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We study the semiclassical equations for a laser with a saturable absorber in the mean-field limit,
~ assuming homogeneously broadened two-level atoms, for a set of parameters where the system
displays optical bistability and time-periodic solutions. In the first part the bifurcation diagram for
stationary and periodic solutions is obtained by numerical integration. Two different classes of
stable periodic solutions arise: small-amplitude solutions and passive Q switching. We observe hys-
teresis domains involving up to three solutions (stationary and/or periodic). We also discuss the va-
lidity of some standard approximations and show that even in the absence of detuning the phases
play an important role. We also discuss the influence of the initial conditions whose symmetry
properties induce important modifications of the bifurcation diagram. In the second part we intro-
duce an alternative adiabatic elimination scheme which allows us to construct the small-amplitude
periodic solutions over nearly their whole range of existence. We then study these solutions near the
Hopf bifurcation from which they emerge and derive analytic conditions for their stability. When
they are stable, we also give the conditions under which a secondary Hopf bifurcation will occur,

OCTOBER 1984

leading to quasiperiodic solutions.

I. INTRODUCTION

A laser with a saturable absorber (LSA) is an example
of an active system displaying optical bistability. The
first suggestion of its use to obtain optical bistability is
due to Lasher! who proposed to couple two semiconduc-
tor lasers in a single cavity to form a LSA. This original
scheme has been extensively used and improved in recent
years using either semiconductor lasers? or gas lasers.

There is much confusion about the theoretical descrip-
tion of a LSA (see Ref. 4 for a forthcoming review). Lim-
iting ourselves to the simplest description in which each
atomic species is modeled by a set of two-level atoms with
homogeneous broadening and assuming a single-running-
mode cavity configuration, the semiclassical theory yields
in the mean-field limit eight coupled equations.’ Neglect-
ing phases reduces the problem to five coupled ordinary
differential equations. Aé)plication of the standard adia-
batic elimination scheme® leads to a set of three coupled
rate equations”® which can be further reduced to two
equations.” The neglect of phases has never been justified
in any sensible manner. Furthermore, the successive adia-
batic eliminations of atomic variables require strong ine-
qualities between the various cavity and atomic decay
rates. Until now there seems to be no paper which gives
the whole set of these decay rates for a given experimental
setup (although this goal was nearly fulfilled in Ref. 3).
Nevertheless the usual model is often rejected on the basis
that the three rate equations fail to produce a satisfactory
picture of the observed phenomena. Although there are
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experimental situations in which this model is manifestly
inadequate,>!® the argument of disregarding this model
because of the rate-equations failure is not acceptable in
general. ,

The LSA has two interesting modes of operation: opti-
cal bistability and time-periodic intensity modulation.
They can occur separately or simultaneously. Since opti-
cal bistability refers to an overlapping property of station-
ary solutions, it is independent of the adiabatic elimina-
tion procedures but may be sensitive to the neglect of
phases. On the other hand, the emergence of periodic
solutions is related to an instability (i.e., a bifurcation
point) of the stationary solutions. The properties of the
bifurcating branch of the solution critically depend on the
nonlinearities in the differential equations, which are
modified by the adiabatic elimination schemes and by the
neglect of the phases. Hence a critical examination of the
various levels of description for the LSA seems to be
necessary.

The analytic description of the solutions of the LSA
equations is usually restricted to stationary solutions be-
cause the problem then reduces to a set of algebraic equa-
tions. In our previous papers!’!? on the LSA theory, we
have constructed analytically periodic and quasiperiodic
solutions. These solutions are obtained by a perturbation
expansion valid only in the vicinity of the bifurcation
points. In this paper we propose a different asymptotic
analysis of the periodic solutions valid for arbitrary values
of the bifurcation parameter. The new perturbation
method is based on the limit d =0(d )— « and allows us
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to 'construct O(1) harmonic periodic solutions for all -

values of the bifurcation parameter. Then we are able to
describe the behavior of these periodic solutions over their
whole range of existence. In particular we show how the
period of the oscillations increases with the bifurcation
parameter and predict the conditions for a secondary bi-
~ furcation from these periodic solutions to quasiperiodic
solutions.

