# Measurements of L-Auger spectra of Pu, Am, Cf, and Fm and comparison with theory

S. K. Haynes

Department of Physics, Michigan State University, East Lansing, Michigan 48824

Melvin S. Freedman and Fred T. Porter\*

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 27 December 1983)

The L-Auger spectra of  $^{239}_{94}$ Pu (64 lines),  $^{254}_{100}$ Fm (54 lines),  $^{241}_{95}$ Am (41 LMM lines only), and  $^{250}_{98}$ Cf (35 LMM lines only) were scanned over the range 6-19 keV at high resolution  $(10^{-3} \le \Delta E/E \le 2 \times 10^{-3})$  in the Argonne National Laboratory iron-free double toroidal spectrometer using thin  $(<1 \,\mu g/cm^2)$  isotopically separated radioactive sources. The observed energies of lines or line complexes agreed with Larkins's semiempirical predictions within the combined (theoretical plus experimental) standard deviations (1 s.d. = 10-20 eV in 10-20 keV) in 78% of the comparisons, and 19% were within 1–2 s.d. The measured intensities (relative to  $L_3M_4M_5$ ) for Pu were compared to nonrelativistic predictions of McGuire for Z = 90, with the relativistic predictions of Chen et al. for Z=94, and with a mixed system using Chen et al. for Coster-Kronig and McGuire for L-Auger transitions. Fm intensities (and Am and Cf qualitatively) could be compared only to relativistic theories. Relativistic predictions are clearly better for Pu, but are not, in general, satisfactory for either Pu or Fm; for all Pu and Fm lines, taken together, 58% are within 1 s.d., 30% in the range 1-2 s.d., and 12% greater than 2 s.d., with the relativistic predictions generally low except for the  $L_3MM$  band, which is in acceptable agreement. The ratio of the intense lines  $I_{L_2M_4M_5}/I_{L_2M_4M_5}$  averaged for all four spectra is  $(27\pm7)^{-1}$ % above the relativistic prediction. The first clearly resolved spectator vacancy satellites of Auger lines were seen in <sup>241</sup>Am and <sup>250</sup>Cf, and Coster-Kronig coefficients were deduced from their intensities relative to the main line. Their displacements in <sup>241</sup>Am agree with calculations of Shirley. Intermediate coupling components of some Auger lines were also first resolved and their relative intensities observed to fit the nonrelativistic calculations of Haynes. From the relative intensities of the M- and N-shell internal conversion lines of the 18.249-keV transition in <sup>239</sup>Pu, an M1 multipolarity is assigned.

### I. INTRODUCTION

During radioactive decay studies<sup>1-4</sup> at Argonne National Laboratory of the complex internal conversion electron spectra of  $^{239}_{94}$ Pu,  $^{241}_{95}$ Am,  $^{250}_{98}$ Cf, and  $^{254}_{100}$ Fm, the L-Auger electron line spectra in the 6-19-keV range were also scanned. The sweeps were made at high resolution  $(0.1\% \le \Delta E/E \le 0.2\%)$  with the Argonne double toroidal iron-free  $\beta$  spectrometers using very thin  $(\sim 1 \,\mu g/cm^2)$  isotopically separated sources. Thus we observed line shapes suffering minimal instrumental distortion in which intrinsic properties of the transitions such as natural widths (Sec. IV), intermediate coupling multiplet splittings (Sec. VII), spectator vacancy satellites (Sec. IV), and Doppler-shift-generated characteristic line-shape distortions (Sec. VI) could be resolved and identified, and easily distinguished from much narrower internal-conversion lines (Sec. IV). Because no L-Auger spectra had been studied for transuranic elements and because relativistic effects should be more pronounced for these elements than for those of lower atomic number, a fairly complete L-Auger spectrum was run for each element.

At the time of the experiments no satisfactory theory existed for the energies of the various Auger lines. There had been, however, a nonrelativistic j-j coupling theory for transition probability developed by McGuire<sup>5</sup> as well as an *L*-*S* coupling, more relativistic theory for transition probabilities produced by Ibari, Asaad, and McGuire.<sup>6</sup> Subsequent to the experiments, Larkins<sup>7</sup> developed a semiempirical theory for Auger energies (i.e., using empirical electron binding energies) and Chen *et al.*<sup>8,9</sup> computed transition probabilities on a relativistic *j*-*j* coupling basis. Therefore these spectra offer for the first time an opportunity to test the adequacy of these theories in the most relativistic and most "*j*-*j*" part of the Periodic Table.

#### **II. EXPERIMENTAL PROCEDURES**

Sources for these studies were prepared by chemical separation of reactor or cyclotron irradiated targets using ion exchange. The electron spectrometer sources were deposited on  $10-25-\mu g/cm^2$  carbon films in the target position in the Argonne electromagnetic isotope separator as circular 1-3 mm diameter spots of order 1 monolayer,  $(<1 \ \mu g/cm^2)$  thickness. To reduce penetration into the support film to, at most, one atom layer, the 50-keV ion beam was decelerated to 100 eV before impact. The source deposits quickly oxidized. Source intensities were of order 0.1  $\mu$ Ci.

