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Constraints placed on a reduced density matrix or density by the requirement that it correspond to
an eigenstate or ensemble of eigenstates of some operator are investigated. Linear conditions, in-

cluding expectation value, commutator, hypervirial, and hierarchy equation conditions, may lead to
linear constraints on lower-order reduced density matrices and densities or leave them uncon-

strained. A zero-dispersion condition for a p-electron operator defines a parabolic trough on which

reduced density matrices of order 2p must lie, but usually does not restrict lower-order reduced den-

sity matrices or the density. Some properties of symmetrized and antisymmetrized matrix products,
related to their reduction behavior, are also investigated.

I. INTRODUCTION II. BACKGROUND

In the previous papers in this series' (referred to here
as GDM I—IV) density matrices and densities defined
with respect to a finite basis set have been treated as ele-
ments in Euclidean vector spaces. Various geometric
properties, ' spin properties, and mappings from one
space to another have been considered. Other workers
have emphasized group-theoretic aspects, treating the
spaces of density matrices as carrier spaces for representa-
tions of the group of unitary transformations of the
underlying spin-orbital basis.

The present paper is concerned with properties of densi-
ty matrices and densities resulting from the requirement
that they correspond to an eigenstate of some operator, or
to ensembles of such states. An eigenstate condition im-
plies other, less stringent conditions involving expectation
values and commutation or hypervirial relationships.
Density matrix hierarchy equations also result. ' It will
be shown in what follows that these conditions place
linear constraints on the density matrices, either fixing
certain components or establishing linear relationships
among components. A zero-dispersion condition
(A ) =(A ) is well known in the pure-state case to be
equivalent to an eigenstate condition, and this has been
extended to density matrices. ' ' This nonlinear condi-
tion defines a parabolic trough in the space of reduced
density matrices.

The next section of this paper deals with mathematical
background. Previous results are very briefly reviewed.
Some new terminology, and some new results relating to
matrix products, are presented. Subsequent sections deal
with various sets of conditions and their consequences.
Simple examples are provided by a consideration of spin
eigenstates.

Conditions on density matrices also imply conditions
on densities. These are complicated by the fact that they
are in general basis-set dependent, and a basis set chosen
to simplify the relationships' may not be convenient for
other purposes. Section VII is devoted to a discussion of
eigenstate conditions on densities. The operator of
greatest interest is of course the Hamiltonian, but the re-
sults of this paper are developed for general operators.

This paper investigates some of the properties of densi-

ty matrices associated with eigenstates of some opera-
tor, A. If D is a pure-state density matrix projecting onto
a wave function 4

then this refers to the fact that 4 is an eigenfunction of 0

We will also consider eigenensembles, which are ensembles
of eigenstates all associated with the same eigenvalue. If

0% =m%, ~=1, . . . , d

and

D=gk„'It 4, (4)

with 0 & X„&I, g„A, = I, then D is the density matrix
for an eigenensemble. Finally, we will sometimes consider
ensembles of eigenstates with different eigenvalues. These
minimally constrained density matrices will be called di-
agonal ensembles.

As in previous papers in this series, especially GDM II,
we assume a one-electron basis set consisting of r ortho-
normal spin-orbitals. An orthonormal basis for n-electron
functions can then be taken to consist of the ('„) indepen-
dent, normalized single-determinant functions. Although
n could be as large as r, we can avoid a number of com-
plications by requiring r ~ 2n.

We will speak of an operator being "restricted" to the
space spanned by the relevant set of functions. More pre-
cisely, the domain of the operator is restricted to this
space and its range is projected onto the space. Such a re-
stricted operator can be represented by a finite-
dimensional matrix, with each physical problem being re-
placed by the matrix, model problem. Some care is essen-
tial in specifying what fundamental operators are involved
(the stage in a calculation at which the restriction to the
finite space occurs) since in general the product of re-
stricted operators differs from the restriction of the prod-
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uct of the corresponding unrestricted operators.
Since there are ('„) n-electron basis functions, an opera-

tor acting on n-electron functions will be replaced by an
(„')&&(„") matrix. The real linear space of ('„)X(„")Hermi-
tian matrices is denoted by 5'n. The reduction operation
L ~n, defined originally for density matrices, ' ' can be ap-
plied to any matrix in 8'n to give a matrix in 8'&. Each
space 8'z can be uniquely divided into orthogonal sub-

spaces 8'z~, 0(n(p . Th. ese are the invariant subspaces
with respect to unitary transformations of the spin-orbital
basis. They have the further very important properties
that if V (& ' is any element of 8'r, then

k), . . . , k =1]r ~ ~ ~ p

ki . « kp

Q(ki, . . . , kr) . (6)

An operator can have components associated with dif-
ferent values of p, the most important example being the
Hamiltonian, with one-electron and two-electron parts.

I

and that a one-to-one correspondence can be established
between the elements of 5'r~ and those of g)'~~ for any

p, q )m. (Since matrices are regarded here as elements in
vector spaces, a vector notation is used. }

In the absence of a basis set we speak of an operator Q
as a p-electron operator acting on n-electron functions if
it is of the form

Such an operator can be written formally as having a sin-

gle value of p. For example, the usual reduced Hamiltoni-
an form'9

n n n~= g/(j)+ g p(j,k)= g 2(j,k),
j,k=1
j&k

j,k=1
j&k

2(j,k) = [/(j)+/(k)]+~(j, k) .