This paper is divided into three sections. In Sec. II we
obtain numerically the bifurcation diagram of the eight,
five, and three LSA equations using always the same fixed
parameters. Section III is devoted to the analytic descrip-
tion of the harmonically modulated time-dependent solu-
tion.

II. ADIABATIC BIFURCATION DIAGRAMS

We start with the semiclassical equations derived in
Ref. 5 for the LSA:

[i(3y+Kk)—vI{B)=Ng*{a)+Ng*(a),
[i(Bp+71)—0]{a)=—gD (' )B),

i(@p+7))D =iy|o+2g{a)*(B)—2g*(a)(B)*,
[i(@p+71)—BNa@)=—gD(2'){B) ,

i (3p+7))D=i7F+2g{a)*(B) —2g*(@a){B)* .

All notations are explained in Ref. 5. These equations re-
late the electric field (B) to the atomic polarization
(a) ({@)) and inversion D (D) of the amplifying (ab-
sorbing) atoms. We introduce the following new variables
and parameters:

172

(B)= _Yulq_z [x (D) —ip()]e /%,
4lg |
e 172
g*{a)=0o g1 7 [u(t)+iv(t)]e ™/,
4y,
e 2,
g @=z| ] I ‘12 L& a0y rimnyge—ivx
g
2
D=oF, D=5F, t=«r', 4=-181NC
KY,
— 1 27%5= —
— [gI—Na, lg]> 7’||7’1 A=Y=2 R_ v:a) ’
K7, lg 1277, 71 71
d=vy,/k, J=‘}—/1/K, d“:‘}/”/K, d_||=')7“/K,
in terms of which the LSA equations become
X=—x+Av+Av, (1a)
y=—y+Au + A7 , (1b)
v=d(—v+Au +Fx), (o)
u=d(—u—Av+Fy), (1d)
F=d(—F+1—uy—ux), (1e)
5=d(—v+Air+Fx) , (1)
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i=d(—a—Av+Fy), (1g)
F._=z7”(—~F_+l—aEy—alTx) . (1h)

In this section we shall fix the parameters appearing in

Egs. (1) as follows:

d=10, d=2, d;=d;|=0.1, A=A=0,
¥)

a=5 A=-3.4375.

This choice is suggested by the recent results published by
Arimondo et al.3

Since the two detuning parameters A and A vanish, one
is naturally led to neglect the phases, i.e., ¥, u, and 7, in

Eqgs. (1). This assumption then produces the five equa-
tions
X=—x+Av+ A7, (3a)
v=d(—v+Fx), (3b)
F=d||(—F+l—vx) , (3¢c)
v=d(—b+Fx), (3d)
FL=¢7“(—F-+1—asz) . (e

A more widely used approximation is the rate equations
which are justified in the limit d,d— . Hence in the
long-time limit the atomic polarization is related only to
the instantaneous value of the field (x) and reduced atom-
ic inversion (F or F) through v =Fx and 7=Fx; this gives

x=x(—1+AF +4F), (4a)
F=d(~F+1-Fx?), (4b)
F._=c_i-“(—F_+l—an2) . ‘ (4¢)

For the sake of clarity we shall consider first the proper-
ties of Egs. (3), then of Egs. (1), and finally of Egs. (4), al-
ways with the values of the parameters given by (2).

A. The five LSA equations

The stationary intensity I =x2 of Egs. (3) is easily
found to be

IO=O >
Iy=(1/2a)(a(4 —1)—1+4
Fila(d—1)—1+ A
—da(1—A—D)}17) .

(5

These solutions are plotted on Fig. 1 and show that the
choice of parameters (2) leads to optical bistability. The
solution I_ is always unstable.’® As shown earlier'l>!>14
the trivial solution I loses its stability via a Hopf bifur-
cation at A = A,, where
dd+1)

A=U-A) o+

d+1

1 d)=3.788...,
d+1( +d +d)

(6a)
provided that
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FIG. 1. Stationary intensity vs pump parameter of the ampli-
fying atoms as given by (2) and (5).

dd+1)
d—d
No analytic result has been published for the stability of
I, in this context.

