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We present a new interaction geometry for optical Ramsey fringes comprised of four traveling
waves instead of the three usual standing waves. First, we demonstrate experimentally that the new

method leads to an improved contrast, using the optothermal detection of the vibrational excitation
of SF6 in a supersonic beam illuminated by a waveguide CO2 laser. Second, we give a simple
theoretical description of the method, using evolution matrices of spinors and pseudospin-vector rep-
resentations of these spinors. Finally, we introduce strong-field density-matrix diagrams to discuss
the differences between the various interaction geometries as well as between the Ramsey fringes
and the usual stimulated photon echoes.

I. INTRODUCTION

As soon as the finite transit time was identified as the
basic limitation to ultra-high resolution in saturation spec-
troscopy, it was suggested' to associate sub-Doppler tech-
niques with the method of spatially separated fields intro-
duced by Ramsey in the microwave domain around 1950.
The first realistic proposals came from Novosibirsk for
saturation spectroscopy and for Doppler-free two-photon
spectroscopy. In saturation spectroscopy the Russian
method uses three equidistant standing waves and the ear-
ly experimental demonstrations have used this interaction
geometry. In an independent theoretical study, one of
us showed that fringes resulted from successive interac-
tions with four traveling waves' '" and it became clear
that one could also obtain fringes with four spatially
separated traveling waves with a number of advantages
over the three standing-waves method. In the first part of
this paper, we present an experimental comparison be-
tween the standing waves and the traveling-waves interac-
tion geometries, using an optofhermal detection tech-
nique' to monitor the vibrational exritation in a super-
sonic beam of SF6. In the second part of the paper we
give a detailed description of the new method in terms of
spinors and of pseudospin trajectory. The difference with
usual stimulated photon echoes' is emphasized. A new
graphical representation, the strong-field density-matrix
diagrams, is introduced to discuss further this difference
and to provide a direct comparison with the standing-
waves case as well as with the mixed case introduced by
Shimoda and co-workers. '

We shall see that with four travehng waves the physical
orlglll of optical Ramsey frlilgcs bcconlcs cspcclally silil-
ple to understand. I et us recall, that in the usual Ramsey
interaction scheme, the induced polarization precesses

freely between two field zones. As a result of the phase
comparison between this polarization and the field in the
second zone, final populations oscillate as a function of
detuning and time of flight between the two field zones.
Unfortunately, in the optical domain, the distribution of
first-order Doppler shifts averages out the fringes. To
solve this problem, our interaction geometry is such that
the previous usual Ramsey operation is simply repeated
with a second pair of laser beams traveling in a direction
opposite to that of the first pair. The populations which
oscillate as a function of laser detuning and velocity after
interaction with the first pair, give rise to two distinct
contributions through interaction with the second pair.
One for which the Doppler dephasing is canceled and for
which only the oscillatory behavior with detuning sub-
sists; this is the Ramsey fringes signal. One which loses
its oscillatory behavior with detuning but for which the
Doppler dephasing is doubled; this is the backward stimu-
lated photon echo which averages to zero by velocity in-
tegration.

Ideally, a succession of ~/2 pulses then results clearly
in maximum signal for the fringes. As we shall see in de-
tail the situation is far more complicated with standing
waves for which the simultaneous interaction with oppo-
sitely traveling waves reduces the fringe contrast.

In order to investigate optical Ramsey fringes experi-
mentally, we have used a supersonic SF6 beam illuminated
either by a triple standing wave or by four traveling waves
from a waveguide COz laser. The schematic diagram of
the molecular beam apparatus can be found in Ref. 15.
The supersonic beam is obtained by adiabatic expansion of
7 vol% SF6—He mixture through a 50 pm nozzle fol-

30 1984 The American Physical Society



30 OPTICAL RAMSEY FRINGES WITH TRAVELING WAVES 1837

lowed by a 0.5-mm cross-sectional diameter skimmer lo-
cated about 1 cm downstream from the nozzle. The su-

personic beam then enters the interaction chamber where
the background pressure is of the order of 3&& 10 Torr
the presence of beam. The flow velocity of the SF6 mole-
cules estimated from the observed Ramsey fringe period is
940 m/s, in good agreement with time-of-flight measure-
ments in similar conditions. ' In the first experiment the
beam crossed the three standing waves generated from a
single Gaussian beam (beam waist radius 6 mm) by a set
of three slits 1 mm wide and 5 mm apart from each other
and by a retroreflector [see Fig. 1(a)].