For matrices, a different decomposition is more funda-

mental. Any V(~) E 8'z can be divided into components
V(r n)ES'zn. We will refer to the comPonent label m as

the reduction index of V'~'"' and p will be called the or
der, the latter being the conventional reduced-density ma-
trix terminology. The matrix Q '"' of the p-electron
operator Q, will in general have components of reduction
index m. for various values of m between 0 and p. We de-
fine the degree of the matrix as being equal to the max-
imum of the reduction indices of its nonvanishing com-
ponents. A matrix of degree p can always be constructed
as the matrix of a p-electron operator.

One of the most fundamental facts of reduced density
matrix theory is that the expectation value of a p-electron
operator can be evaluated from the reduced density matrix
of order p. If Q is given by Eq. (6), then for density ma-
trices normalized to unit trace

(0)=f QD™(1,. . . , n;1', . . . , n')dxi ' ' dx, = f Q(1, . . . , p)D(~)(1, . . . , p;I', . . . , p')d x) de, p(n .

(The prime on the integral sign is a reminder of the
prescription that after the operator acts, on unprimed
variables only, primes are dropped before integration. ) In
matrix form

( Q (p, n)y (p))n(L ,p Q {n',n) L p
V(

, n))n
n n

[g(n p ~)]2(Q (n, n) y(n, n)}

(Q) =tr(Q '"'D'"') (10)
Since components with different reduction index are
orthogonal,

is the finite-basis approximation to (Q), but this is not
equal to tr[ Q '&'D 't'] where Q ' '=L „Q '"'. Instead, we
can define an effectiue reduced matrix, Q ',g, by requiring

that for any V'"'E 5'„and V ' '=L „V '"',

(Q(") V("))= y(Q(" ' V'"' ')

eff ~ =
p eff(Q '~' V'~))= tr(Q (~'V()')) g [g(n,p, n )] Q (t' ),V 'r' (14)

( Q (n) y (n)) tr( Q (n)y (n))

where the trace scalar product has been introduced. '
—+

The relationship between Q,'ff' and I. „Q '"' is compli-
cated by the fact that, although L ~n provides a one-to-one
linear map from 8'nn onto 8'z, it changes norms by a
factor depending on n as well as on n and p: '

where

ll
X( n,p,n)=.

P
[g(n,p, n)]

We can thus identify

Q cg= gg(n, p, m. )Q (t' ',

This is readily generalized to the scalar product

(12) n!(n —p)!(r n —m. )!(p ——n. )!
p!(n —m. }!(r—p —m }!

(16)
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Matrix products will also be of interest. The product of
two Hermitian matrices will not in general be Hermitian.
We could extend the real vector space 5'~ to a complex
vector space 8'~ including all (~ ) X (~ ) matrices, but
choose instead to deal with Hermitian matrices

( AB)+-= —,'(+1)' (AB+8 A) . (17)

The order superscript has been suppressed, but A, B, and

(AB)—+ are all of some particular order q. Introduce any

orthonormal basis t Yk } for 8'~. Then

A= ga„Y„, 8= gb„Y„, (18)

( AB)+-= g c+-„Y„.

The expansion coefficients are related by

c„+-= g T+;~„a~b„
A, ,p

Theorem. If A= A ' ' and B=B ', then if
( A 8)—is nonzero it can be resolved into components with
reduction indices between

~
~, orb

~

and m—, +nb. If A is
of degree p, and 8 is of degree pb, then the degree of
(A 8)—does not exceed p, +pb and its minimum value is
the smallest value of

~
n; mb~ f—or w. hich the product of~ (,n, m ) (n, n.b)components (A ' ' 8 ' )- is nonzero.

An explicit proof of this theorem is given in the Appen-
dix. The theorem will allow some simplifications which
facilitate the interpretation of the eigenstate restrictions to
follow.

III. EXPECTATION VALUES

For an eigenstate of 0 associated with eigenvalue co,

the expectation value of A will also be co. In density ma-
trix terms, if Q is a p-electron operator then

tr(D '~'0 '~rr')

(D '~', 0,'g) (22)

whenever D'~' is associated with an eigenstate or eigenen-

T„~z ———,(+1)' [tr(Y„Y~Y&)+tr(Y„Y„Y~)].

It follows from this definition and the invariance of the
trace of a product under cyclic permutations of factors
that the array T+ (T ) is symmetric (antisymmetric)
with respect to permutations of indices. Equations of this

type are common for the commutator, ' but not as usu-
al for the symmetrized product.

This property of the products (AB)+— and the results
presented above can be combined to establish the follow-
ing.

(D'~', 0,'fr'„)=co„, ~=0, 1, . . . , v. (23)

If an n-representable D' ' can be found such that these
equations are satisfied, then the set of expectation values

[co„}is n representable. There are two ways in which this
can fail to be possible.

We will denote by 5'z(Q) the subspace of 8'z spanned

by the set of vectors t 0',rf', }. The orthogonal comple-
ment (with respect to the trace scalar product) of 8'&(0)
in 8'z will be denoted by 8'z(J. ). Then any D'~I can be
resolved into components in 8'z(II) and 8'z(l). The
specification of a set of expectation values tao„} deter-
mines a point in 8'z(Q) and fixes the component in

8'z(A) of any DI~' giving those expectation values. The

component of D '~' in 8'z(l) is unrestricted by the expec-
tation value conditions.