In order to go beyond this stationary bifurcation dia-
gram, we have solved numerically Eqs. (3) using the fol-
lowing adiabatic procedure: (i) We start with 4 < 4, and
the initial conditions x=0.01 and v=0=F-1
=F—1=0; (ii) Eqs. (3) are integrated until a stable state
is reached; and (iii) A is modified by a small increment
(typically 0.01) and Egs. (3) are again integrated until a
new stable state is reached, using as initial conditions the
previous stable final state. The results of this adiabatic
analysis are summarized in Table 1.

Three types of time-dependent solutions have been ob-
served. The first kind of solution is the small-amplitude
harmonically modulated intensity which emerges from the
Hopf bifurcation at 4 =A4,. A typical graph of this solu-
tion is displayed in Figs. 2 for 4=4.02. Figure 2(a)
shows the intensity versus time whereas Fig. 2(b) shows
the intensity versus the reduced population difference

_ F(t). As the pump parameter 4 (which is our bifurcation
parameter) is increased adiabatically, there appears a very
small domain of existence for a different solution which is
displayed in Fig. 3, again for 4=4.02. This solution is
still a small-amplitude harmonically modulated intensity
but it differs from the previous one by the frequency,
which is exactly one-third of the frequency of the previ-
ous periodic solution. The third periodic solution is a
pulsed solution which describes passive Q switching. In
Fig. 4 we show the pulsed intensity versus time and versus
F(t), still for 4=4.02. Note that the peak intensity of

A<A, = (6b)

TABLE 1. Stability domains for the solutions of the five LSA
equations.

I , A <3.788

Harmonic (f) 3.788< A4 <4.020
Harmonic (f/3) 4.020 < 4 <4.0215+0.0005
Pulses 3.975+0.005 < 4 < 4.445+0.005
I, 4.20054+0.0005 < 4 <6.0 (at least)
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FIG. 2. Harmonically modulated intensity (a) vs time and (b)
vs reduced amplifying atoms population difference for 4=4.02.

the pulses is 3 orders of magnitude larger than the peak
intensity of the harmonic solutions. Although Fig. 3(a)
displays a neat pulse structure, there is a fine structure in
the domain where the intensity nearly vanishes, between

2 . . . .
I(10°2) , @l .
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FIG. 3. Harmonically modulated intensity (f/3) (a) vs time

and (b) vs reduced amplifying atoms population difference for
A=4.02.
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1 " ' ' ' ' @ tially. Both the decrease and increase of the intensity be-
r 20 tween the pulses are modulated by small oscillations

whose frequency is constant but different from the fre-

quency of the harmonic solutions at the same value of 4.
00 A glance at Table I indicates that there are overlaps be-
i 1 tween the domains of existence for the three periodic solu-
tions. We refer to these overlapping domains as birhyth-
micity if two stable periodic solutions coexist and
Jk ) 0.00 trirhythmicity when the three periodic solutions coexist.
Figures 2—4 have been selected to illustrate a situation of
trirhythmicity in which the only difference is the choice
of initial conditions.

B. The eight LSA equations

In this section we shall study Egs. (1) with A=A=0.
The stationary solutions are still given by (5) and A4, cor-
responds to a destabilization of the trivial solution I, via
a degenerate Hopf bifurcation.!* The new feature brought
in by the phases is the existence of a very special type of
periodic solution. Indeed, it is easy to verify'>!6 that

. x(1)=T"%cosQ+t ,
0.200 0.400 0.800 0.800 F (7)

FIG. 4. Pulsed intensity (a) vs time and (b) vs amplifying y)y=I"Y 25inQ) . t

toms reduced population difference for 4=4.02. . . . . .
atoms reduced popu is an exact periodic solution of Egs. (1), where