Before the introduction of this optical setup inside the
interaction chamber, the laser beam waist had been care-
fully positioned on the molecular beam by optimizing the
Rabi oscillations contrast as described in Refs. 15 and 17.
In a second series of experiments two slits only were il-

luminated and the two transmitted waves were reflected
by the triedron with a spatial offset equal to 15 mm in or-
der to generate two pairs of traveling waves [see Fig. 1(b)].

The three components Ai, Fi,E of the vi band P(4)
anifold can be reached with a waveguide CO2 laser os-

cillating on the P(16) CO2 line at 10.55 pm. This laser
was slaved by a frequency offset —locking technique to a
conventional low-pressure CO& laser which was itself
locked to the Q(43) F& saturation resonance of SF6. This
tcchmquc provides both a very good short-term spectral
width (=10 Hz) and the possibility to scan the frequency
with an auxiliary RF synthesizer. '

After their interaction with the three or four light
beams the molecules hit the liquid He-cooled surface of a
silicon bolometer (1 && 5 mm ) where they leave their inter-
nal energy. Since the laser beam is chopped, only the
modulated rovibrational contribution of this internal ener-

gy is detected as a signal by standard lock-in techniques.
The bolometer is placed 48 cm away from the skimmer.
Its electrical characteristics at 4.2 K are a 4X10 V/W
responsivity and a NEP (noise equivalent power) of
8 X 10 ' W/v'Hz at 30 Hz. However, in working condi-
tions with a molecular beam, this NEP was observed to
increase by one order of magnitude. Nevertheless as illus-
trated in Figs. 1(a) and 1(b) beautiful fringes have been ob-
tained with both interaction geometries. These two fig-
ures also illustrate the large difference in fringe contrast
(factor 2 to 3) which is obtained between these two cases.
This difference is most easily understood in a theoretical
approach, using transformation matrices, which we out-
line below.

We consider a two-level system interacting with a num-
ber of traveling waves which all have the same frequency
but which may propagate in two opposite directions (+
or —). In the molecular frame of reference defined by
v=po/My for molecules formed in the lower level a
with a momentum po [y=(1—u /c ) '~] we shall write
the electric fields as

8'( r, t) =Ree +E +-U +-[u„(-t ti )]—

X exp[i (ytot+ ku, t+kz+ p +)]-,

where e, E, U, and y represent, respectively, the polariza-
tion vector, the amplitude, the transverse dependence and
the phase of each wave. The fields are propagating along
the z axis and for the sake of simplicity, in this paper, we
shall ignore the y direction (molecular flow along the x
axis) and assume that the function U is real and sym-
metric about the time ti. These fields couple together a
large number of energy-momentum states as illustrated in
Fig. 2.

In the
l
r ) representation, the wave-function com-

ponents for each state a=a, b can be written as a discrete
sum {Fourier series) where each component a (r, t) corre-
sponds to an energy-momentum state

l y(, t) )= y &
l y(, t) & = y (,t), (2)

&a- IV('t»= J „„d'u&r lp&&Pl(alp«)&

is an r wave packet centered about each momentum mfik
(m is an integer corresponding to the net number of
momentum quanta exchanged with the field from po).
The molecular system can be described either by the spi-

b (r, t)
(b

l
|((-r,t))

(a
l @(r,t)) ga (r, t)

or by a vector with an infinite number of components
written as

III. THEORETICAL FRAMEWORK

Any realistic theory of optical Ramsey fringes should
take into account transit effects, relaxation, first and
second-order Doppler broadening and shifts as well as the
recoil effect. All these effects are built in the following
approach and no restrictive assumption is made concern-
ing their respective importance. The individual atomic
response is calculated as a function of molecular velocity
and then averaged over initial formation conditions (ve-
locity distribution or more generally phase-space distribu-
tion in a molecular beam).

The first description which was used in Refs. 20 and 21
is easier to deal with (2X2 tranformation matrices) but is
not as general as the second; for example, owing to the
recoil effect a different energy

E~+m (haik) /2M=E~+m A'5

is associated with each u~ and this correction is obviously
easier to introduce in the second approach; the first ap-
proach requires successive rotating frame transformation
which can be avoided in the second. In this paper we
therefore emphasize this second formalism.
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The evolution equation for the transformed vector is

am+2

b' +)

am

b

0

0
0

0
0

l ~ 2 Vc(y—~ ~0) im—5— —imku,
2 2

—(yro —eo) —i (m +2) 5— i—(m +2)kv,l . p j g

2 ' 2
0

('Y~ —~0)—i (~ + 1) &— t —(m'+ 1)ku,
Xb

2 2

0
0

0
0

0

0
l Yb

2
(r~ ~0) ~ (I —1) &— i (m——1)kv,

2

where coo=(E& E, )/g

0

QbU e

0

0

Qb, U e''P

0

Qb+ U+e+''p

0

Qb+, U+e

0

QbU e

0

0

Q U e~P o ~ ~

0

am+2

&m+&

am
(5)