The electron spectra were surveyed in the Argonne double toroidal iron-free magnetic  $\beta$  spectrometer.<sup>10</sup> In tandem configuration the instrumental resolution in momentum  $(\Delta p / p)$  in these experiments varied from 0.05 to

<u>30</u> 183

The spectrometer detector was a bare cleaved 1-mmthick NaI(T1) scintillating crystal in the spectrometer vacuum coupled directly to the cathode of an RCA 8575 photomultiplier. Its detection efficiency for low-energy electrons has been carefully measured.<sup>11</sup> Spectra were automatically scanned and recorded. The individual papers<sup>1-4</sup> should be consulted for particular details.

A considerable yield of information was derived from these spectra: the very complex nuclear level schemes and nuclear transition probabilities and multipolarities,<sup>1-4</sup> complete K-Auger spectra;<sup>2,3</sup> precise (few eV) atomic electron binding energies for most inner orbitals out to near valence levels,<sup>12</sup> a proof of the linearity of Maxwellian electrodynamics,<sup>13</sup> a proof of the invariance and adiabaticity of core electron binding energies in heavy elements,<sup>14</sup> and now, finally, the L-Auger sea of data, including clear demonstrations of "spectator vacancy" satellites, resolved intermediate coupling L-Auger multiplets, and L-Auger transition widths.

### **III. RESULTING SPECTRA**

Figures 1 and 2 show the Pu and Fm *L*-Auger spectra. Extraneous background has been subtracted and the data have been corrected for the energy-dependent efficiency of the spectrometer detector counter and decay corrected to zero time. The decay correction factors were typically large and widely varying, as these spectra were run late on these short-lived sources. Thus the large statistical fluctuations of the weakened activities govern the displayed apparent high rates at zero time. This is particularly obvious at the low end of the Cf spectrum, Fig. 3.

The Pu and Fm spectra were the best of the four, both from the standpoint of statistics and also because the percentage of primary  $L_1$  vacancies (i.e., before Coster-Kronig transitions have altered the  $L_1:L_2:L_3$  distribution) was the smallest. Low  $L_1$  initial population results in smaller  $L_2$  and  $L_3$  spectator vacancy satellites and more reliable line shapes for stripping the spectra. The figure captions explain fully the system of line designation used in these figures.

### IV. WIDTHS, SATELLITES, AND VACANCIES

We describe some features of spectral lines that one encounters in the identification procedure and stripping analysis. The most obvious distinction is the contrast of the very narrow widths of internal conversion lines (e.g., line C, Fig. 2, the  $L_2$  line of the 39.881-keV transition in Fm at 13 230 eV) and the widths of well-resolved intense L-Auger lines (e.g., line 19,  $L_2$ - $M_2M_2$  at 12 966 eV). In the Fm spectrum the instrumental width (FWHM) in this region is ~13 eV. The excess width contribution of the  $L_2$  level<sup>15</sup> in Fm, ~13 eV, folded with the instrumental width corresponds to the measured width of the internal conversion line C. The contributions of the extra width of the  $M_2$  orbital,<sup>15</sup> ~15 eV, taken twice, further increase the L-Auger (line 19) width to ~28 eV. Such contrast is seen more dramatically in Fig. 4(a), where one sees the sharp little  $M_3$  internal conversion line of the 15.2-keV transition in <sup>241</sup>Am [ $\Delta p/p=0.07\%$ , ( $\Delta p/p$ )<sub>instrum</sub> =0.05%] riding on the left shoulder of the satellite of the  $L_3$ - $M_5M_5$  Auger line at 10.5 keV. The  $L_3$ - $M_5M_5$  main line (unfolded component on right) is about threefold wider, and the satellite (left component) is much wider still, due to many unresolved components. The pure  $L_1$ - $M_4M_5$ line (no satellite) width is  $\Delta p/p=0.14\%$ , twice that of the lower-energy  $M_3$  internal conversion line. A counterexample is the huge width of the K-132.4 keV conversion line in <sup>241</sup>Am at 7 keV, Fig. 5, where the K-level width<sup>15</sup> of 109 eV dominates the instrumental width of ~5 eV.

Figure 4 shows selected examples of the more intense L-Auger lines with different relative intensities of spectator vacancy (SV) satellites (the broad lower-energy bulges on  $L_3$ - and  $L_2$ -Auger lines) in (a) Am, (b) Cf, and (c) Fm L-Auger transitions. The first evidence of spectatorvacancy-satellite broadening and shifting on L-Auger lines was seen in <sup>210</sup>Bi by Haynes et al.<sup>16</sup> Here in Am especially we see the first clean resolution of the satellite complex from the main Auger line.<sup>17</sup> Such satellites of  $L_3$  Augers (to a lesser extent of  $L_2$ ) are associated with that fraction of  $L_3$  (or  $L_2$ ) vacancies which are created by Coster-Kronig (CK) transitions from  $L_1$  and  $L_2$  vacancies. Such CK transitions produce vacancies in M,Nshells whose lifetimes are comparable to or longer than the resulting  $L_3$  (or  $L_2$ ) vacancies. Thus the subsequent  $L_3$ - (or  $L_2$ -) Auger transitions are shifted, usually downward, in energy with respect to the normal  $L_3$ - or  $L_2$ -Auger line, owing to the increases in binding energies of the remaining M, N... orbitals involved in the Auger transition because of the reduced screening of nuclear charge due to the spectator outer-orbital vacancy. Since there is a spectrum of such CK-induced outer vacancies, the result is a multitude of shifts in binding energies and an unresolved broad complex of satellite Auger lines.

