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/

We point out some problems with the usual quantum-mechanical theory of electrodynamics in
nonlinear dielectric media which is used in nonlinear optics. In order to understand these problems,
the Hamiltonian formulation of the theory is examined. It is found that many of the difficulties in
the usual theory are a result of the fact that the canonical momentum for the interacting theory is
not the same as that for the free electromagnetic field theory.

I. INTRODUCTION

V.B=0, (l.la)

VXE= —B, (1.1b)

V D=p,„, (l.lc)

Electrodynamics in a dielectric medium is described by
the macroscopic Maxwell equations

One can approach the problem of deriving a macro-
scopic quantum theory in two ways. One way would be to
begin from a quantum microscopic theory and then to
eliminate the matter degrees of freedom in order to obtain
a radiation theory which depends only upon the bulk
properties of the material. This method was explored in
the linear case by Hopfield. The other approach is to
quantize the macroscopic classical theory. ' This is the ap-
proach of the standard theory. The Hamiltonian is taken
to be

VXB=D+ j,„. (1.1d) H =HEM+HI,

Here D=E+P is the displacement field, p,„and j,„
represent sources that are not considered part of the
dielectric medium, P is the polarization of the medium,
and Heaviside-Lorentz units have been used. The polari-
zation is a function of the electric field which may be
written as a power series, i.e.,

P=g"'E+g' 'EE+g' 'EEE (1.2)

The quantities Pi&' are the (j+1)th-rank susceptibility
tensors. ' Throughout this paper we will assume that the
medium is lossless, nondispersive, and uniform. Under
these conditions the quantities g'i' are symmetric tensors.
These equations form the basis of the theory of nonlinear
optical effects in rnatter.

For most applications in nonlinear optics the elec-
tromagnetic field can be treated classically. When one is
interested in the photon statistics of the field, however, a
quantum-mechanical description is necessary. It is then
necessary to find a quantum theory capable of describing
the effects inherent in Eqs. (1.1) and (1.2) above.

A quantum formulation of the linear macroscopic
theory was given as early as 1948 in a series of papers by
Jauch and Watson. They used their theory to analyze
Cerenkov radiation and also discussed the problems asso-
ciated with dispersive media. The standard macroscopic
quantum theory of electrodynamics in a nonlinear medi-
um which is used in nonlinear optics is due to Shen and
was elaborated upon by Tucker and Walls.

where

HEM ———, fdx(E +B ),

Hr ——— '~ EP
(1.3)

The electric and magnetic fields are expressed in terms of
the vector potential A:

E= —A, B=VXA,
where A is assumed to satisfy

(1.4)

V' A=O. (1.5)

(t)~e(a)e i k x )—
k,a k

(1.6)

There are a number of problems with this theory, but
the greatest is that it is not consistent with Eqs. (1.1). For
example, . Eqs. (1A) and (1.5) imply that 7 E=O, not

The theory is quantized by replacing the classical vector
potential by the following operator, familiar from ordi-
nary @ED:

A(x, t)= g [a (t)e' 'e'" "
k, a k
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V' D=O as should be the case. Equation (1.1b) is also not a result of this theory. If we compute 8 we find

aE
Bj—— I—[BJ,H]= ej—ki +2 I d x'ejki 5im(x —x')Jim„)E„(x',i,'

Xk CIXk

+ & &jkl leg x x m~pE~ x,f Sp x, t +'''
Xk

=[—& XE+2V X(g' '.E)+3V' X(g'" EE)+ ].

where 5&k(x) is the transverse delta function, ezki is the
completely antisymmetric tensor of rank 3, and repeated
indexes are always summed over. Equation (1.7) does not
agree with Eq. (1.1b).