I=f(a,b),
two consecutive pulses. This is more clearly visible in (8)
Fig. 5, which consists of blowups of Fig. 4(a). They indi- Q. =+df4b,a),
cate that the pulsed intensity quickly falls after reaching .
its peak, then the intensity again begins to rise exponen-  With
- T T T -3 T T T 1.00
I(07) () I(107) (b)
L 4 4.00 r 7
4 2.00
0.00 /\ 0.00
160 1'I7o 1;30 x;o t 200 200 2;0 2;0 z;o t 200
(o™ j ' ' ()] 3.0

L L

240 250 260 2;0 t 280
FIG. 5. Blowup of Fig. 4(a) indicating the fine structure of the interpulse domain: (a) decay of the pulse followed by (b) and (c) an
exponential increase of the intensity with an oscillatory modulation.
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I
dd+1)

Ab
T a@+n ” ’
and b =(d/d)*

These new solutions have some interesting properties.
Because they have a single frequency of oscillation in a
pure sinusoidal mode, the corresponding intensity
(x2+4yp2=TI) is stationary. Had we used a polar rather
than a Cartesian decomposition of the field, the solutions
corresponding to (7) would have appeared as a new sta-
tionary state. Our choice of using a Cartesian decomposi-
tion was motivated by computer-related considerations.
Another unexpected feature of these solutions is that they
correspond to a detuned field, although we set A= A=0.
As previously discussed!” the nonlinear losses induce in
this case a dispersive response of an otherwise absorptive
system. _

The intensity I emerges from I, precisely at 4,. It in-
creases linearly with A until it reaches I_ at A3, given by

d(d+1) 4
a d d dd=1)

Here again we have performed an adiabatic analysis of
the bifurcation diagram induced by Egs. (1). It turns out
that the initial conditions play a more critical role in the
five LSA equations case. We defme a symmetric solution
of Egs. (1) by the relations

1 -
fla,b)= a—b [b —14+(d—d)

A= =3.9375.... (9

x=y, u=v, #=0U. (10)

Clearly if the initial conditions are symmetric, the solu-
tions of Egs. (1) will remain symmetric for all times. On
the other hand, if the initial conditions are asymmetric,
they will remain asymmetric for all times. This distinc-
tion between symmetric and asymmetric initial conditions
leads to two completely different bifurcation diagrams.

Using the adiabatic analysis described in Sec. II A and
the symmetric initial conditions

x=y=001, u=v=F=5=F—1=F—1=0

we recover the bifurcation diagram given in Table I except
for the disappearance of the third harmonic (f/3) solu-
tion. The equivalence between the two bifurcation dia-
grams means that for the identical values of all parame-
ters, the intensity [which equals x2 for Egs. (3) and
x2+y? for Egs. (1)] is identical in both cases. Therefore
this suggests that the third harmonic solution is destabi-
lized by the phases.

If we use an asymmetric initial condition, another bi-

furcation diagram is generated. It is summarized in Table
II. The main differences are the appearance of the I “sta-
tionary” solution and the disappearance of the third har-
monic solution. Because the new I solution has a domain
of stability!! we observe a modification of the stability
boundaries for the two time-periodic solutions. Apart
from these modifications, the main features of the har-
monic and pulsed solutions (such as peak intensity and
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TABLE II. Stability domains for the asymmetric solutions of
the eight LSA equations. ’

I A <3.788

T 3.788 < A <3.895+0.005
Harmonic (f) 3.86+0.01 < 4 <3.94+0.01
Pulses 3.924+0.01 < 4 <4.45+0.01

I, 4.2005+0.0005 < A <6.0 (at least)

frequency) remain qualitatively similar to those derived in
the five LSA equations approximation.

C. The three LSA equations

Although the set of parameters (2) does not allow for an
adiabatic elimination of the atomic polarizations, we shall
nevertheless study the three LSA rate equations to mimic
a too-often performed procedure. Equations (4) have a
very simple bifurcation diagram corresponding to Fig. 1
with the Hopf bifurcation at 4, removed. Hence the
trivial solution I, loses its stability at @ =1— 4 =4.4375.

Integrating numerically Eqs. (4) did not lead to any
stable periodic solution. When 4 is slightly greater than
1—A, we observe a jump to the stable I, branch. The
domain of stability for I has a lower bound 4* given by
4.09+0.01. When A4 =A4* there is a Hopf bifurcation
leading apparently to an unstable solution; below A4* we
observe a jump from I to the trivial solution I.