An energy shift of -56 eV, Fig. 4(a), is observed between the main  $L_3$ - $M_4M_5$  Auger line (arising from primary  $L_3$  vacancies in internal conversion) and the centroid of the broad satellite in Am. This shift compares favorably to the shift of -61 eV calculated by Shirley.<sup>18</sup>

The shape and splitting of the SV-main line complex is distinguishable from that of imperfectly resolved intermediate coupling (IC) multiplets (Sec. VII). For example, the splitting of the main IC components of  $L_3$ - $M_4M_5$  in Am is only ~20 eV [nonrelativistically for Fm (cf. Sec. VII) and undoubtedly also for Am] and the lowest energy IC components  ${}^{3}P_1$  plus  ${}^{1}G_4$  have approximately five times the intensity of the highest  ${}^{1}D_2$  component, compared to the observed SV splitting of 56 eV and the (SV to main line) intensity ratio of 1.5. Presumably, each (unresolved) IC component of an  $L_2$  or  $L_3$  line will have an associated SV satellite complex.

On the reasonable assumption that relative Auger transition probabilities within an  $L_i$ -MM band should be only little affected by the presence of spectator  $M, N, \ldots$  vacancies, the ratio of SV satellite to main line intensity should be approximately constant within the  $L_i$  band, as is ob-



FIG. 1. L-shell Auger and internal conversion lines in <sup>239</sup>Pu. Labels *i*-*jk* denote  $L_i$ - $M_jM_k$  Auger lines; *i*-*jPkQ* denote  $L_i$ - $P_jQ_k$  Auger lines. Heavy vertical bars show theoretical positions and relative intensities of intermediate coupling components of Auger lines. SAT denotes the location of reduced energy "spectator vacancy" satellite peaks of strong  $L_3$  and  $L_2$ Auger lines; see text Sec. IV.



**TABLE I.** Ratio of SV satellite to main L-Auger line intensi-ties.

| Isotope           | Auger<br>transitions | Ratio           | Average         | Theory <sup>a</sup> |
|-------------------|----------------------|-----------------|-----------------|---------------------|
| <sup>254</sup> Fm | $L_3M_4M_5$          | 0.22±0.04       |                 |                     |
|                   |                      |                 | $0.24 \pm 0.04$ | 0.22                |
|                   | $L_3M_5M_5$          | $0.30 \pm 0.15$ |                 |                     |
| <sup>250</sup> Cf | $L_3M_4M_5$          | $0.68 \pm 0.15$ |                 |                     |
|                   |                      |                 | $0.84 \pm 0.12$ | 0.835               |
|                   | $L_{3}M_{5}M_{5}$    | $1.0 \pm 0.2$   |                 |                     |
| <sup>241</sup> Am | $L_3M_4M_5$          | $1.50 \pm 0.15$ |                 |                     |
|                   |                      |                 | $1.67 \pm 0.12$ | 1.67                |
|                   | $L_3M_5M_5$          | $1.85 \pm 0.18$ |                 |                     |
|                   | $L_2M_4M_4$          | $0.29 \pm 0.05$ |                 |                     |
|                   |                      |                 | $0.23 \pm 0.05$ | 0.11                |
|                   | $L_2M_4M_5$          | $0.18 \pm 0.04$ |                 |                     |
|                   | $L_1M_4M_5$          | 0               |                 |                     |

<sup>a</sup>Reference 19(a).

served here (Table I), but see later discussion.

However, the ratio of satellite to main L-Auger line intensity for a given element should be largest for  $L_3$  and less for  $L_2$  due to the larger CK production of  $L_3$  vacancies than L<sub>2</sub> vacancies, i.e., the CK coefficients  $f_{13} + f_{23} > f_{12}$  for heavy elements; of course there can be no SV satellites for  $L_1$ -Auger lines. The  $L_3$ ,  $L_2$ , and  $L_1$ Augers plus satellites of Fig. 4(a) are consistent with those expectations and so the pure  $L_1$  line can serve as a model in unfolding the main  $L_2$  and  $L_3$  lines from the satellites in Am and Cf. Indeed, the relative SV-satellite to main line-intensity ratio for  $L_3$  and  $L_2$  Augers (Table I) can yield, together with values for the primary  $L_1:L_2:L_3$  vacancy ratios (Table II) independent values for the CK  $f_{ii}$ coefficients (Table III). The  $f_{13}$  and  $f_{23}$  coefficients are seen to be in fair agreement with the calculations of Chen et al.,  $^{19(a)}$  the data evaluation of Krause,  $^{19(b)}$  and the mea-sured values for Cf,  $^{20}$  but the (SV satellite to  $L_2M_4M_{4,5}$ ) intensity ratios in  $^{241}$ Am are much too large to be consistent with the evaluated or theoretical  $f_{12}$  values. This is quite unaccountable, especially in view of the fact that  $L_1$ - $L_2$  CK transitions in Am only become energetically possible at the  $N_5$  subshell and SV's in  $N_{6,7}$  and higher shells should generate only small satellite shifts.