Ao ——0

and the Coulomb-gauge condition

(2.6)

(2.7)

In order to find out what the problem is we return to
the classical theory and examine its Hanultonian formula-
tion. We first find a Lagrangi'an which gives the proper
equations of motion and then calculate the Hamiltonian.
One can then quantize the theory in the canonical way.
An appropriate Lagrangian density is

(2.1)

where A is the four-vector A =(Ao, A) and

al. „al.
B(I) Ao)

' '
I)(BoA, )

(2.5)

The vanishing of IIO indicates that this system is con-
strained, and we must proceed with caution. The correct
Hamiltonian and revised Poisson brackets (Dirac brackets)
may be obtained by following the prescription given by
Dirac for constrained Hamiltonian systems. This is
done in Appendix A.

One may obtain the same result using the heuristic ar-
guments often applied to ordinary electrodynainics. The
valllslllIlg of IIO indicates that Ao ls' Ilot a11 1Ildepelldellt
field. In macroscopic electrodynamics the divergence of
A in the temporal gauge is not time independent, so that
one cannot impose both the temporal-gauge condition

(22)

Equations (2.2) imply Eqs. (1.1a) and (1.1b) whereas
Lagrange's equations

a as, aI.
(2.3)

I)xi' B(B„AJ) BA;

imply Eq. (1.1d) (without external sources), and
Lagrange s equation

a aL, aL,
(2A)

q ~ a(a„~,) a~,
=

implies Gauss's law Eq. (I.lc) (again without external
sources).

The momentum canonical to A is II=(IIO, II) where

Ao ———IIt' ( IIt'.E) . (2.8)

This is also true in ordinary electrodynamics, when
charges are present. In that case Eq. (2.8) reads

Ao(xt) Jd, 'x=' ~ " ' (2.9)

where p is the charge density. In the present case, howev-
er, the situation is more complicated: instead of p, one

has 7 E, where for the purposes of the Hamiltonian for-
mulation, E must be expressed in terms of the canonical
momentum —D. Toward that end we define. the tensors
P" by

« =P',~"Dj+.P'ij'aDJDk+ ' ' ' (2.10)

Using Eq. (1.2) and the definition of D we may solve for
the P" tensors in terms of the susceptibility tensors g".
For example,

P(1) [I+g(l)]—I

(2) a &) (&) (&) (2)
Pimn = Pji PkmPln ~jkl ~

PI~Jkl Pnf Pbj Pck Pdl ~nbcd +2Pl'Js @ckl~cs

(2.11)

One can then substitute Eq. (2.10) into Eq. (2.8) in order
to solve for Ao in terms of the canonical momenta.

Since Ao is not an independent dynamical variable we
lose Gauss's law as an equation of motion. It follows,
however, from the other equations of motion [Eq. (1.1d)
in the absence of external current] that the divergence of
D is time independent; hence Gauss's law may be imposed
as a constraint on the system, having the status of an ini-
tial condition.

%'e can now derive the Hamiltonian. We have that

H(A, II)= I dix(liiAi —1.)

=HEM+ d X(TX;,. &;E,+ 3&r,kEIEJEk(I) z (2)

(3)+ 4 & jkiE EJEk&i+

3x D.VAO . (2.12)

(as was done in the standard theory). Thus, if we main-
tain the Coulomb gauge, we must solve for Ao in terms of
the independent fields:
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An integration by parts combined ~ith the constraint

V D=0 allows us to eliminate the last term leaving 3 —i k x~~~~(t)= d xe ' '"e
k, s y k

' 1/2

A(x, t)

+ 4 ~lJklEI +jEkzl +(3)

(2.13)

D(x, t)

(3.2)

(2.14)

The expression in Eq. (2.13) should be compared with the
expression in Eq. (1.3). It should also be noted that for
the case of a linear dielectric only Eq. (2.13) reduces to

Iri;„(A, II)= 2 f dix(E D+B2) (2.15)

which is the expected result.
Before proceeding it should be noted that there is an al-

ternative procedure for deriving a Hamiltonian theory
which is simpler than the one which has just been present-
ed. '0 It makes use of a different type of vector potential.
%e discuss it in Appendix B. %e have chosen to present
the theory in terms of the standard vector potential in this
section because it more closely parallels what is done in
deriving a Hamiltonian formulation of the free elec-
tromagnetic Geld.