If the set of vectors I Q,g I is linearly dependent, the
dimension of 8'z(Q) will be less than v+1. The v+ 1

values of co are then not independent, and only consistent
sets can be n representable. It is also obviously necessary
that for each ~, co, is neither greater than the largest
eigenvalue nor smaller than the smallest eigenvalue of

IC

A point in 8'z(A) may be defined by an internally con-
sistent set Ice„} which nevertheless does not define a per-
missible component in 8'&(II) for any n-representable re-

duced density matrix. If D'~'(II) E 8'~(A, ) is fixed by the
expectation values, then for n representability there must

be some D' '(l) E 8'~(i) such that D'~'=D'~'(II)
+D'~'(l) is in the set Hz"' of n-representable p matrices.

semble with eigenvalue co. The effect of specifying an ex-
pectation value is thus to fix one component (in the direc-

tion of 0,'fr') of D'~'.

In general, even if D'"' were known to be pure-state n

representable, the expectation value condition does not en-

sure an eigenstate. If, however, the spectrum of 0'"' is
bounded and cu is an extreme value then the expectation
value condition ensures that a reduced density matrix
satisfying Eq. (22) comes from an eigenstate or eigenen-

semble with that eigenvalue.
If several operators commute, it is possible for them to

have simultaneous eigenstates. For a specified set of ex-

pectation values to occur simultaneously, commutation of
the operators involved is not required, and expectation-
value conditions need not be related to eigenstate condi-
tions. Let [ 0„~=1,. . . , v} be a set of operators. When
is it possible to simultaneously satisfy the conditions
(0„)=co„, a.= 1, . . . , v? Westhaus has suggested exten-
sion of the term "n representable" to a set of expectation
values which can be realized by an n-electron pure state.
In the present context, it is convenient to extend this defi-
nition to include ensembles.

Suppose that 0„is a p -electron operator. If the p, are
not all the same, define p =max Ip„} and redefine each II„
as a p-electron operator [cf. Eq. (8)]. The normalization
requirement also provides a constraint on the density ma-
trix. It can be expressed as an expectation value if the

unit matrix is introduced as 0,'~~~p=(~) '1 and coo ——1.
Then the conditions are
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Equivalently, D (~)(Q) must be in the (orthogonal) projec-
tion of Hz"' on to 8'z(Q). Since H~"' is convex and of
finite extent, this projection image will also be convex and
of finite extent.

Westhaus has also suggested that the Levy condition
that a function )I) yield a specified density p can be con-
sidered as fixing a nondenumerable set of expectation
values. The condition has been generalized to ensembles
by Valone. For the finite basis set model, only a finite
set of conditions:are involved in fixing a density. They
again have the effect of fixing certain components of the
density matrix and may or may not be realizable. This
situation has been discussed elsewhere. It differs from
the unrestricted (no basis set) case in which any density is
n representable.

As a simple example we consider the consequences of
fixing expectation values of the spin operators W and

(The notation and normalization for spin com-
ponents are those defined previously. ) Since P', is a
one-electron operator

p=(W, ) =n(Z, (1),D"))= ,' n try—', (24)

where y' is the spin-density matrix. For (A ) the two-
matrix is required

cr=(&2) = ,'n —v —3
2 tr Y([ll]) . (25)

Since (W ) )0, a value o=0 is sufficient to ensure a
singlet eigenstate or eigenensemble.

This can be expressed as a condition on the permutation-
ally symmetric and antisymmetric components of the
two-electron charge-density matrix '

n (n +2)—4o.
trI '=

8n(n —1)
(26)

3n (n 2)+4—(rtrI '=
8n(n —1)

0=(Y'"',(D'"'0 '"') )

= —[tr(Y'"'D'"'0 '"') —tr(Y'"'0 '"'D'"')]
2

=—[tr( II (")Y(")D '"')—tr( Y (")II ("'D '"') ]2 K K

(( / (n)Y(n)) D (n)}— (29)

Any matrix D ~"~ that commutes with 0 ~"~ must be ortho-

gonal to all the Uectors (0 ~" Y)~"~)

The hypervirial theorem states that for an eigenstate
of the Hermitian operator 0,

([n,J])=0 (30)

(n)
+KL ~K ~KL (31)

and the basis for 5'„ is taken to be the [ A,B,C
basis defined in GDM I, then

~
A A

for any operator A. The vanishing of ([H,A]) for ener-

gy eigenstates has been used in density-matrix theory by
Rosina et al. , and a related condition has been used by
Erdahl. ' The expectation value is readily generalized to
ensembles of eigenstates, not necessarily associated with
the same eigenvalue. When a basis set is introduced, the
general matrix A'"' can be expanded in terms of the

[ Y „'"'I, and thus the matrix form of Eq. (30) will be satis-
fied for all A'") if and only if Eq. (29) is satisfied for all
K.

Although the [ Y„'"'I form a basis for 8'n, the vectors

[(Q '"'Y„'"')
I will not be linearly independent and some

of them may be 0. [If 0 '"' is taken as the unit matrix,
(0'"'Y„'"') =0 for all «. ] The situation is really very
simple. Although the n-electron function basis is often
best taken to consist of single determinants, it need not be.
The basis functions can be taken to be eigenfunctions of
the restriction of the operator Q. Then both 0 '"' and the
density matrix for any ensemble of eigenstates will be di-
agonal.