Table II gives the  $L_i$  primary vacancy distribution obtained from the summed intensity ratios of  $I_{L_1}/I_{L_2}/I_{L_3}$ internal conversion lines observed in the full electron spectrum of each decay<sup>1-4</sup> plus the  $L_1$ ,  $L_2$ , and  $L_3$  infeeds from K Augers and K x rays (from K internal conversion

 
 TABLE II.
 L-subshell vacancy population before Coster-Kronig transitions (%).

|                                            | $L_1$ | $L_2$ | <i>L</i> <sub>3</sub> |
|--------------------------------------------|-------|-------|-----------------------|
| $^{254m}$ Es ( $\beta^{-}$ ) $^{254}$ Fm   | 2.5   | 54.7  | 42.8                  |
| <sup>250</sup> Es (e.c.) <sup>250</sup> Cf | 34    | 34    | 32                    |
| <sup>241</sup> Cm (e.c.) <sup>241</sup> Am | 55    | 23    | 22                    |
| <sup>239</sup> Am (e.c.) <sup>239</sup> Pu | 23    | 35    | 42                    |







FIG. 4. Sample of strong L Auger lines from spectra of (a)  $^{241}$ Am, (b)  $^{250}$ Cf, and (c)  $^{254}$ Fm showing (variation in) relative intensities of spectator vacancy satellites (lower energy, incompletely resolved components) of  $L_3$  (and  $L_2$ ) Auger peaks.  $L_1$  Auger peaks, as expected, show no such satellites. Note the very narrow relative peak width of the  $M_3$ -15.2 keV conversion line near the  $L_3$ - $M_5M_5$  Auger line in  $^{241}$ Am.

and K-electron capture), and from nuclear  $L_i$ -shell electron capture, as applicable. The relative intensities of SV satellite to main  $L_3$ -Auger lines are seen to vary from high, Am, to very low, Fm [Figs. 4(a)-4(c) and Table I] consistent with the variations in primary  $L_1$  vacancy fractions, since  $L_1$  is the principal CK source for  $L_3$  vacancies in Am and Cf. There is weak evidence in the three  $L_3$ - $M_4M_5$  versus  $L_3$ - $M_5M_5$  (SV to main line) ratios in Table I that the presence of spectator vacancies may slightly influence relative Auger probabilities within a band.

### **V. IDENTIFICATION OF LINES**

When an experimental Auger spectrum is to be compared with theory for energy and intensity the first problem is identification of peaks in these rich and complex spectra without using the theory to be tested. This requires some prior knowledge of energies and intensities. Fortunately, the  $L_3$ -MM spectra have some of the most intense lines and are generally free from interference by other lines. Also, comparison of several spectra of nearly the same atomic number is facilitated by the smooth regu-

TABLE III. Coster-Kronig coefficients

|          | This expt. <sup>a</sup> | <sub>98</sub> Cf <sup>b</sup> | Theory <sup>c</sup> | Data <sup>d</sup><br>evaluation |
|----------|-------------------------|-------------------------------|---------------------|---------------------------------|
| $f_{12}$ | 0.096±0.02              | 0.068                         | $0.045 \pm 0.003$   | 0.04                            |
| $f_{13}$ | $0.60 \pm 0.05$         | 0.594                         | $0.62 \pm 0.02$     | 0.54                            |
| $f_{23}$ | $0.16 \pm 0.03$         | 0.123                         | $0.20 {\pm} 0.02$   | 0.198                           |

<sup>a</sup>Average for Z = 95 - 100, computed from Tables I and II, ignoring Z dependence. <sup>b</sup>Reference 20.

<sup>c</sup>Reference 19(a); average of Z = 95,98,100 values.

<sup>d</sup>Reference 19(b); average of Z = 95,98,100 values.



FIG. 5. L-shell Auger and internal conversion lines in <sup>241</sup> Am; see caption of Fig. 1.

lar Z-wise progression of electron binding and hence of L-Auger energies so that signature patterns of line group spacings come to be recognizable and transferable between spectra with only small Z-scaling adjustments. Resolution of a spectral region complicated by the accidental intrusion of intense internal conversion lines is greatly aided by comparison with the same but uncontaminated region of a nearby element. That each element's spectrum has widely different relative numbers of primary  $L_1$ ,  $L_2$ , and  $L_3$  vacancies enables one to sort out lines in the region where  $L_2$ -MM,  $L_1$ -MM, and  $L_3$ -MN overlap by Z-wise comparison.  $\begin{bmatrix} 210\\82}\text{Pb} \rightarrow \overset{210}{83}\text{Bi}$  is an outstanding example where the intense  $L_1$  primary vacancies  $V_{L_1}:V_{L_2}:V_{L_3}$  $\approx 90:9:1$  (Ref. 16) lead to certain identifications of the usually inaccessible  $L_1$ -MM Auger structure.]