III. QUANTIZATION

The theory can now be quantized in the usual way. As
is the case with the free electromagnetic field, the canoni-
cal commutation relations must be altered due to the van-
ishing of the divergences of A and II. The commutation
relations

[A;(x,t), IIJ(x ', t)]=i 5'&(x x')— (3.1)

are consistent with these constraints. A rigorous treat-
ment, following Dirac's prescription confirms the validity
of these results. The commutation relations used in the
standard theory, Eq. (1.6), correspond to Eq. (3.1), but

with II= —E, rather than II= —D. The fact that —D
rather than —E is the proper canonical momentum was
first noted in a somewhat different context by Born and
Infeld. "i It has also come up more recently in the dis-
cussion of Hamiltonians describing the interaction of the
electromagnetic field with atoms. ' '

As in the case of free QED one can perform a mode ex-
pansion of the fields and define creation and annihilation
operators. In particular one has for a- (t)

k, o,'

where E and B are to be considered as functions of A and

II [see Eqs. (2.2) and (2.10)]. The Hamiltonian can also
be expressed in terms of the displacement field as

H(A, II)= —,
' f d x B

+ + T ~j DI+j+ 3 ijkai+jak

+ 41 "klDD DkDl+ )

~D +8 = „a-„a-
k,a

(3.4)

It is also possible to find annihilation operators 6-
)k,a

(where b is a linear combination of a- „u-k,a k,a" k, a,"
a - „and a -,) which will diagonalize II2. The—k,a" —k, a'
nonlinear part of the Hamiltonian, Eq. (2.14) can be ex-
pressed in terms of the a- 's or the b- 's. We can thenk, a k,a
normal order with respect to the a- 's or with respect to

k,e
the b 'y. The results are not the same. If we follow the

k,a
usual procedure in quantum optics and restrict the Hamil-
tonian to only a few modes the effect of these different or-
derings will show up. The nonlinear terms would, for ex-
ample, produce different frequency shifts in the Hamil-,
tonian normally ordered with respect to a than in that

k, a
normally ordered with respect to b- . Whether a full re-

k, a
normalization scheme is feasible and would correct this is
not at all clear.

with a similar expression for a (t). These operators
k,a

obey the commutation relations given in Eq. (1.6). Note
that because a- (t) depends on D (in the free-field case

k,a

D is replaced by —A) it contains both field and inatter
degrees of freedom. It represents, therefore, a collective
matter-field mode. This must be kept in mind when inter-
p«ting the theory. In principle aily difficulties in inter-
pretation can be dealt with by confining the medium to
part of the quantization volume and placing the field
source and the detector outside of the medium. This cor-
responds to the actual experimental set up. The field is
generated in free space by the source, propagates through
the medium, and is measured by the detector in free space.
Thus, the state preparation and measurement take place in
regions which are free from the complicating effects of
the nonlinear medium. This approach, however, requires
the consideration of propagation effects.

We now come to the question of operator ordering.
How should the operators in the Hamiltonian be ordered?
To consider this question let us look at the part of the
Hamiltonian, Eq. (2.14), which is quadratic in the field
operators

H2 ———, f d x(D +B )+—,
' f d x P,'~" D;Di, (3.3)

where we have defined pl'=5;~+pI~". The operators
a defined in Eq. (3.2) diagonalize the first term of Eq.k,a
(3.3), i.e., if one solves Eq. (3.2) and its conjugate for
A(x, t) and D(x, t) and substitutes them into the first
term of Eq. (3.3) one finds (after subtracting an infinite
constant)
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In standard QED physical considerations dictate the or-
dering. There, normal ordering with respect to the field
operators simply subtracts an infinite constant from the
Hamiltonian. The normal ordering of the matter (electron
and positron) operators comes from demanding that the
expectation value of the current operator in the physical
vacuum vanish. One can show by invoking thd charge
conjugation invariance of the physical vacuum that if the
current operator is normally ordered then this require-
ment is satisfied.