When the basis is chosen so that Q '"' is diagonal

IV. COMMUTATOR AND HYPERVIRIAL
CONDITIONS

If D'"' is an ensemble of eigenstates of fl '"', not neces-
sarily all with the same eigenvalue, then

(Z (n)A~)

( II (n)B KL) — &

( )C KL

(0 '"'C
) = ——(co —a) )B

(32)

[D(n) II (n)] 0 (27)

or, in terms of a matrix in 8'„,

( D (n) II (n))— (28)

The commutation of D'" with the Fock operator is well
known in density-matrix Hartree-Fock theory ' and prop-
erties of the commutator of D' ' with the reduced Hamil-
tonian h' ' have also been considered. In the general
case being treated here, Eq. (28) says that the matrix
(D(")0 '"') is zero and thus that for any basis [ Y„'"'I for

If Q '"' has no degenerate eigenvalues any D '"' which sat-
isfies Eqs. (29) must be diagonal. For any degenerate
eigenvalues ~K——~L, D " may have components in the(n)

B and C directions. (It could be diagonalized by a
transformation leaving 0 '"' diagonal, but different
transformations might be required for different D'"'.)

Another possibility is the use of a reducing basis for
If Q is a q-electron operator, then for a Y„'" of

reduction index n.„ the matrix (0 '"'Y„'"') will be of or-
der (at most) q+m„. To determine the consequences for
density-matrix components of low reduction index of
commutation of the density matrix with a few-electron
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S', = g s,(j) (33)
j=1

can be taken as n. If a basis set is chosen in the usual

way, where each orbital can be combined with either of
the spin functions a or P, then trP,"'=0 and W,'~' will
have reduction index 1 for each p. In the spin operator
notation of GDM III, a, = [1]o/V 2 and the one-electron
commutators are

(34)

From this it can be shown that

[S'„I n,j,u ]0]=0,

[S'„In,j,u I ] ~ I n,j,uj, m~0
(35)

so that Eq. (29) leads to the well-known result that a den-

sity matrix for an ensemble of A, eigenstates will include
only spin components of the form I p,j,u I o.

Commutators involving P' are readily evaluated but
the interpretation of the resulting conditions is quite com-
plicated. A treatment of the consequences of the require-
ment [(P )'"', D'"'] =0 will therefore be postponed to a
future paper.

V. HIERARCHY EQUATIONS

operator, only the basis elements with low reduction in-
dices need be considered. We have seen that the con-
straints of Eq. (29) will be satisfied for all a if and only if
D'"' is the density matrix for a diagonal ensemble. A
combination of these constraints with an eigenvalue con-
straint severely restricts D'"', but is still not sufficient in
general to guarantee an eigenensemble.

Spin operators can again provide illustrative examples.
The n electron

If n '"' is of degree q, the matrix n,'g defined previously
can be introduced and

(40)

Since by assumption Eq. (38) is satisfied,

rt =co( n ',«tt, D'«') =co (41)

This means that for expectation values computed with

respect to D'"', (n ) =(n) and thus D'"' is an eigenen-
semble. ' It has been established that an eigenensemble
density matrix satisfies Eqs. (36)—(38) and that an n

representable reduced density matrix satisfying these equa
tions is associated with an eigenensemble.

For a given value of co, the linear equations

L P(n (n)D(n))+ ~D(P) ~L DP(n) (42)

place conditions on the components of D (p' in a way
which has been discussed elsewhere' for the Hamiltonian
and is readily generalized. In the absence of n-

representability constraints, these equations do not pro-
vide for a determination of the eigenvalue co. A nonlinear
condition not involving co explicitly will be given in the
next section.

In the case of spin operators, the eigenvalue is usually
known. It is not easy to obtain useful information from
the hierarchy equations, even for 9'„however. The ef-

feet of W, acting on D '"' is to modify the spin operators.
The orthogonality of these operators can then be used to
obtain from the hierarchy equation at each order a set of
equations relating various spatial components of the re-
duced density matrices. One would like to further reduce

these to obtain constraints on the components of D"' and
D' '. This requires a knowledge of the partial traces of
spatial components, which is beyond the scope of the
present paper.

We begin this section with a generalization of the
hierarchy equations ' which differs from that of
Schlosser. " The derivation closely parallels that of
Nakatsuji' but the notation and normalization conven-

tions differ from his. If D '"' is an eigenensemble of n '"',
then

VI. DISPERSIONLESS ENSEMBLES

We have already made use of the fact that
( n ) = ( n ) if and only if the expectation values are
computed with respect to an eigenensemble. A density

matrix D'"' such that

D «)g «) ~D «)
7 (36) ( n2) tr[( n (n))2D (n)] [tr( n (n)D (n))]2

These equations can be combined and reduced. Defining

G(p) L p(n (n)D(n))+

we find that Eqs. (36) imply

~ (P) ~D (P)

(37)

(38)

will be referred to as dispersionless. We take q to be the
degree of Q '"' and investigate the geometric consequences
in S2» of Eq. (43).