One starts with the  $\Delta Z = 1$  (Ref. 21) approximation for line energies (i.e.,  $E = [B_{L_i}(Z) - B_{M_j}(Z) - B_{M_k}(Z + \Delta Z)]$ , where the binding-energy terms are evaluated at Z or interpolated at  $(Z + \Delta Z)$ ) and then, based on the above experiences, derives an expression for the approximate variation of  $\Delta Z$  ( $\Delta Z \leq 1$ ) across the band from  $L_i$ - $M_1M_1$  to  $L_i$ - $M_5M_5$ .<sup>16</sup> By applying these rules for L-MM and L-NN, and  $\Delta Z \sim 1$  for L-MN, L-MO, etc., identification becomes fairly positive and one can gradually develop some empirical rules identifying strong, medium, and weak lines where they are clearly resolved in some spectra, so that when lines cannot be resolved in another spectrum one has a good idea which is the most important. These empirical rules have been summarized by Haynes.<sup>22</sup>

The four elements studied here had primary  $L_1:L_2:L_3$ vacancy ratios varying widely (Table II). For example, concerning the use made of these distributions in identifying lines, the low 3% initial  $L_1$  vacancy population in Fm simplifies the spectrum in the region of line 30a $(L_2-M_2M_4, L_3-M_5N_3)$ , enabling their more confident identification and the transference of their pattern to the Pu spectrum with its intense  $L_1M_1M_3$  line intruding (lines 23 and 24). Another example is the use of the different relative intensities of spectator vacancy satellites to characterize  $L_3, L_2$ , and  $L_1$  Augers in Am [Fig. 4(a)].

By using the empirical rules for energy and intensity discussed above together with the comparison of the four spectra, unequivocal identification of the important lines becomes possible. Comparison of the four spectra, e.g., between potentiometer settings (proportional to electron momentum) 2.23 and 2.65 where the  $L_1$ -,  $L_2$ -,  $L_3$ -Auger energy overlap is the worst, shows that one can easily follow most transitions from one spectrum to another. Finally, with transitions located in energy and intensity, it becomes possible to make detailed comparisons with theory for energy and intensity without having used these theories for the identification of experimental lines.

### VI. DETERMINATION OF EXPERIMENTAL ENERGIES AND INTENSITIES

Stripping Auger spectra is not an easy task. The basic instrumental line shape is constant throughout the spectrum with a width proportional to momentum. However, the single natural-level width of internal conversion lines and the various three-level width broadenings of L-Auger

lines add measurably to the instrumental width and complicate this simple dependence. Moreover, the sources are not infinitely thin for these energies, leading to some energy degradations from deep atoms which results in further increases in line widths and especially in very long line tails which, increasingly at lower energy, distort still lower-lying lines.

Furthermore, most j-j designated lines are composed of several incompletely resolved components of different total angular momenta J which arise from the actually prevailing intermediate coupling. In addition,  $L_2$  and  $L_3$ lines have spectator vacancy satellites which themselves have more components than the main line and which are incompletely separated from the main line.

The Fm spectrum suffers further severe complications arising from the variety of nuclear decays in the source. The main sequential decays were

$${}^{54m}_{99}\text{Es} \xrightarrow{39 \text{ h}}_{B^-} {}^{254}_{100}\text{Fm} \xrightarrow{3.2 \text{ h}}_{\alpha} {}^{250}_{98}\text{Cf},$$

2

so that the 3 h  $\alpha$  decay quickly grew to equilibrium in the source, yielding an intense Cf *L*-Auger spectrum owing to strong <sup>250</sup>Cf *L*-shell internal conversions. The spectrum thus contains complete Fm and Cf *L* Augers plus numerous Fm and Cf internal conversion lines in the range.

Both the Cf conversion and Auger lines strongly exhibit an extended high-energy shoulder with sharply defined upper cutoff and a broad low-energy tail (see Fig. 2, line 12). These features are more clearly visible on higherenergy lines above the dense L-Auger region. These distortions following  $\alpha$  decay originate from electron emission from the moving recoil ions in the spectrometer vacuum within a few millimeters of the source spot (Doppler shifts) in that half of the Fm decays in which the  $\alpha$  particle is emitted backwards into the source support foil. In the other half of the decays the recoil is stopped in the backing foil within  $10^{-16}$  sec, much less than the lifetime of the E2 nuclear decays that produce internal conversion electrons and then L-Auger transitions; both of these produce the central-peak features without Doppler broadening, but with extended tailing from deep recoils.

Yet further complexity is due to the presence in the isotope-separator-deposited source of isobaric  $^{254}_{99}$ Es ground state which decays slowly:

$${}^{254}_{99}\text{Es} \xrightarrow{\alpha}{}^{250}_{97}\text{Bk} \xrightarrow{3 \text{ h}}{}^{250}_{98}\text{Cf} .$$

Thus one also sees weak internal conversion lines of  $^{250}$ Bk with Doppler broadening, although the *L*-Auger lines of Bk are undetectably weak, and also, in principle, one sees a small enhancement of Cf lines.

We present detailed analyses of the two spectra, Pu and Fm, with the most reliable statistics and lowest intensity of spectator vacancy satellites (primary  $L_1$  vacancies 23% and 2.5%, respectively). For Fm, strong conversion lines toward the upper end and middle of the spectrum give information on line tail shape and intensity as a function of energy. For Pu, conversion lines at the low-energy end of the spectrum show what the maximum tail effect is.