It is not obvious .how to find a workable ordering cri-
terion for the theory we are considering or, in fact, wheth-
er one exists. The resolution of this problem would seem
to require the consideration of a microscopic theory, i.e., a
model for the medium.

IV. CONCLUSION

We have discussed problems in the usual quantum
theory for the electromagnetic field in a nonlinear dielec-
tric medium, and derived an alternative according to the
canonical approach. We encountered problems in the
quantum theory related to operator ordering.

Further difficulties are encountered if one wants to gen-
eralize this theory by including dispersion. Strictly speak-
ing, the expansion, Eq. (1.2), of the polarization holds
only in the static case. It is a good approximation if the
electric field varies much more slowly than the time it
takes for the atoms in the dielectric to adjust themselves.
For more rapidly varying fields, the polarization at a time
t depends, not only on the value of the field at that time,
but on its value at all previous times. For example, for a
linear dispersive system, the polarization is'

P(t) = f d~g~'~(~) E(i ~) . (4.1)

This dependence on previous times makes the Hamiltoni-
an formulation of this theory, and, hence, its quantization,
problematic.

These problems lead us to the conclusion that the best
way to proceed is to consider a microscopic theory, i.e.,
fields plus matter, and to see if an effective macroscopic
theory can be developed. The discussion in Sec. III sug-
gests that this effective theory should have as its basic ob-
jects collective matter-field modes. In a future publica-
tion we will show how such a theory can be derived for a
medium consisting of two-level atoms.
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APPENDIX A

A rigorous derivation of the results in Sec. II can be ob-
tained by employing the Dirac quantization procedure for

constrained Hamiltonian systems. 9 The calculation is
similar to that for ordinary QED. The vanishing of IID is
a primary constraint on the system. Since II0 must vanish
for all times, its commutation with the Hamiltonian must
also vanish, which leads to the secondary constraint

V' H=O (Al)

which is just Gauss's law. This constraint commutes with
the Hamiltonian, so there are no further secondary con-
straints. Let us write these as

g, =11,=O, g, =V 11=0. (A2)

g2
——AD+V (V.E)=0, g2 ——V A=O (A3)

(remembering that E is to be considered a function of II).
None of the constraints in Eqs. (A2) and (A3) has zero
Poisson bracket with all the others, so, rather than two
first-class constraints, we now have four second-class con-
straints. The matrix of their Poisson brackets is non-
singular, and may be used to calculate the Dirac bracket.

To calculate the Dirac bracket, we first define the
operator 8' to have the kernel

ej(X,y)= {/;(x),g, (y)] . (A4)

The symbol {,j denotes the Poisson bracket. Then we
define a modified Poisson bracket by

{A(x),8(y)]'
= {A(x),8(y)]

—g f d'u f d'v{2(x), g;(u))

Xe J (u, v){g,(v), 8(y)], (AS)

where e;J '(x, y) is the kernel for 8' '. Similarly, we de-
fine the operator P to have the kernel

f~)(x, y)={/;(x), g.(y)] .

The Dirac bracket is then defined bys

{A(x), 8(y) jD;„,
= {A(x),8(y)]'

—g f d u f d3v{A(x), g;(u)]'

(A6)

Xf;, '(u, v) {g;(v),8(y)]' . (A7)

Note that of the constraints, only gq differs from that of
ordinary QED, and that the operators 8' and P are iden-
tical to their QED analogs. It is thus easily verified that
the Dirac brackets between components of A and II are

It is easy to see that these constraints have a vanishing
Poisson bracket with each other, hence they are first-class
constraints, and the equations of motion will involve two
arbitrary functions of time. This is just the gauge free-
dom. We fix the gauge by introducing one "gauge con-
straint" for each first-class constraint. We shall use the
radiation gauge [Eqs. (2.7) and (2.8)], which we write as
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unchanged from those of ordinary QED, except for the
difference in the definition of II. Since all the constraints
are second class, we may consider them to hold in the
strong sense and use the canonical Hamiltonian given in
Eq. (2.14). To quantize, we equate the Dirac bracket with
i times the commutator, which results in Eq. (3.1).