To avoid excessive writing of sub- and superscripts we
define

for any p, 0 &p (n
Now suppose that D'p' is a reduced density matrix (en-

semble) n-representatable by D'"', such that Eqs. (37) and
(38) are satisfied. Consider

and

F= n,",(»)

[(n (n))2](2()

(44)

(45)

r/ =tr[( n '"') D '"']=tr( n '"'G '"')

( n (n) G (a)) (39)

so that

(n) =(F,D), (n ) =(G,D), (46)
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where D=D( q). The theorem of Sec. II ensures that if
0 '"' is of degree q, (0 '"') will be of degree not greater
than 2q, so the effective reduced operator G can be de-

fined in 8'zq. Let Ap be the normalized basis element of
@'2q,o

—1/2

D=
2 Ao+VF+zG+D(l),
2q

(D(l), Ao) =(D(i),F)=(D(l),G) =0 .
(57)

—1/2

Ao —— 1 (2q)

q
(47)

Any reduced density matrix satisfying the zero dispersion
condition must have coefficients y and z such that

1/2
r

F= fAp+PF

Then F can be written as

(48)

ol

(F,D) =(f+PV) =(G,D)=g+AV+yz

yz=4'V'+(2fd ~)V +f ' g. —

(58)

(59)

where

(F,A()) =
2q

trF (49)

(Ao F)=0 (F F)=1 . (50)

is the average of the eigenvalues of F, and F is a unit vec-
tor in 8'2q orthogonal to Ap

This defines a parabola in the V-z (i.e., F,G) plane and
leaves other components of D restricted only by normali-
zation and n-representability constraints.

As a first step in characterizing the meaning of Eq.
(59), we relate the eigenvalue averages f and g to the
eigenvalues co of II '"'. We introduce the unit-trace ele-

ment of 8'2q, X =(iq) '1 =(iq) ' Ap. It is relat-

ed to the corresponding element X '"' of 8'„0 by
X' ) =L „X(n). It follows from the definition of F that

Explicitly,

and

4=(F,F) &0 .

F—(F f 1 (iq))/~ ~F f 1 (2q)~
i

(51)

(52)

(0 '"',X'"')=
n

(F,X("))=
2q

and similarly

—1

r ( )

trF=f (60)

In a similar way G can have components along Ao,
along F, and orthogonal to both of these ((g (n))& X(n)) tr[(n (n))']

1/2
r

G 2 gA 0+AF+ y G, (53)

where
—1/2

r
g=

2q

—1

—+

(Ap, G)=
2g

trG (54)
=(G,X(2q))=

2Zq
trG=g . (61)

is the average of the eigenvalues of G,
Since for any set of numbers (not all zero) the average of
the squares is greater than the square of the average,

A, =(F,G) (55) f' —g(0. (62)

and

G= G gl(q) ~F-

/ /

G g 1 "q' AF
i
f— —

(56)

The parameters ((), k, and y are also determined, for any
fixed II '"'. It is a consequence of their definitions that
P & 0 (in nontrivial cases) and that y & 0. We will initially
assume that y & 0 as well. Equation (59) can then be writ-
ten in the standard form

y=(G, G) &0 .
z =ay +by +c (63)

Except in the trivial case where F is proportional to the
unit matrix, which we exclude, t)I) cannot be zero. Further,
A, and y can both be zero only in trivial cases, but we can-
not exclude cases in which one of them is zero or in which
A. is negative.

Any reduced density matrix in 8'iq can be resolved into
components along Ao, F, and G, and a remainder ortho-
gonal to all of them. The component along Ap is fixed by
the normalization condition, so

with

a =P ly&0, Ii=(2fg k)/y, —

c =(f g)ly (0 . —
(64)

5 —4ac ~b )0 (65)

Since d~z/dV2=2a &0, the parabola in the V-z plane de-
fined by Eq. (59) or (63) is concave up. Further
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so the equation z=O has two real roots of opposite sign.
The origin y =z =0 is thus "inside" the parabola.

If y =0, which occurs if G —g 1 ' q' lies along
F—f 1 ' q', then Eq. (59) becomes

a'y +b'y +c'=0
with

(66)

a'=P ~0, b'=(2fg —A, ), c'=f g&—0 . (67)

This set depends, of course, on Q '"'. The corresponding
set in 5'z will be denoted by M2q(Q '"'). In the special
cases when y=O, M2q(Q "') consists not of a parabolic
trough but of two parallel hyperplanes defined by
y =[ b'+(b' —4a'c')'~ ]/—2a'.

The point X ~ q' in 8'2q, which corresponds to the origin
in ~2, is known to lie in the interior of the set %2q' of
n-representable 2q matrices. A pure-state n-representable
reduced density matrix corresponding to an eigenvector of
Q '"' must lie in both M2 (Q'"') and H'2"', in fact, the set
of all such reduced density matrices is just
%2"'AM2 (Q'"'). If Q '"' has no degenerate eigenvalues,
this intersection consists of a set of discrete points. The
intersection corresponding to a degenerate eigenvalue will
be a convex set of dimension one less than the degeneracy.
Related results have been obtained in a different context
by Erdahl. ' ' As different matrices Q '"' are considered,
different M2 (Q'"') result. For each of them the set Hzq'
must be inside the trough (or between the parallel hyper-
planes) and intersect Mz (Q'"') in points which are pure
state reduced-density matrices corresponding to eigen-
states (or possibly eigenensembles) of Q '"'. Each
Mz (Q" ) is a hypersurface which divides 8'2q into two
regions: an "inside" denoted by Wzq(Q'"') and an "out-
side" 8'2 (Q'"'). [When Mzq(Q'"') consists of parallel hy-
perplanes, W2 (Q'"'} is the region betwen them and
d'2 (Q'"') consists of two disjoint parts. ] The dividing
hypersurface itself is taken to be part of the inner region.
Since H2"'C&2q(Q'"'} for each choice of Q'"', it will
also be true that

W„'"'C~„=—A ~„(Q'"'),
I
g(n)

I

where the intersection is taken over all the 0'"' being con-
sidered. The boundary of Hzq' will also include points
that are in the boundary of Jrqq. The picture provided by
parabolic troughs intersecting in a convex set provides one

The z, or G, component is unrestricted (and in fact G is
undefined). There are two possible real values of y on op-
posite sides of y=0.