TABLE IV. L-Auger (and internal conversion) lines in  $^{239}$ Pu. Asterisks (\*) indicate those transitions which, according to the criteria of Haynes (Ref. 22) are expected to be the most important.

|                                                                        | Predic                                   | ted Ener   | g <i>y</i>    | 1     | Exp            | eriment | tald       |       | 1                 | T              | neoretical        | Intensity      | ,             |                | Ag     | reementh      |                |
|------------------------------------------------------------------------|------------------------------------------|------------|---------------|-------|----------------|---------|------------|-------|-------------------|----------------|-------------------|----------------|---------------|----------------|--------|---------------|----------------|
| Pu                                                                     | Energy<br>(Spread)                       |            | Inte          |       |                |         |            |       |                   |                | Mixedf            |                |               |                |        |               |                |
| (Auger/<br>Conversion)                                                 | (spread)<br>Larkins <sup>a</sup><br>(eV) | Unc.b      | Coup.         | Lined | Energy<br>(eV) | Unc.    | Int.       | Unc.  | Non-Rel.e<br>Z=90 | Line<br>Groups | NR,Z=90<br>R,Z=94 | Line<br>Groups | Re1.9<br>Z=94 | Line<br>Groups | Energy | Int.          | Qual.<br>Evid. |
| - 3 - M <sub>1</sub> M <sub>1</sub>                                    | 6095                                     | 3          |               |       |                |         | 0          | 0.005 | 0.006             |                | 0.006             |                | 0.004         |                | -      | R             | VW             |
| 7860 N <sub>1</sub>                                                    | 6297                                     | 3          |               | A     | 6297           | 2       | 0.470      | 0.02  |                   |                |                   |                |               |                |        |               |                |
| 7860 N <sub>2</sub>                                                    | 6476                                     | 5          |               | В     | 6473           | 2       | 0.330      | 0.02  |                   |                |                   |                |               |                |        |               |                |
| .3-M1M2                                                                | 6489-6514                                | 6          |               |       |                |         | 0          | 0.005 | 0.008             |                | 0.008             |                | 0.002         |                | -      | R             | VW             |
| 7860 N <sub>3</sub>                                                    | 6733                                     | 6          |               | С     | 6732           | 2       | 0.316      | 0.01  |                   |                |                   |                |               |                |        |               |                |
| -3-M2M2                                                                | 6861                                     | 7          |               |       |                |         | 0          | 0.005 | 0.003             |                | 0.003             |                | <<0.001       |                | -      | ALL           | VW             |
| 7860 N <sub>4</sub>                                                    | 7010                                     | 3          |               | C'    | 7014           | 7       | 0.010      | 0.005 |                   |                |                   |                |               |                |        |               |                |
| 7860 N <sub>5</sub>                                                    | 7058                                     | 3          |               | C"    | 7063           | 11      | 0.005      | 0.005 |                   |                |                   |                |               |                |        |               |                |
| <sup>3</sup> P <sub>1</sub>                                            | 7452                                     | 6          | 61%           |       | 7439           | 10 ]    |            |       |                   |                | 0.100             |                | 0.005         |                | -      |               |                |
| 3-M1M3 3P2                                                             | 7498                                     | 6          | 39 <b>%</b> } | 1     | 7500           | 15∫     | 0.19       | 0.05  | 0.108             |                | 0,108             |                | 0.205         |                | E      | ĸ             | M              |
| 7860 0 <sub>1</sub>                                                    | 7506                                     | 6          | J             |       | 7515           | 10      | 0.13       | 0.05  |                   |                |                   |                |               |                |        |               |                |
| 7860 0 <sub>2</sub>                                                    | 7573                                     | 6          |               | D     | 7567           | 3       | 0.097      | 0.02  |                   |                |                   |                |               |                |        |               |                |
| 1060 0                                                                 | 764.2                                    |            |               | -     | 76.20          | 2       | 0.006      | 0.02  |                   |                |                   |                |               |                |        |               |                |
| 7000 03                                                                | /043                                     | 2          |               | C     | 1039           | 2       | 0.090<br>] | 0.02  |                   |                |                   |                |               |                |        |               |                |
| 800 P1                                                                 | /810                                     | 2          |               |       | J              |         | 0.06       | 0.05  |                   |                |                   |                |               |                |        |               |                |
| /860 P2,3                                                              | 7820-7840                                | 4          |               | z     | ] 705.0        | -       | J          | 0.07  | 0 000             |                | 0.000             |                | 0.344         |                |        | NONE          |                |
| -3-W <sup>2</sup> W <sup>3</sup>                                       | /849-7861                                | <i>'</i> ) |               |       | LV850          | 9       | 0.29       | 0.05  | 0.233             |                | 0.233             |                | 0.344         |                | Ł      | R,B           | M              |
| . <sub>3</sub> -M <sub>1</sub> M4                                      | 8057-8070                                | 3          |               | 3     | 8050           | 24      | 0.011      | 0.005 | 0.018             |                | 0.018             |                | 0.034         |                | G      | NR,M          | W              |