APPENDIX B

One may simplify quantization of the macroscopic
Maxwell theory by redefining the vector potential. We re-
place Eq. (2.2) by

D= P)& A, B=A+ V'Ap . (81)

W =Wt„,+ —,
' D.g('):D+ —,D g(":DD

+-Dq~'~DDD+ . .

tree= z (

Variation with respect to Ap gives

V' B=O

and variation with respect to A gives

VXE= —B.
The canonical momenta are

(86)

(87)

(88)

Equations (81) imply Eqs. (l.lc) and (1.1d) without exter-
nal sources, whereas Eqs. (1.1a) and (1.1b) determine the
Lagrangian.

If we coinpare Eqs. (1.1c) and (1.1d) to Eqs. (l. la) and
(l.lb), the choice of working with A or A=(Ap A) ap-
pears to make no essential difference. The use of A, how-
ever, greatly simplifies the quantization of the theory. In
both cases the Lagrangian is quadratic in B, but not in D
(or E). When the vector potential A is used, the Lagrang-
ian is, therefore, quadratic in time derivatives of the field.

In order to distinguish between A and A, we call the
latter the "dual potential. " Technically speaking, we
should call it the dual potential only in the absence of a
dielectric (D=E). In that case, Maxwell's equations are
invariant under the transformation

E—+B, B—+ —E, (82)

which is the same as the duality transformation of the
electromagnetic field tensor' Fi =aA~/ax" aAi/axt"—

(83)

Here e i'"' is the totally antisymmetric tenor of rank 4.
This transformation exchanges A and A. In the presence
of a dielectric, (82) no longer represents a symmetry of
Maxwell's equation, but we may still use A, provided we

define it in terms of D and 8, as in Eq. (Bl).
Apart from the restriction to dispersionless media,

there is one other drawback of this formulation of the
theory. That arises from the fact that inclusion of an
external charge or current in Eqs. (l. lc) and (l. ld) invali-
dates the definition Eq. (Bl). In the case of a stationary
current (V. j =O=ap/at) this can be remedied, but only
at the expense of a more complicated theory.

The usual expression for the polarization density, Eq.
(1.2) is no longer convenient. Instead, we write

P=g ' .D+g:DD+g '.DDD+

One can calculate the q's from the 7's, and vice versa.
They are simply related to the p's we used in Sec. II [Eq.
(2.11)]:

a~ » aw"'=
a(a,A, )

= ' "j= a(a,A, )
= (89)

These are the same as in the free case, because no time
derivative of A appears in the interaction Lagrangian.
This is what makes quantization of the theory easier. The
canonical Hamiltonian density is now

A =4 f,~—2D q":D——,D.q 'DD

——,
' D g(3):DDD —B.V Ap,

tree= 2~ +
(810)

A —+A+ VO, Ap~Ap —0, (811)

where 0 is an arbitrary function of space-time. We may
thus still impose the Coulomb gauge. To eliminate Ap,
choose 8 to be a solution of

O~ —Ap ~ (812)

this determines 8 up to an arbitrary function of x, which
we denote 8(x). Since V A is time independent,

a
(V A)=V A=V.B=O,

at
(813)

we may choose 8 so that V A =0. This theory can there-
fore be quantized in exactly the same manner as free
QED. The commutation relations are

[A;(x,t), AJ(x ', t)]=i5,'J'(x —x ') . (814)

Note that the vanishing of IIp leads to the secondary con-
straint V II =0, which is just Eq. (87). Before quantiz-
ing the theory, we fix the gauge. The physical fields are
unchanged under the transformation

~(1) I P(l) ~(j) P(j) j 2 3 (85)

The Lagrangian density that reproduces Eqs. (1.1a) and
(1.1b) is

It is easily confirmed that Eq. (814) and the Heisenberg

equations lead to (88) and (l.ld) (with j,„=O) as the
quantum-mechanical equations of motion.
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