D. Analysis

The choice of parameters (2) has been made in order to
display a number of properties which are typical not only
in the LSA but also in other nonlinear systems such as,
e.g., optical bistability in a passive cavity and in a laser
with injected signal.

(i) One often finds in the llterature that a Hopf bifurca-
tion signals the occurrence of passive Q switching, i.e., the
spontaneous onset of pulses. This statement is wrong in
general. The Hopf bifurcation signals the emergence of a
periodic solution which is harmonically modulated in the
vicinity of the bifurcation. If this bifurcation is supercrit-
ical, the small-amplitude periodic solution will be stable,
in which case the bifurcation does not correspond to the
onset of pulses. If the bifurcation is subcritical or vertical
in the vicinity of the bifurcation point, no conclusion can
be drawn on the nature of the solutions beyond the critical
point. A well-known example is the single-running-mode
laser second threshold which is a subcritical Hopf bifurca-
tion leading to chaos. Two other examples are given in
Table I. The trivial solution I, has a supercritical Hopf
bifurcation at 4 = A, leading to a stable small-amplitude
periodic intensity which has a harmonic modulation [see
Fig. 2(a)]. On the other hand, the I, branch displays a
subcritical Hopf bifurcation leading to pulses [see Fig.
4(a)] in the case of Egs. (1) or (3) but leading to a jump to-
wards I, in the case of Egs. (4).

(ii) Another question is the relation between harmoni-
cally modulated solutions ‘and pulses. In the present study
there is a first-order transition between the two types of
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solutions. In other words there is an abrupt transition be-
tween them with an overlap implying birhythmicity.
Another possibility is a smooth transition, without bifur-
cation, from harmonic to pulsed solutions. This case was
illustrated for the LSA in our previous study of quasi-
periodic solutions.!> One clear difference between har-
monic and pulsed solutions is the dynamical reponse of
the absorbing atoms reduced population difference F'_(t).
In the case of harmonic solutions we observe that F(¢)
remains positive which means that no inversion is created
in the absorbing part of the LSA. On the other hand, in
the pulsed regime F(z) becomes negative for a very small
time corresponding ‘to the peak of I(z), implying a tran-
sient inversion in the absorbing cell. This phenomenon
was already noticed by Antoranz et al.'®

(iii) The pulsed regime displays a fine structure which is
shown in Fig. 5. The small-amplitude oscillations have a
frequency and an amplitude which are not related to the
harmonic solution. A plausible explanation is the follow-
ing. Between two consecutive pulses, the intensity is van-
ishingly small. Therefore we expect the system to be in-
fluenced by the properties of the trivial solution 7,. But
the domain in which pulses occur is bounded from above
and from below by two bifurcation points of I, (i.e,
A=A, and A =1—4). In this domain the linear stabili-
ty analysis of I, yields three negative roots and one pair
of complex roots with positive real parts. We believe that
the fine structure seen in Fig. 5 is a manifestation of these
two unstable roots. To test this interpretation we have
analyzed pulses in another domain of the parameter space
where the bifurcation point A, has disappeared. In this
case the pulses did not show any fine structure and the
only unstable root of I, was a real positive root.

(iv) A rather unexpected feature of the full set of eight
equations is the critical dependence on the initial condi-
tions. Depending on whether these initial conditions are
symmetric or asymmetric, two different bifurcation dia-
grams are generated. The failure to realize this depen-
dence on the symmetry of the initial conditions lead An-
toranz et al.!® to propose a bifurcation diagram which in
essence is a superposition of the two separate diagrams.
The two main differences brought in by the asymmetry
are the appearance of a new class of solutions (7) and a
drastic reduction of the domain of existence for the har-
monic solution. However, when the harmonic and pulsed
solutions arising from symmetric and asymmetric initial
conditions are compared for identical values of all param-
eters, they lead to intensities having comparable frequen-
cies and peak values (that is to say, the corresponding
graphs are superposable).