| 3 <sup>-M</sup> 1 <sup>M</sup> 5                                       | 8248-8265                                | 3          |               | 4     | 8257           | 8       | 0.045      | 0.020 | 0.017             |                | 0.017             |                | 0.071         |                | G      | NUNE<br>R,B   | W              |
| .3-M2M4                                                                | 8428-8468                                | 5          |               | 5     | 8426           | 20      | 0.02       | 0.02  | 0.022             |                | 0.022             |                | 0.015         |                | G      | ALL           | VW             |
| -3-M2M5                                                                | 8634-8642                                | 5          |               | 6     | 8639           | 8       | 0.103      | 0.02  | 0.178             |                | 0.178             |                | 0.102         |                | Ε      | R             | S              |
| - 3 - M3 M3                                                            | 8814-8839                                | 7          |               | 7     | 8841           | 9       | 0.368      | 0.03  | 0.357             |                | 0.357             |                | 0.403         |                | G      | NR,M          | s              |
| .3-M3M4                                                                | 9423-9436                                | 5          |               | 8     | 9435           | 5       | 0.376      | 0.03  | 0.350             |                | 0.350             |                | 0.416         |                | F      | NR,M          | s              |
| <sup>3</sup> P <sub>1</sub> , <sup>3</sup> F <sub>3</sub>              | 9598-9611                                | 5          | 90%           |       |                | -       |            |       |                   |                | 0.505             |                |               |                | -      | •••           |                |
| <sup>-3-M3<sup>M</sup>5 <sup>1</sup>D<sub>2</sub>,<sup>3</sup>F4</sup> | <b>96</b> 35-9650                        | 5          | 10%           | y     | 9612           | 5       | 0.54/      | 0.04  | 0.586             |                | 0.586             |                | 0.524         |                | E      | ALL           | 2              |
| - 3 - Mu Mu                                                            | 9991-10022                               | 2          |               | 10    | 10005          | 14      | 0.038      | 0.02  | 0.052             |                | 0.052             |                | 0.053         |                | G      | ALL           | W              |
| <sup>3</sup> P1 <sup>1</sup> G4                                        | 10201-10202                              | 2          | 72%           |       | 10007          |         |            |       | (1                |                | 1 000)            |                | )             |                |        |               |                |
| -3-M4M5 1D23F3                                                         | 10209-10222                              | 2          | 28%           | 11    | 10207          | 4       | 1.000      | -     | 1.000             |                | 1.000             |                | 1.000         | 1 000          |        |               |                |
|                                                                        |                                          |            | J             |       |                |         |            |       | $\{ \}$           | 1.003          | }                 | 1,002          | ł             | 1.002          | G      | 510.          | <b>V</b> 5     |
| L <sub>2</sub> -M1 M1                                                  | 10304                                    | 3          |               |       |                |         |            |       | 0.003             |                | 0.002             |                | 0.002         |                | -      | ALL           | VW             |
| <sup>3</sup> F <sub>2</sub> , <sup>3</sup> F <sub>4</sub>              | 10402-10413                              | 2          | 95 <b>x</b>   |       |                |         |            |       |                   |                |                   |                |               |                |        |               |                |
| - 3 - M5 M5                                                            |                                          |            | }             | 12    | 10417          | 5       | 0.714      | 0.04  | 0.699             |                | 0.699             |                | 0.666         |                | G      | NR,M          | s              |
| <sup>3</sup> Р0                                                        | 10375                                    | 2          | 5x)           |       |                |         |            |       |                   |                |                   |                |               |                |        |               |                |
|                                                                        | 10511-10526                              | 5          |               |       |                |         | 0          | 0.01  | 0.002             |                | 0.002             |                | N             |                | -      | ALL           | VW             |
| 3-M1N2                                                                 | 10700-10702                              | 5          | )             |       |                |         | 0          | 0.01  | 0.002             |                | 0.002             |                | N)            |                |        |               |                |
| 3P0                                                                    | 10723                                    |            | 16%           |       |                |         |            |       |                   |                |                   |                |               |                |        |               |                |
| L <sub>2</sub> -M <sub>1</sub> M <sub>2</sub>                          |                                          | 6          | ł             | 13    | 10703          | 6       | 0.094      | 0.02  | 0.049 }           | 0.051          | 0.032 }           | 0.034          | 0.095         | 0.095          | G      | R             | s              |
| 1P1                                                                    | 10698                                    |            | 84%           |       |                |         |            |       | J                 |                | J                 |                | J             |                |        |               |                |
|                                                                        | 10901-10903                              | 7          |               |       |                |         | 0          | 0.01  | 0.002             |                | 0.002             |                | N             |                | -      | ALL           | VW             |
| -3-M1N3                                                                | 10957-10961                              | 6          |               | 14    | 10964          | 10      | 0.040      | 0.02  | 0.017             |                | 0.017             |                | 0.034         |                | Ε      | R             | W              |