If y&0 and D is a matrix satisfying the zero-dispersion
condition, then its component amplitudes y and z must
satisfy Eq. (63). The Ao component is fixed by the nor-
malization condition, but the components orthogonal to
Ao, F, and G, making up D(l ), are unrestricted.

The set of D=D —X'q'H~zq (Ref. 1) for which D sat-
isfies Eq. (59) is thus a parabolic trough, with a parabolic

A.
cross section in the I', G plane and linear in other direc-
tions.

=(~,') =—+ "
I —,', trY([IT],)

4 24

trY([1'],) I .
6

(68)
The directions involved are those of the appropriate spin
operators time unit spatial operators.

VII. EFFECTS OF REDUCTION OR COLLAPSE

In the preceding sections we have considered various
constraints imposed on a density matrix by eigenstate-
related conditions. The order (particle number) of the
density matrix involved must be equal to at least p for a
p-electron operator, and in some cases twice that. In this
section we will investigate how these constraints may im-
pose constraints on a lower-order density matrix obtained
by reduction or a density obtained by collapse. For
brevity and generality in notation, the order index will be
suppressed when not critical.

We will use 8' to denote the space of matrices to which
the original constraints apply. It can be divided into two
orthogonal subspaces, 5" and 8'". The elements of 8" are
in one-to-one correspondence with those of the space of
lower-order reduced density matrices or densities of in-
terest. Any element of 8"' will be annihilated by the
relevant density matrix reduction or collapse to a densi-
ty. ' Single and double primes on matrices will be used
to distinguish elements of these two subspaces.

Consider first a single expectation-value constraint. If
both D and Q,ff are divided into components in the
orthogonal subspaces, the constraint equation becomes

(D', 0,'ff)+(D", Q,'rr) =co . (69)

It is possible that Q,'rr is zero. This will happen, for ex-
ample, whenever 8" corresponds to the space of densities
and Q is a multiplicative, one-electron operator such as
the dipole moment or an external potential. In such a
case the equation is already a constraint simply on D'
(thus on the density). It would also be possible in princi-

way of looking at the nature of that set, and each trough
provides a way of expressing a zero dispersion condition
in convenient geometric terms. The utility of this ap-
proach lies in the information it provides about the re-
striction placed on density matrices by physically interest-
ing eigenstate conditions, rather than as a means of
characterizing H2~'. It certainly provides some informa-
tion about Hzq', but at best a very large set of Q'"' would
be required, so that there is likely to be little practical util-
ity.

We can again look to spin operators for a simple, if
quite atypical, example. The zero dispersion condition for
P', appears as an equation relating components of D' '.
It can be written in terms of traces of spatial components
as

2

(W, ) =
2 ItrY([ls])+trY([s 1])I
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pie that Q,'f~ be zero, but it seems unlikely that any physi-
cally interesting operator would have this property.

When 0,'rr is nonzero, Eq. (69) places no restrictions on
D' by itself, in the absence of n-representability con-

straints: for any choice of D', a D" can be found such
that the equation will be satisfied. The constraint may,
however, interact with n-representability conditions to re-

strict D'. For example, ~~D~~ is certainly bounded. Not
only is

~

~D'~
~

similarly bounded, but for any given D',
Eq. (69) may mandate a nonzero D", thereby reducing
the bound on ~~D'~~. Because of the complexity and in-
completeness of known n-representability conditions,
these interactions cannot be effectively explored here.

We consider next a set of simultaneous linear con-
straints. Such constraints can be expressed as linear, inho-
mogeneous equations which the expansion coefficients of
D must satisfy. They will be written in general form here
as

A D=o. , (70)

A ID I +A IID II (71)

We want to know whether these equations place any re-

strictions on D, considered by itself. They do if and only
if there are some choices of D' for which no choice of
D" can lead to a solution of Eq. (71). The equations can
be rewritten as

where A is a rectangular matrix with fewer rows than
columns. The relevant theorems of linear algebra state
that (i) this system of equations will have no solutions (be
inconsistent) if a is not an element of the vector space
Ã(A) spanned by the columns of A; and (ii) if a E E(A)
and the rank of A [the dimension of C ( A )] is less than
the number of columns of A [the number of elements of
D] then there are an infinite number of solutions differing
from one another by any solution of the homogeneous

equations AD= O. The usually interesting case where A
is square and nonsingular will not be considered here since
we assume we have too few constraints to completely
determine D. Case (i) can also be excluded if we assume
that only consistent sets of constraints will be treated.