III. THE HOPF BIFURCATION

A. The perturbation scheme

In this section we analyze the LSA equations (3) and
show why the rate equations (4) are inadequate to describe
the bifurcation diagram of the periodic solutions. This bi-
furcation diagram can, however, be obtained in the
asymptotic limit d—« and d=0(d) provided that the
adiabatic elimination of the variable v and ¥ is appropri-
ately replaced by a different perturbation method.

The LSA equations (3) admit a basic state Io=0. From
its linear stability analysis we know that if 4 < A4, there
exists a Hopf bifurcation point defined by

A=A4,, x=v=0=F—1=F—1=0, (11)
where A, and A, are given by (6). The choice
A =—3.4375 corresponds to A =A4,(1+0.25). As

d=Id, d—w (12)
A, and A, approach the limits -

i-= ~7%T—ow> (13)
and if 4=0(d)<4,,

Ay~— A’ +1d(1+1)=0(d) . (14)

These results suggest that in order to analyze the Hopf bi-
furcation we must first rescale 4 and 4 as

A=dA’, A=dA', (15)

where A’ and 4’ are O(1) quantities. Then we rewrite

Eqgs. (3) in terms of A’, A', and I

x=d(A"v+A4A'v—d 'x), (16a)
v=d(—v+Fx), (16b)
v=Id(—v+Fx), (16c)
F=d(—F+1-ux), (16d)
ﬁ:ﬂ;(—ﬁ—!—l—aﬁx). (16e)

Since x, v, and ¥ are proportional to d in Egs. (16) we ex-
pect that x, v, and o will initially evolve on a fast time.
scale T =td. However, we shall see that this behavior
persists in the long-time limit because the rapid evolution
of x, v, and ¥ corresponds to undamped periodic oscilla-
tions. This explains why the variables v and ¥ cannot be
eliminated adiabatically from Egs. (16).

To determine the periodic solutions of Egs. (16) we pro-
pose a perturbation scheme. We first define a fast time by

T =td (17

and rewrite Egs. (16) with T considered as our basxc time
scale:

xr=Av+4'T—ex , (18a)
vr=—v+Fx , (18b)
or=I1(—0+Fx), (18¢c)
Fr=ed)(—F +1—px), (18d)
Fr=ed\|(—F+1—abx), (18¢)

where e=d ! and f;=df /dT. Then we seek 27-periodic
solutions of (18) of the form

x xj(T')'
v| . |9(T)
v|l=3¢|o(T) |, (19)
Fl j=o |F(T")
F Fy(1")
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where .
(20)

and o(e) is the unknown frequency of the oscillations
which must be determined by the perturbation analysis.
Introducing (19) and (20) into (18) and equating to zero
the coefficients of each power of €, we obtain a sequence
of problems for the unknowns x;,v;, ..., F;. The O(1)
problem is given by |

T'=0(e)T =(0+€01+ - )T

oxor=Avo+4 Dy , (21a)
ovor = —Vo+XoFp , (21b)
otor =I(—0p+x0Fp) , 21c)
For=Fyr=0. (22)

From (22) we conclude that
Fyo=f, F—0=f_, (23)

where f and f are two constants. Then we observe that
(21) is a linear system. This system admits 2s-periodic
solutions if and only if @ =tio are imaginary eigen-
values of the following characteristic equation:

@ +(14+N0?+ (I —fA'—FA' Do —1(A'f +A'f)=0.

' (24)
The analysis of (24) leads to the conditions
—1+1)+fA'+I*f4'=0, (25)
i NAf+A']) '
ot= T+ >0. (26)

Provided that these conditions are verified, Egs. (21) ad-
mit the following solution:

X0 |
v |=a |p |eT +c.c., 27
To q

where p and q are given by

[ 1

P=1tie ‘
a is an unknown amplitude and c.c. denotes complex con-
jugate. Thus the solution (27) represents periodic oscilla-
tions in the fast time scale 7. To determine the amplitude
a of these oscillations, we must consider the next order of
our perturbation analysis. The O(e) problem for F; and
F, is given by

(29a)
(29b)

Introducing (23) and (27) into (29), we observe that F; and
F; remain bounded functions of T” (or T') if and only if
[, f, and aa® verify the following solvability conditions:

(30a)
(30b)

O'FIT'=d||(——-F0+l-—-xOUo) ’
GFIT’ =¢7”(—F0+1—~ax0170) .