IV. CASE OF SPATIALLY SEPARATED
TRAVELING WAVES

In the case of interactions with purely traveling waves,
the above Hamiltonian matrix can be broken into 2X2
sub-blocks and we may consider independently the evolu-

tion of spinors such that
r

m+1

am

I

for which the Schrodinger equation reduces to

b

Bt a
l

Q - cr +Qpa. ()2

where the choice of sign is imposed by the direction of the
wave and where we have introduced the Pauli matrices oo,

{b)

FIG. 1. (a) Ramsey pattern obtained for the P(4) F& SF6 line with three standing waves (interaction geometry illustrated by the in-

set). The horizontal scale is linear in frequency and one fringe period corresponds to 94 kHz. The laser power was adjusted for op-
timum fringe contrast. The signal was recorded in a single one-minute sweep with a 0.1 s time constant and a 30 Hz modulation fre-
quency of the laser amplitude. (b) Same as (a) with four traveling waves.
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E+p /2M o and the effective field

Q~ ——2Qb, U —cosy—+,

Q Q2 ——2Qb, U+—siny-+,

Q3=h+ku, —[(m+1) —m ]5+i'(yb —y, )/2,

Qp ———[(m+1) +m ]5—(2m+1)ku, +iyb, ,

m, =O

FIG. 2. Energy-momentum states of a two-level system cou-
pled by counter-propagating laser beams.

and where h =yco —cop and yb, ——(yb+ y, )/2.
If the field amplitude is constant in each field zone,

U+—:—1 and Eq. (6) is easily integrated from time tp to
time t

r

+i(t)

a (t) 2
=exp Qpop(t —tp) exp Qcr—(t tp)—

2

+)(tp)

(tp)

Q(t t,)—
+in o. sin

l
exp —Q cr(t —tp) =opcos

2 Ce'P
~ +

where the operator exp[i/2Q. o ( t —tp)] is easily expressed as [parametrization formula of the group SL(2C)]

Be
(10)

n=Q/Q

and

Q2 Q 2 Q2+ 4Q2 (12)

—kv T k vzT

afn2hT sfn2hT sfn(h-kvz)T RF
1/2 0 ~ 1/2 cos2hT ~ 1/2 cos(h kvz)T

-coa2hT

sfn2kvt T sfn2kv, T

0

+
sfn(h kvz)T cos(h-kv, )T

-sfn(h-kvz)T

cos(h-kvz)T

-sfn(h-kvz)T

-cos(h-kvz)T

1/2 0 ~ 1/2 coa2kvzT ~ 1/2 cos(h-kvQT

cos2kvt T BSPE

FIG. 3. Principle and illustration of Ramsey fringes (RF) with four traveling waves. At each step we give the three components of
the relevant pseudospin R —.The backward stimulated photon echo (BSPE) would correspond to a vector R,d„(not represented)
which doubles its Doppler dephasing.
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and where

Q(r —ro)
A =cos

2

03+i sin
Q(t —tp)

2
D =cos

Q(r —rp)

2

Q3 Q(r —rp )—i sin

(13)

.Qba . Q(~ —ro)
B=C=2i sin

Q 2

I~+
A2 B2e 0 AI

We recover a 2)&2 formalism which leads to very simple line-shape calculations by straightforward multiplication of
2&(2 matrices corresponding to successive interaction or field-free zones. Let us now illustrate this with the case of the
four traveling waves represented in Fig. 3.

In the first phase the interaction with the first two (+ ) traveling waves gives after the central dark zone
r

iQ3T'/2 i Q3T/2
D] e ' 0 e -)e' 0

=exp —Qp(T'+ T+2r)
2 0

—iQ3T'/2 iq)+
C2e D2 0 e

—i Q3T/2 i~+
Cie Di

(14

where Q3 ——5—ku, 5+—i(yq —y, )/2, Qo= —5—ku, +iyb, [see (7) and (8) with m =0]. Let us observe that a calcula-
tion of bi b i from this formula gives a generalization of Ramsey s formula including relaxation, first- and second-order
Doppler effect as well as the recoil. '

In a second phase, in which the interaction takes place with two ( —) field zones, we can independently describe the
evolution of the spinors

Q2

and

ao

from

0

ao
J

The corresponding matrices are

exp —Qp( T +2~)
l

2

chere

C4e'"