The column labels of A correspond to elements of D so,
for an appropriate ordering of the basis, the division of D
into D' and D" will correspond to a partitioning of A as
( A ', A ") and Eq. (70) becomes

and Ãi is the orthogonal complement of K" in K(a, A'),
and introduce orthonormal bases [ uj I and t vkI for K"
and Ki, respectively. Then a, the columns of A, and P
can all be expressed as linear combinations of I uj ) and

I vkj:

y U puj+ y Vkpvk

(75)
a = Q &g up+-g ~iu "k ~

and

p Q Ujpuj+ g Vkpvk —g g Uj,.uj+ g Vk;vk dt
j k i j k

UJ p
—g UJ"d' uj + g Vkp —g Vk d' vk

l

Vkp —g Vk;d =0 for all k (77)

or

VD'= vo . (78)

This is again a set of linear constraints, now applying to
D '. The elements of V and vo are determined by those of
A and a. It is possible that X(a,A')CÃ(A"). In such
a case there are no v 's and no constraints on D'. The
greater the dimension of 4'i, the more constraints on D '.

The zero-dispersion condition imposes a nonlinear con-
straint, Eq. (59) or equivalent. To investigate the effect of
reduction or collapse on this constraint we must begin by
dividing the matrices involved into components in 8" and

Note that Ap&S", since it survives all reductions
and corresponds to the "average density" component of
the density. Unit vectors can be introduced in the ap-
propriate orthogonal directions so that

r
F=

2 fAp+p'F'+p"F",
2g

(79)

where F'P 8" is orthogonal to Ao and F"E8'",

gAO+~'F '+y'G '+~"F"+y2q
(80)

(76)

where d is the ith element of D '. If P is to be in
C(A"), the coefficients of all vk must vanish in Eq. (76),
so that

A "D"=a —A'D':—P (72)

and for a solution to exist P must be within C(A"), the
space spanned by the columns of A".

Let Ã(a, A') be the space spanned by a and the
columns of A'. Clearly P is an element of this space. We
further define an orthogonal decomposition of this space
as +y"F"+z"G"+D"(l) (81)

with O'ES" orthogonal to Ap and F' and G "ES"'
orthogonal to F", and

—1/2

D=
2 A, +y'F '+z'G '+ D '(l)
2g

Ã(a, A') =C"+@i
where

K"=K(a,A') A K(A")

(73) with D '(l ) and D "(l ) being the components of D in 8"
and 8'", respectively, orthogonal to previously defined
directions in these spaces. Equations (43) and (46) then
lead to
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(f ' —+(2fk' ~')y'+0'y' l—"z'1+t(2fk" ~")+20'0"y'0 "+0"y"=}"z" .

We must learn what constraints this equation places on
D'.

As in the linear case, if there are to be any constraints

on D ', there must be choices of its components such that
no choice of D" can result in the equation being satisfied.
The coefficients in the expansion of D which might be
constrained are y' and z'. Suppose first that y"&0. Then
for any choice of y' and z' (and indeed for any y" as
well), a z" can be found such that Eq. (82) will be satis-
fied. The zero-dispersion condition thus places no con-

straint on D' if y"&0.
If both y' and y" are zero, we have the y =0 case con-

sidered in Sec. VI. In this case the condition becomes
linear and can be examined by the techniques above.
There remains the possibility y"=0, y'&0. In this case,
for given y' and z', Eq. (82) is a quadratic in y". The
discriminant will be non-negative so that a real solution
exists if and only if

( A,
" 4fP"A,

"—) + (4P"k' 4P'P "1,"—)y'

+(4P"'y')z' & 0 (83)

This requires the component of D ' in the F '-6 ' plane to
be in a specified half-plane.

VIII. DISCUSSION

We have considered a number of conditions which must
be satisfied by density matrices or densities corresponding
to eigenstates, eigenensembles, or diagonal ensembles asso-
ciated with one or more operators. Each of these condi-
tions is necessary, but in the absence of n-representability
constraints none is sufficient (except possibly in special
cases), to guarantee an eigenstate or eigenensemble. Some
are linear and some are nonlinear; some involve a specifi-
cation of the eigenvalue and others do not. The conse-
quences for reduced density matrices of lower order also
vary.

The expectation value constraints are the least. restric-
tive, and require a knowledge of the eigenvalue sought.
They are linear, simply expressed, and multiple conditions
can be combined subject only to consistency conditions.
These conditions are readily stated in terms of the linear
dependency of certain vectors and provide a generaliza-
tion of the n-representability criterion of Westhaus.

Commutator and hypervirial conditions are essentially
equivalent. One such condition is much more restrictive
than a single expectation value condition. These con-
straints are linear and do not require knowledge of an
eigenvalue.

Density hierarchy equations also provide linear con-
straints. A knowledge of the eigenvalue is required; it is
not provided by the equations themselves. If combined
with n-representability conditions, these constraints would
provide necessary and sufficient conditions for an
eigenensemble.

These linear constraints apply to density matrices or to

reducmi density matrices of different order. If the opera-
tor of interest is a p-electron operator acting on n-electron
functions, then the expectation value condition is defined
in 8'z, the hierarchy equation conditions in 8'zz, and
commutator or hypervirial conditions in 8'„. It has been
shown that linear constraints in any 8'» may imply linear
constraints in spaces 8'q, q'&q. The number of such
constraints will depend on the operator involved, and
there may be none at all. A determination of the con-
straints on a density when the operator is not just one-
electron multiplicative depends also on the basis set being
used.

The zero-dispersion condition is nonlinear, but does not
require a knowledge of the eigenvalue. It defines a para-
bolic trough in 8'z~ and, if combined with n

representability constraints, would provide necessary and
sufficient conditions for an eigenensemble. Unfortunate-

ly, except in special cases, no constraints will be placed on
lower-order reduced density matrices or on the density.