1—f —(p +p*)aa* =0,
1—f—a(q +q*)aa*=0.
Then the solution of (29) is given by
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2 .
Fi=f— 1%§d,|e2”'+c.c. , (31a)
- — ‘ol —_ srpve
Fi=Ff— [gz—i;ﬂd“ez’T+c.c. , (31b)

where f; and f, are two new constant coefficients to be
determined.

At this stage of the perturbation analysis the solution is
given in first approximation by (23) and (27), where the
amplitudes f, f, and @ may be determined by the condi-
tions (25), (26), and (30). In Sec. IIIB we analyze these
conditions in detail and determine the bifurcation diagram
of the periodic solutions.

B. The amplitude equations

Using the definition of p and ¢, we can rewrite the
three amplitude equations as

I+ +fA'+I°fAd’'=0, (32a)
2f
1—f — l+02aql‘=0’ (32b)
= 2afl?
l—f—]—z_'—%aa*=0 . (32¢)

Equations (32) are the bifurcation equations: to each solu-
tion of (32) corresponds a periodic solution of the LSA
equations (3) described by (23) and (27). The solution of
(32) is easily found to be

aa‘:;l—(—il——z_‘j)—(w-,q;)>o, (33)
fop A=A (34a)
A'(1—al?)
f=1+M , (34b)
A'(1—al?
where
Ay =10 +1)—1*7" \ (35)

corresponds to the Hopf bifurcation point 4 =4, in the
limit d =0(d )— o [see Eq. (14)]. From (33) we note
that the amplitude |a| of the periodic oscillations in-
creases like | 4'—A5 |12 as | A’'— A% | increases. This
is in agreement with the Hopf bifurcation theorem.
Moreover, we also note from (33) that the transition to
periodic solutions is defined only for 4'> 45 or A'< 4}
if

al*<1 (36)
or

al*>1 37

(as in Sec. II, we choose d <d, whence I <1). Hence the
condition (36) determines the direction of the bifurcation:
the bifurcation is supercritical (or subcritical) when (36)
[or (37)] is verified. As we shall see in Sec. IIIC, this
property has important consequences on the stability of
the periodic solutions.

The frequency o of the periodic solutions can be ob-
tained from (26) and is given by
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2 la(l_l) ’ ’ ‘
=———(A4'—A45)>0, (38)
o 1—a12 ( 3)>
where
A'1=D+1(1—a)
"= . 39
45 a(1—D) 9

Thus the frequency is also a function of the bifurcation
parameter A’. If (36) holds, 0” may vanish as | 4'— A4} |
vanishes, i.e., the period of the oscillations becomes large.
This type of behavior is in agreement with previous
theoretical work on the LSA.!! However, the situation
o—0 corresponds to a singularity of the perturbation ex-
pansion and a different series for the periodic solution
should be proposed in the vicinity of 4'=43. We shall
not examine this problem here.

C. The stability analysis

In this section we concentrate on the stability properties
of the periodic solutions. Although their stability could
be studied for all values of A4’, we shall limit our analysis
to the case where 4'=A45+0(€). As we shall demon-
strate, supercritical periodic solutions (A’> 45 ) are stable
near A’=A5 but may change stability at a larger value
A'=A. > A;. Hence A, is called a secondary bifurcation
point and corresponds to the emergence of quasiperiodic
solutions in our problem.

When |A'—A5|=0(e), the expansion (19) of the
periodic solutions becomes nonuniform and a new expan-
sion valid near A4) must be proposed. The detailed
analysis is tedious but is similar to the problem studied in
Ref. (12). It leads to simple conclusions, so we first sum-
marize the principal steps of the analysis and then present
our bifurcation results.