B4e
'"

D4

i Q3T/2
e

0

0 A3
—i Q3T/2 l tP3e C3e

B,e '"
D3

(15)

Q3=5+ku —5+l'(yb —y )/2 Qp= —5+kp +ly~

b

ao

and

Q3 ——5+ku, +35+i (yb —y, )/2, Qp —— 55 3ku, +iyq, — —

b)

Q2

Combining the two sets of matrices we find
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I/BiCzB3Ag/ e + /BiC2D3Bg/ + fDiD2B3A4/ + /DiDzD3B
/

e

+iku T +2ikv T
+0(e * or toe * )I,

t

(16)

where the oscillating term exp [2i(6—5)T] corresponds to the fringe pattern up shifted by the recoil shift 5, and

+[Bi~2~3~.(DiBzC3B )"""+""'""'" "'+..]+o(."'.--" ')]
(17)

FRINGE PERIOD=90kHz

F RINGE PERIOD=94kHz

f

t

fl h

)&jill&
(b)

500kHz

(c)

FIG. 4. Theoretical fringe patterns: (a) and (b) calculated
from formulas (16) and (17) (without recoil and relaxation) with
T/~=5. 25 and Air=0. 988 for (a), Q~~ ——1.8 for (b); (c) is calcu-
lated numerically for Gaussian laser profiles with a beam waist
radius wo ——0.5 mm separated by 5 mm.

where the oscillating term exp2i(6+5)T corresponds to
the fringe pattern down shifted by the recoil shift 5.

The signal is obtained by integration on v, of the previ-
ous expressions. If the Doppler width is large compared
to the fringe width, integrals of terms proportional to
e +—'~z or e +—' z are negligible; the U, integrals of the
te~s in factor of e2 (6+5)T give the fringe envelope and
those of the remaining terms give the background
broadened by the Doppler effect and by finite transit time.
Figures 4(a) and 4(b) are typical graphs of the signal cal-
culated from formulas (16) and (17) and numerically in-
tegrated over a fiat velocity (U, ) distribution in the ideal
case of four equal square pulses corresponding to
2Qh, v=0.988, for Fig. 4(a) and to the optimum value 1.8
for Fig. 4(b). (This optimum value is slightly higher than
ir/2 owing to the v, dependence of Q through Q3.) In this
last case the fringe contrast is close to —', . A contrast of
only 40% could be reached in the actual experiment [see
Fig. 1(b)] for which the signal shape is better represented
by Fig. 4(a). This can be explained by a number of practi-
cal reasons: distribution of Clebsch-Gordan coefficients;
y distribution of the field, hyperfine structure of the lines,
wave-front imperfections, . . . . Also to obtain the actual
signal one should perform a final integration on the nar-
row (13%%uo) distribution of velocity moduli which will
reduce the size of side fringes.

The signal width has contributions from transit
broadening and from Doppler broadening associated with
the u, distribution of molecules impinging on the bolome-
ter. The corresponding parameters (r, hu, ) are not very
well defined in our experiment (because of light diffrac-
tion from the slits and of a lack of precise knowledge of
the effective v, distribution in the beam) and are coupled
in a fit. To reproduce the signal background we have ad-
justed the time v to an effective value —', of the value de-
duced from the slit width. Finally the overall shape of the
signal is slightly better represented by a numerical calcula-
tion with Gaussian laser profiles as illustrated by Fig. 4(c)
for the optimum value 2Qs, wo/U„= 1.

V. PSEUDOSPIN REPRESENTATION
To understand in detail the origin of the fringes and

their size, it is possible to follow the evolution of pseudo-
spin vectors as illustrated in Fig. 3 in the ideal case of m/2
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pulses at resonance and in the absence of relaxation.
A four-vector R can be associated to any two-

component spinor

b

where each of the R +— vectors satisfies an equation such
as (20).

If the recoil shift is neglected we may also use the two
vectors

(23)

by the formulas

R'=ba +ah*,
R =iba ib*—a,
R =bb' —aa

Ro bb'+aa

If the spinor satisfies an equation as (6) the four vector
satisfies '

yi &' ——[Q (—J —i@+Q*(J+iK)1&'
2

iQ(n —J)R=.RX Q, (20)

the solution of which is easily written using the parame-
trization formula of the rotation group

exp( in JB}=I—i (n J )sinB——(n J ) (1—cosB),

(21)

where I is the unity matrix and where 6=Q(t —to).
It is clear that calculations are easier to perform with

the 2X2 matrices than with 3X3 matrices. The only ad-

vantage of R is to provide a convenient geometrical repre-
sentation of transient phenomena. The difficulty which
arises when one deals with optical fields having opposite
directions is that R has many Fourier harmonics of the
space variable z. In general this complicated spatial
dependence of R deprives this geometrical model from
any utility. However in the case of purely traveling waves
we have seen that we could consider space-independent
spinors such as

b

To each of these we can associate a vector R —by

R~=((a b' +i+c.c.), (ib +ia +c.c.),

where J and I are the generators of the Lorentz group
[for the solution of (19) see Ref. 211.

