the partial area
equations obtained describe the system very well as long
as the small-overlap assumption is satisfied. The calcula-
tion for superfluorescence predicts a lengthening of the
superfluorescent delay time for the cases where the pump
pulse does not completely invert the system.

Although the Hamiltonian for the off-resonance case
cannot be written solely in terms of angular momentum
operators, we have taken advantage of the Doppler
averaging to find approximate equations for the time in-
tegrated pulse areas for two special cases: (a) a very broad
line, and (b) a very narrow line where the first and third
levels are degenerate. The broad-line case is equivalent to
two successive applications of the McCall-Hahn area
theorem —the first pulse sets up the initial conditions for
the second pulse by transferring population into the
second level. We know of no analogy in the literature for
the narrow-line case.
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APPENDIX A

In this appendix we show that, for the Doppler-
broadened system, if the Rabi frequencies Qi and Q2 are
initially real they will remain real throughout the propa-
gation. From Eqs. (7.3) this means that we must show
that the driving dipoles of the fields remain real. In order
to do this we first look at the equations of motion for the
state vector

~
f(t, b„b,') ):

(A 1)

(D
2 where Vz(t, b„h') is given by Eq. (7.1). If we assume that

the Rabi frequencies are real, then this gives directly

0 [Qi(8 CT2i —e CTi2)

+Q2(& o32 & 23)114(t ~ ~')) (A2)

FIG. 8. Comparison of the predictions of the area equations
Eqs. (7.21) to the integrated Maxwell-Bloch equations for the V
case. Parameters are the same as those given in Fig. 3(d) except
that the relative time delay between pulses is 5~,. In addition
we have T2~ ——16m, . Areas are plotted for distances
Z =zK~ T2~ ——0 through Z=8.

/

The equation of motion for the expectation value of an
atomic operator is then given by

(A3)

Performing this calculation gives
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(&jk ) IQI[e ( ~trjl) 5«2 (trkz) 5jl) e ( ~oj 2)~«l (&«1 )~jz)1

+Q2[e ((Irjz)'5«3 (tr«3)'sjz) ((trj3)'5«2 (trkz)~j3)lI (A4)

Now if we set b,~—6 (and simultaneously b, ' —+ —b, ' since b, ' is proportional to 5) then this equation remains invariant

if we require o «(t, b„h') =ojk(t, —5, —6') for real Rabi frequencies. Now the driving term for the first field is given by

(crlz(t, h) e' ')~. Using the above symmetry relation, we obtain for the imaginary part of the dipole

Im(crlz(t, b)e' ')Il ——Im f dhgzl(h)olz(t, b, )e' '=Im f dhgzl(h)[olz(t, b)e' '+crlz(t, b—, )e ' 'j

= Im f d 6gzl (b, )[o Iz(t, b )e ' '+ c.c.]=0 (A5)
0

since the rhs is entirely real. We have used the fact that
the detuning function g(h) is symmetric about b, =0. A
similar calculation shows

Im(o23(t, b, ')e' ')~ =0 . (A6)

Thus if the Rabi frequencies start out real, the driving
terms never develop imaginary parts and so the field en-
velopes remain real throughout the propagation.

APPENDIX B

Here we perform the calculations which explicitly give
the area equations in Eqs. (7.20) and (7.21) for small over-
lap of the pulses. Combining Eqs. (3.7a) and (7.16) yields
immediately

a
pl ———s, olz(:-, &=0) .

az 2
(Bl)

(B3)

For the second case we proceed by differentiating
pzsinpl and using Eq. (3.7b):

For the second pulse, we look at Eq. (3.7b). For case I,
sin/I(~) will have reached a steady value by the time the
second pulse comes along and thus we may pull this fac-
tor out of the integral to obtain

$2(=)= f dw'.
=- Qz(I')

(82)
0

Combining this with Eq. (7.17) yields

a
$2———$2 ~23(=, 6 =0) .

az 2

i a
pzsinpl

ag c at

a 1 a «2(t') .f sin/I(t')dt'
ag c at o 2

Qz(t') t Qz(t')
sin/I(t')dt'+ fag c at' 2

L

a 1 a sin/I(t')dt'
ag c at'

t Qz(t'), a 1
sg cTQ38 g sin 1 I t +

2 0
cospl(t') +—,pl(t')dt' .

ag c at' (B4)

We again will look at times t & g. Throughout this calculation, we will assume that we may perform the following ap-
proximate factorizations of integrals due to the small-overlap assumption:

f f(pz)h(sin/I, cospl)dt'=h(sin/I(g), cospl(g)) f f(pz)dt' .

We may then write

Kp ~ Qt t ~ Kp

o
—Sz (&23e )tl l (s( n(t'I)dt'= sz sin/I(g—)

0 (&23e )g dt'
2 2

Kg—$2 Sin/1(g)'Irg32(0)&23(g, 6 =0)
2

CXp~—$2 Sill QI(g')sin[2/2(g)] (B5)

from Eqs. (7.17) and (7.19b). From Eqs. (7.16) and (7.19a) we obtain
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f Qz(t') () I
cosP~(t') +—,P&(t')dt'

g Qz(t')
cos

&

t' o.
&z

t', 4=0
2

a, g Q,(t')=—s& sin
&

t' cos ~
t' cos z

t' t'
2 0 2

=—s&, z
t' sin

&

t' cos
&

t' cos z
t' dt'8, . , z

2 o Bt'

CX] 8, , &i. z=—s& sing~(g)cos p~(g) J cospz(t'), pz(t')dt'= s& —sing&(g)cos p, (g)sinpz(g) . (B6)
2 0 Bt' 2

Thus Eq. (B4) reduces to

l 02( =- )»n(( i ( =- )]
8
az

cz
=sing~(:-) —sz sin P~(:")sin[2gz(:-)]

~z

Bz 4sz s—in P&sin(2$z) .

Case II. We have

a a1
P~——s

~ sin(2$~)cosgz,
Bz

(B8b)

(B9a)

CX)—s~ cos Pt(:-)sinPz(:-)
2

(B7)

Case I. We have

where we have transformed to the moving frame.
Using Eqs. (7.18) and (7.19) we may then summarize

our results as follows.

(Posing, )
Z

CXp (Xi
=sing) —sz sin $)sin(2$z) —s) cos Nisi Nz2

(B9b)

u1

Bz 4P&-—s& sin(2$, ), (B8a)
By ~~writing these equations in terms of the areas defined
by Eq. (4.7) we obtain Eqs. (7 20) an.d ('7.21).
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