The nonuniformity of (19) near A5 suggests a new ex-
pansion of the form

X o Xj

v|=X 2y |, (40a)
U Jj=0 7

F [1] S g+ |E

== + D€ i (40b)
[F T 27 |F

Then by expanding 4'— A4 as
A'—A5=€a; +0(e) (41)

and analyzing two orders of the perturbation series, we
find the following results:

x 1]

v [=€"2|alt) |p |eT+c.c. |[+0(7?), . 42)
U q
F=ef(1)+0(e), F=ef()+0(€), 43)

where T =td and p, g, and o are defined by
1 1
P=1Yio’ T 1o’
(44)

?=I[A"(1—1)=1]>0.
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Defining » and 6 by a=r exp(i0), the amplitudes r, f,
and f are determined by the solutions of the three dif-
ferential equations,

r=rG ll_l[al—(1+l+12+12m2)]
+ (1+12m2)f—12(1+m2)]'l , (45)
5 ,
fi=d), l—f——rzm—z— l , (46)
- - 2a
ft=d” ——f—'rz 1+m2 N (47)

* where G =‘G(l,m) >0 and m is defined by

AT
4.

- =1
>0, A.= 1"
Equations (45)—(47) are the bifurcation equations. Their
steady-state solutions correspond to the periodic solutions
of the LSA equations. These steady-state solutions are
given by

() r=f=F=0; (48)
. 2 = 2a
(i) f=—r?—F— F=—p2—=2
S==r i = 1+m?’
o (49)
22T g, —(14+1+D2+PmY)] .
Pl —ary T A MO

The solution (48) corresponds to the basic state I,. The
solution (49) gives the amplitude of the periodic solution.
It can be verified that the expression for 72 in (49) exactly
corresponds to the expression for aa* given by (33) using
(41). The bifurcation is thus supercritical (or subcritical)
if (36) [or (37)] is verified. We now examine the linear
stability of the solutions (48) and (49). The basic state is
stable (unstable) if

ay<ay (a;>ay) (50)
where
ae=1+1+1*+1’m?. (51)

On the other hand, the steady-state solution (49) is stable
if (36) is verified and if

—(d +d))d|d||—4r*G(df —d {I*a) <0 . (52)
Since G >0, this condition is always vériﬁed_ if

dfj—dfil’a>0. (53)
However, if

dfj—dfl’a <0 (54

the bifurcation equations [(45)—(47)] admit a new Hopf
bifurcation to periodic amplitudes. This Hopf bifurcation
is defined at the critical amplitude »2=r7,

2 \dy+d)d)d,

=—IZ (55)
¢ 4G(dfal*—d})
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Max (1) (a)

Max (I) {b)
\
1] I U A
A2
Max (1) (c)

FIG. 6. Bifurcation diagram for the harmonic solutions. (a)
al>—1<0 and dfj—d fial® > 0: supercritical bifurcation towards
stable periodic solution. (b) al*—1>0 and dfj—d fial?S0: sub-
critical bifurcation towards unstable periodic solution. (c)
al*—1<0 and dfj —d fjal* <0: supercritical bifurcation followed
by a secondary bifurcation towards quasiperiodic solutions.

These periodic solutions of (45)—(47) can be studied either
numerically or by a new perturbation expansion. A simi-

lar situation has been analyzed in Ref. 12. The important
point to realize is that this new branch of solutions corre-
sponds to quasiperiodic solutions of the LSA problem (3).
Indeed, by our perturbation analysis we have constructed
time-dependent solutions of the form (42) and (43) where
the amplitudes r, f, and f are now time-periodic functions
on the slow time scale ¢. In this case (42) and (43)
describe quasiperiodic solutions characterized by two
basic frequencies: the frequency of the periodic ampli-
tudes and oge~!. Because € <<1 they are in general not
commensurable and the behavior of these quasiperiodic
solutions will appear completely irregular. Note that this
secondary bifurcation to quasiperiodic solutions is possi-
ble only if (36) and (54) are simultaneously verified. This
implies

d”;&JH . (56)

Thus the inequality of d|| and d || is an important source
of instability in the LSA. In a future work we intend to
explore this question in more detail. Figure 6 gives a
summary of the possible bifurcation diagrams.
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