In the absence of relaxation this equation reduces to the
familiar gyroscopic motion equation for the pseudospin
vector

which share the same vertical component.
As an example we have represented in Fig. 3 the trajec-

tories for R+ and R in the process of Ramsey fringes
with four traveling waves. In the first half only R+ is
coupled to the field, R has no horizontal component
and reduces to the vertical component of R+. In the
second half, only the vector R is coupled to the field
and is represented (the horizontal components of R+
evolve freely and independently and are not represented).
For the sake of simplicity we have assumed optimum
pulses at resonance in each of the four field regions. The
recoil shift and the relaxation have been ignored. In the
first phase R+ undergoes the following sequence of
events: n./2 pulse, free precession corresponding to the
Doppler dephasing kU, T, and n/2 puls.e. The modulated
vertical component of R+ serves as the initial condition
for R in the next phase. After a first n/2 pulse the
amplitude-modulated vector R is decomposed into two
vectors of equal constant amplitude and opposite modu-

lated (advanced and retarded) phases, R =R,„+R,d„.
After a new free precession in a dark zone, one of these
vectors cancels its Doppler phase (Ramsey fringes)
whereas the other doubles it before the final n/2 pulse
(stimulated backward photon echo) and only the first of
these vectors is represented on the figure. This sequence
of events is completely different from the usual photon
echo in which:

(i) The dephasing process does not reverse as here be-
tween the first and second dark periods.

(ii) The effect of the middle interaction is a npulse.
which results in a symmetry about the (1,3) plane essen-

tially different from what happens here since R+, before
the central fields, and R, after them, are collinear.

VI. STRONG-FIELD DENSITY
MATRIX DIAGRAMS

A more general graphical representation of coherent
processes, applicable to standing waves as well, could be a
strong-field generalization of density-matrix dia-
grams. "' Vertices of interaction with the various fields
are separated by field-free regions where the free propaga-
tors are known. With the representation (4) the free prop-
agator corresponding to a time interval T is

exp{[i(yco coo) i{mb —m)—i{mb—ma)—kUs Yba1Z 1

(24}

for

(b +ib'+i —a a' )), (22)

where the + sign corresponds obviously to the (+ ) and
( —) directions of propagation of the laser fields and

and

exp[ —i(m —m' )5—i(m —m')ku, y~]T—(25)
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b b

i/4 ( = ~/2)

b a
1

exp[+i(Y~—~o)+3is+ikvz Yba T

jf
A3C3e

b b
exp( —YbT')

( = ~/2)

exP f- i(Y~—~o)—3is—ikv, —Y»1T

0
1 0

0
0 0

exP fi(Y~—~o)—is—ikv, —Y»l T

( = ~/2)

( = ~/2)

0
1 0

0
0 0

exp t i(Y~—~o)—is—ikv, —Yba] T

+ +
2Y (T+&r)-Y TB a rc a (D B C B )

2jiY~- o+ t+ 4 3+ 2 1=e ba b 1A2i~4( 1 2 34) e

LOW FREQUENCY RECOIL PEAK OF RAMSEY FRINGES

R —-)R (pure transposition in k space)

BACKWARD STIMULATED PHOTON ECHO

(time reversai + z reversal)

b b b b

1

b a
1 0 exp[+ i(Y~—~,)—is—lkv, —Yb,l T b exP[ —i(Y~—~o)+is+ikvz bal T

Tgp
P,a

1 0 exP |i(Y~—~o)—is—ikvz

[c) P,a

0
1 0 exPti(Y~ —"o)—is—ikvz Y»l T

a
0 0

a
0 0

FORWARD RAMSEY FRjNGES «expL2i(v —,—&)1T

(averages to zero by velocity integration)

FORWARD STIMULATED PHOTON ECHO

(pure transposition from negative to positive frequencies)

FIG. 5. (a) Strong-field density-matrix diagram for the low-frequency recoil component of Ramsey fringes. The product of the
factors appearing at each vertex and of the three propagators which gives the contribution of the diagrams is explicitly written on the
figure. One should add the complex conjugate term corresponding to the complex conjugate diagram. A similar diagram where