A number of the conditions could be applied simultane-

ously to further restrict acceptable density matrices. It is
not suggested, however, that a practical method for ob-

taining an eigenstate density matrix of, e.g. , the Hamil-
tonian will result. It is rather to be hoped that the con-
straints presented here will assist us in obtaining as much
useful information as possible from a reduced density ma-
trix and in distinguishing between truly informative re-

sults for a particular problem and those facts which could
have been predicted in advance.

The theorem stated in Sec. II and developed in the Ap-
pendix provides triangle-inequality conditions on the
reduction index of symmetrized or antisymmetrized ma-
trix products. These conditions can be used to reduce the
number of components which need be considered, even for
a condition in 8'„. For example, if we are interested in

the effect on D' ' of the requirement that D'"' commute
with a matrix, 0 '"', of degree 2 (the matrix of a two-
electron operator) then we need consider only components
D'"' ', . . . , D~"' ' of D'"'. The convenient properties of
the products (AB)-+ (as compared with the simple prod-

ucts AB and B A) and the triangle condition on reduc-
tion indices are likely to be of use in other applications.
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APPENDIX

If 3 is a p-electron operator and 8 is a q-electron

operator then when p, q & n/2 it is obvious that 2 8 is at
most a (p+q)-electron operator. In this appendix related
results for matrices (summarized in the theorem of Sec.
II) are obtained. The argument will be presented as a
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series of lemmas, theorems, and proofs, to exhibit the log-
ical structure involved.

Lemma 1. (a) The matrix of a p-electron operator can
be resolved into components with 0&m. &p; and (b) the
component with reduction index n of any matrix can be
reproduced as the matrix of a m-electron operator.

Part (a) is established in GDM II and equivalent treat-
ments. The proof of (b) depends on the observation that

I

the operator Q(k(, . . . , kp) in Eq. (6), when regarded as
acting on n-electron functions, corresponds to a matrix
run(P) (Refs. 2 and 17) or 0(P)h 1("-P) (Refs. 5—7).
Given a matrix component Q '"' ' with reduction index m.,
a matrix in 8' is determined. Its matrix elements provide
expansion coefficients, in terms of the p-electron function
basis, for an integral-operator kernel

0(P'(I, . . . , p;1', . . . , p') = g QIg@~(l, . . . , p)4L(1',
K, L

and the n-electron kernel is

. , p') (Al)

6("'(I, . . . , n;1', . . . , n')=O'P'(I, . . . , p;1', . . . , p') g 5(k —k').
k=p+1

The various terms on the right-hand side of Eq. (6) are in-

tegral operators with kernels obtained from this one by
permutations of indices. The operator Q defined in this
way by Eq. (6) will have 0 '" ' as its matnx.

Lernma2. If A&8'„,- and 8~8'„ then(AB)+-has
degree not exceeding ~, +m.~.

Construct a m, -electron integral operator corresponding
to A and a ~b-electron operator corresponding to 8, as
described above. The product of these operators will also
be a sum of integral operators, with kernels expressed as
integrals of products. In each such term the "A" factor
will involve n —m., delta functions and the "8" factor
will involve n —~~ delta functions. In the product, then,
there inust be least n —m, —ms products of delta func-
tions involving the same variables. Integration of such a
product will produce a delta function, so this term in the+~ +expansion of (AB)— involves at least n —m.,—mb delta
functions. It is one of the terms in a (m;+n)-bel etrc.no

operator. Other p-electron operators with p ~ m, +m b

may also occur, due to additional corresponding variables
in the delta functions, with the minimum value of p being
the larger of m, and mb. A value of p greater than
~a+&b is not possible. Since we have defined the degree
of a matrix as the maximum reduction index occurring,
the lemma is established.

Theorem l. If AE 8'„' and BP 8'„ then
+C=(AB)- is resolvable into components with reduction

indices ~, such that ~, &n;+~b, and if C is nonzero,
orb /. —

I

The upper limit on m., is just that established by Lem-
ma 2. To establish the lower limit we introduce a reduc-
ing basis and make use of the symmetry of the array T—+.
Each basis matrix has a well-defined reduction index. Let
m.„be the reduction index of Y„, etc. Then by Lemma 2

T~~& 0 if m.„&——vr~+m„Bec. a.use of the symmetry of T+
+

this means that T,gz
——O if ~q& ~„+~„«~&)~„+~g

These conditions establish that for each nonzero term the
~'s satisfy the triangle condition, which is equivalent to
the statement of the theorem. Note that we have only es-

tablished that components with m, outside the allowed
range vanish; it is also possible that all components van-

ish. A relevant example is the case when A and 8 are
pure state density matrices projecting onto orthogonal
states.

Theorem 2. If A'"' is of degree p, and 8'"' is of de-

gree pb, then the degree of (A'"'8'"')+—does not exceed

p, +pb. Its minimum value is the smallest value of
for which the product of components

(A "' ' 8 "' ~ )
—is nonzero.

The maximum follows immediately from Theorem 1

and our definition of "degree. " Since the conditions of(,pa )

the theorem imply nonvanishing components A
' ' and~ (n,Pb)8 '

the rank of (AB)- is at least ~p, —pb~ unless~ (np )~(npb)(A ' 8 '
)
—=0. This possibility cannot be excluded

so we work our way down the components untiI a nonvan-
ishing product is found, and then apply Theorem 1. The
results established above are equivalent to the theorem of
Sec. II.
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