( l
~ pbi, ~

1 ) is replaced by (0
~ p ~

0) yields the contribution of the high-frequency recoil component. These two processes corre-
spond to a pure transposition in k space reversing only the sign of the Doppler phase. (b) One of the diagrams corresponding to the
backward stimulated photon echo. In this case the combination of both time and space (z) reversals (equivalently transpositions in
both co and k spaces) results in no change of the Doppler dephasing and the process averages to zero by velocity integration (but
would exist for a nonreversing inhomogeneous dephasing mechanism ). (c) This process ("forward Ramsey fringes") is considered, in
contrast with those of (a), as an example where the Doppler phase does not reverse and which will therefore average to zero by veloci-

ty integration. (d) Strong-field density-matrix diagram corresponding to the familiar forward stimulated photon echo (pure transposi-
tion from negative to positive frequencies equivalent to a time reversal). The two central zones can either be two successive ~/2
pulses or coalesce into a single m. pulse.

Ce'& D

g f)

—l iP

We give in Fig. 5 some examples illustrating the useful-
ness of these diagrams for our purpose. A simple inspec-
tion of the total Doppler phase tells whether the process
averages to zero or not by velocity integration. By look-
ing at the frequency dependence one can easily recognize
oscillating terms (fringes) or usual photon echo terms
(with time reversal) and obtain their recoil shift.

(m Ip Im')=a a* ~ .

In the case of traveling waves the following transforma-
tion matrix is used at each vertex:

We see on the diagrams that for the usual stimulated
photon echo the phase information carried by ps, in the
first half is transferred to p, b in the second half. Since
these two quantities vary with opposite frequencies this is
a transposition of the information from the exp(icot)
domain to the expl —icot) domain and vice versa, which is
equivalent to a time reversal. Furthermore, if R& is
multiplied by a coefficient a, Rz being antisymmetric
with respect to the interchange of p,b and pb, is multi-
plied by —a. We recover the usual picture of the photon
echo in which a symmetry is performed with respect to
the 1,3 plane. 24

For Ramsey fringes the phase information carried by
ps, in the first dark zone is transferred back to pb, after
interaction with the two central zones but, this time, with
a transposition from the e' domain to the e ' domain
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which is equivalent to a space (z) reversal. This is suffi-
cient to reverse the Doppler dephasing (it is important to
note that in contrast to the usual photon echo it is the de-
phasing mechanism which is reversed). Since there is no

interchange of the indices b and a, R is collinear to
R+.

If either none (forward Ramsey fringes) or both (stimu-
lated backward photon echo) of these transpositions take
place the Doppler phase subsists and the corresponding
terms average to zero by velocity integration. Note that
for any inhomogeneous dephasing mechanism, which does
not reverse by z reversal, only the photon echo contribu-
tions subsist after integration over the distribution of fre-
quencies.

VII. COMPARISON WITH STANDING WAVES

e '
o J„o(oi)J„o„(~) =(—l/2)e oJ(2ojl l

2 2
exp[i(v —

~t)
—i{(n+1) —n )&—ikv —vba] T

Jn-m-q() Jn-m+1(ot) = (—1/2)e" o J2(2oi)

exp[i(v —
qj —i(m —(m+1) )~+ikv, —

vb, ]T
2 2

i e '~ J (ot) J „(Dt) =(i/2)e ' ~J(2e) ]

2 2[)(Y~-~o Yb ]T-l(4)+43-2$p)= —1/8 J,(2&)[J2(2txcossT) —J2(&sin sT)] e
+ C.C.

In the case of standing waves the transformation matrix
for the vector

i
e' 3J„(o&)J„„(~) = (—i/2)e~ J,(2') ]

am

b

can be deduced from the 2 X 2 matrix for

eXP[i(V~—Q-i(n -(n+1) )~+ikVz Yba]T

= (—1/2)e ~2J2(20) ]

2 2
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0
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0
i sin—

2

0
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2

(27)

8=4Qs, cos( kz+ ku, t l +y) U( kv, ),
+ ao

U(ku, ) = coskv, rU(u„v)d ~ .

(28)

(29)

For this purpose we use the following expansions:

cos =Jp[2Qteo U(kv& )]2

derived in Ref. 21, with the assumption Q3=0 in each
field zone (see also Ref. 20)

2 l (Y4) EA)o) Vba]T I($~+ 43- 24~ )= —1/8 J„(2&)[J2(2ctcossT) —J2(2xsin sT)] e
+ C.C.

I:bl

FIG. 6. Strong-field density-matrix diagrams for Ramsey
fringes in the case of three standing waves. Only the contribu-
tions coming from the first spatial harmonic of the off-diagonal
density-matrix elements freely precessing in the dark zones have
been represented (similar diagrams can be drawn for higher har-
monic contributions). The overall contribution of each type of
diagram has been obtained by summation over the integer num-

bers m, n,p and is given in the figure with a=2Qb, U(kv, ).
When the recoil is neglected the factor corresponding to each
vertex is obtained directly from (35) and is given between brack-
ets for comparison with the traveling-wave case [Fig. 5(a)].

Q~

sin —=2 g ( —1)IJ2J+t[2Qb, U(ku, )]
2 J p

+2 g ( —1)J2J[2Qs, U( ku, )]
1

X cos2j(kz +ku, t, +y), (30)

Xcos[(2j+1)(kz+ku, tl+y)] . (31)

Hence the transformation between the incoming and
outcoming vectors

am+2

b

am
1

b

ti+

Jp

i( —1) Jle

—iJ3e

Jp

+LJie Jp
'J —ltP

—J,e "9'

iJ~e'+

Jp

i( —1) Jle'p ( —1)'J2e '+ i( —1)'J3e '+ am+2

b

am

b

t 1

(32)
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i,e., the generic element of the matrix is

(33)
/

The same strong-field density-matrix diagrams can be used as in the traveling-wave case with, this time, the proper
Bessel 'functions at each vertex. As an example the diagrams of Fig. 6 correspond to Ramsey fringes with three standing
waves (lowest harmonic order contributions to pb, in the dark zones) where we have used the following sum rules:

J (a)J +„(a)e' +"' = ,' [i—'J„(2asi n5)+ J„(2ac os5)],
m even

g J (a)J +„(a)e' +"+=—,[i"J„(2asin5) —J„(2acos5)] .
m odd

If one is not interested by the recoil shift but only by the integer m~ —m~ indicating which harmonic of the density ma-
trix is considered, it is possible to avoid complicated resummation of Bessel functions by starting with the direct product
of two matrices

Q~
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0
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0
t sin—

2

0
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2

0
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2

0—i sin—
2
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—i sinO

i sinO
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i sin8
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—i sin8

—l Sln0"

1+cos0"

i sinO 1 —cosO
1 —cos8 i sin8

(34)

and then only use the expansions (31) in Bessel functions with a double, argument.
The transformation table which connects Fourier components of

b b*
(3

a a

differing by 2j or 2j + 1 in their harmonic order is readily obtained from (34)

2lJg

5,.p+ ( —1VJ,,
i( —1)—J2.+~e'&

i ( —1 VJ2~ ~ )
e'~

5 p
—( —1VJ2J J

i ( —1 VJ2J+, e—'~

5ip+ ( —1 VJ2i
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—( —1) J2.J J

i( —1VJ2J+~e'~

i ( —I VJ2J +,e'~

5 p
—( —1VJ2.J J
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—( —1VJpJ J
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—&( —1) J2J+&e'~

5Jp+ ( —1VJ2J.

(35)

This table provides a generalization, for arbitrary laser
profiles, of the usual formulas of the gas laser theory with
plane waves.

We have indicated in front of each of the vertices of
Fig. 6 the relevant matrix element from (35). By straight-
forward multiplication of all the factors appearing on the
diagrams we recover the expression giving the contribu-
tion of each of them. ' Thanks to these diagrams we can
make a direct quantitative comparison of Ramsey fringes
in various geometries. If we compare the diagrams corre-
sponding to traveling waves to those corresponding to
standing waves with the assumption of ideal excitation
conditions:

1+ ] —+2 —A3 —A4 —D] —D2 —D3 —D4- v'2
l

&& =&2=&3=&4=C) =C2=C3 =C4=
&2

(~/2 pulses for U, =0) we see that, adding the two recoil
contributions, the two differ by a factor J& in the first and
last vertices and by a factor J2 in the combined action of
the two middle vertices. If we add the mirror image con-
tributions in the case of the standing wave we end up with
a factor 2 Jf Jz which gives a signal at the most =—,

' of

I

the traveling waves signal (the contributions from higher
harmonics is negligible in these conditions). This factor
explains well the difference in contrast that we observe be-
tween the two geometries'and is also confirmed by experi-
ments on Ca led' in parallel with ours at the PTB in
Braunschweig to test this theory.

As a third case let us consider a diagram in which the
first and third interaction vertices are with oppositely
traveling waves and the middle interaction is with a
standing wave (geometry proposed by Shimoda' ). It is
clear from Fig. 7(a) that we lose a factor J2-0.5 with
respect to the purely traveling-wave case.

A final advantage of the traveling-waves case is that the
recoil splitting contraction is absent"' and furthermore
the central dark space can be used to let the upper state
decay get rid of the low-frequency recoil peak. '

Finally we may easily consider more complicated in-
teraction sequences. Figure 7(b) corresponds to the
standing-wave-induced backward photon echo introduced
in Ref. 30. It is a combination of the usual forward echo
with the Ramsey fringe scheme of Fig. 7(a), with time re-
versal in the second dark zone and z reversal in the third
one. This process has therefore a detuning sensitivity
which the usual echo does not have.
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b b

n

exp[ Ih+ Ikvz &bal T
n n+1

1/2 J2e 15.BB kHz

expfi~-ikv, -&b,]T

FIG. 8. High-resolution Ramsey fringes (FWHM: 5 kHz) ob-
tained with traveling waves separated by 4.5 cm. The time con-
stant is 0.1 s and 25 sweeps of duration 51 s have been added.

expli~+ikv, —v»](t,-t,)
2 (l-V.)

expl: —ia+ikv, —&»l(t,—t,)

a
0 explia —ikv, —

v& 3(t~—t,)

a
0

[bj
FIG. 7. Strong-field density-matrix diagrams corresponding

to successive interactions with a combination of traveling and
standing waves. (a) Ramsey fringes interaction geometry of
Ref. 14. (b) Standing-wave-induced backward photon echo of
Ref. 30.

VIII. CONCLUSION

As a conclusion, (1) we have demonstrated a new in-
teraction geometry for high-resolution spectroscopy both
experimentally and theoretically. This new method
should be very useful for optical frequency standards, e.g.,
with Ca (Ref. 29) or I2 in the visible. The potentiality for
much higher resolution is illustrated by a preliminary ex-
periment, where a 4.5 cm distance between Gaussian
beams was used, resulting in a fringe pattern of period
10.42 kHz displayed on Fig. 8 (see also Ref. 31). (2) We
have given graphical representations of processes involv-
ing spatially separated fields which allowed a comparison
of Ramsey fringes with stimulated photon echoes as well
as a comparison between various interaction geometries.

Thanks to these representations we have reached a clear
quantitative understanding of the improvement in con-
trast provided by the traveling-waves interaction geometry
for optical Ramsey fringes.

Note added. The term "photon echo" could be general-
ized to any mechanism in which a rephasing process of
the polarization takes place and gives rise to a reemitted
field (this polarization may also interact with an applied

field whenever there is such a field). Within this generali-
zation of the photon echo concept, Ramsey fringes would
then be considered also as a backward stimulated photon
echo. But in the present paper, we have reserved the term
photon echo strictly to processes in which the pseudospin
has a very-well-defined trajectory which is a symmetry
about the 1-3 plane and more simply a m rotation about
the 1 axis (field axis) in the case of n/2 pulses. This is
equivalent to a pure transposition p,& ~ps, from the neg-
ative frequency domain to the positive frequency domain
and vice versa or to a time reversal as explained in Sec.
VI. This definition corresponds to the description of pho-
ton echoes found now in most textbooks [see, for example,
M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics
(Addison-Wesley, Reading, Mass. , 1974) p. 218]. With
this restricted definition of a photon echo the rephasing
mechanism of the polarization that takes place in the
Ramsey fringes process is indeed different from what
happens in the usual photon echo as illustrated by the
pseudospin trajectory of Fig. 3: after the two central-field
zones R,„is collinear to the direction that R+ had be-
fore them (whereas the usual definition of photon echoes
corresponds to R,d„which is indeed obtained from R+
by a n rotation about the field axis). The contribution of
R,d„averages to zero by velocity integration in Doppler
broadened media. For these media, R et is therefore the
only part of the pseudospin which rephases itself together
and leads to what would be called a photon echo in a gen-
eralized definition but is here called simply the Ramsey
fringes signal. On the contrary, for other media (for
which there is no sign reversal of the dephasing process
with the laser beam direction of propagation) it is R,d„
which rephases itself and gives rise to a true backward
stimulated photon echo (with our definition of this pro-
cess). Independently from the names given to the two
processes it is essential to make a clear distinction between
the respective contributions of R,d„and R,„which are
completely different for the two types of media since it is
one or the other which gives rise to the rephased polariza-
tion radiating in the backward direction or which in-
teracts with the last field.

Noted added in'proof. In Fig. 5(a) the factors AB*e'~
and AC*e '& appearing at the second and third vertices
correspond only to the specific diagram for which
a=I3=b.
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