| -2-M2M2*                                                               | 11070                                    | 7]         |               |       | 110            | -       |            | 0.00  | ∫0.061]           | 0.070          | ∫0.040 <b>)</b>   | 0.011          | ∫0.103]       | 0.100          | r      | 0             | c              |
| -3-M2N2                                                                | 11073-11088                              | ,}         |               | 15a   | 11066          | 9       | 0.107      | 0.02  | {0.001}           | 0.062          | <u></u> [0.001∫   | 0.041          | { N }         | • 0.103        | Ł      | к             | 2              |
| L <sub>1</sub> -M <sub>1</sub> N <sub>1</sub>                          | 11142                                    | 6          |               | 15b   | 11146          | 19      | 0.02       | 001   | 0.009             |                | 0.008             |                | 0.023         |                | E      | ALL<br>R,B    | W              |
| L M. N.                                                                | 11241-11242                              | зJ         |               |       |                |         |            |       | 0.003]            |                | 0.003]            |                | 0.004]        |                |        | -             |                |
| -3 ''1''4<br>La-MaNa                                                   | 11288-11289                              | 3          |               |       |                |         |            |       | 0,003             | 0.045          | 0.003             | 0,045          | 0.008         | 0.069          |        | R.B           | м              |
| -3 ''1''5                                                              | 11140 1100                               | Ţ,         |               |       | 11220          |         | . 0 . 007  | 0.00  |                   |                | 0.000             |                | 0.053         |                | c      | 0             |                |
| L <sub>3</sub> -M <sub>2</sub> N <sub>3</sub> *                        | 11340-11341                              | / J        |               | 16    | 11338          | 6       | 0.087      | 0.02  | 0.039             |                | 0.039             |                | 0.057         |                | 6      | ĸ             | M<br>          |
| L <sub>1</sub> -M <sub>1</sub> M <sub>2</sub>                          | 11536-11561                              | ז<br>_ ר   |               | 17    | 11548          | 12      | 0.059      | 0.02  | 0.022             |                | 0.022             |                | U.048         |                | G      | к             | м              |
| L <sub>3</sub> -M <sub>2</sub> N <sub>4</sub>                          | 11621-11624                              | 5          |               |       |                |         |            |       | 0.005             |                | 0.005             |                | 0.003         |                |        |               |                |
| L <sub>3</sub> -M <sub>1</sub> N <sub>6</sub>                          | 11649-11651                              | 3          |               |       |                |         |            |       | 0.004             |                | 0.004             |                | <0.005        |                |        |               |                |
| L <sub>3</sub> -M <sub>1</sub> N <sub>7</sub>                          | 11661-11663                              | 3          |               | 18    | 11659          | 9       | 0.055      | 0.02  | , }               | 0.049          | ر<br>ا            | 0.047          | 0,007         | 0.039          | G      | ALL<br>NR.M.B | м              |
| L <sub>3</sub> -M <sub>2</sub> N <sub>5</sub> *                        | 11670-11671                              | 5          |               |       |                |         |            |       | 0.033             |                | 0.033             |                | 0.016         |                |        |               |                |
| L <sub>2</sub> -M <sub>1</sub> M <sub>3</sub>                          | 11661-11707                              | 6 ]        |               |       |                |         |            |       | 0.007             |                | 0.005             |                | 0.008         |                |        |               |                |
| L <sub>3</sub> -M <sub>1</sub> 0 <sub>1</sub>                          | 11754                                    | 5]         |               |       |                |         |            |       | 0.001             |                | 0.001             |                | N ]           |                |        |               |                |
| L <sub>3</sub> -M <sub>1</sub> 0 <sub>2</sub>                          | 11824                                    | 6          |               |       |                |         |            |       | N                 |                | N                 |                | N             |                |        |               |                |
| L <sub>3</sub> -M <sub>3</sub> N <sub>1</sub> *                        | 11883-11887                              | 7          |               | 10    | 11001          | •       | 0 070      | 0.02  | 0.029             | 0.034          | 0.029             | 0.034          | 0.055         | 0.062          | F      | p             |                |
| L <sub>3</sub> -M <sub>1</sub> 0 <sub>3</sub>                          | 11905                                    | 3 ∫        |               | 19    | 11031          | У       | 0.078      | 0.02  | 0.004             | 0.034          | 0.004             | 0.034          | 0.007         | 0.002          | E      | ĸ             | n              |
|                                                                        |                                          | -          |               |       |                |         |            |       | -                 |                |                   |                |               |                |        |               |                |

|                                                 | Predict                                            | ed Ener      | g <i>y</i>           |       | Expe           | eriment | ald   |       |                               | The            | eoretical                   | Intensity      |                |                | Ag             | reementh       |                |
|-------------------------------------------------|----------------------------------------------------|--------------|----------------------|-------|----------------|---------|-------|-------|-------------------------------|----------------|-----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Pu<br>Transition<br>(Auger/<br>Conversion)      | Energy<br>(Spread)<br>Larkins <sup>a</sup><br>(eV) | Unc.b        | Intm.<br>Coup.<br>gc | Lined | Energy<br>(eV) | Unc.    | Int.  | Unc.  | Non-Rel. <sup>e</sup><br>Z=90 | Line<br>Groups | Mixedf<br>NR,Z=90<br>R,Z=94 | Line<br>Groups | Re1.9<br>Z=94  | Line<br>Groups | Energy         | Int.           | Qual.<br>Evid. |
| L <sub>1</sub> -M <sub>2</sub> M <sub>2</sub>   | 11908                                              | 9]           |                      |       |                |         |       |       | N                             |                | N                           |                | N              |                |                |                |                |
| L <sub>3</sub> -M <sub>1</sub> 0 <sub>4</sub>   | 12008                                              | 6            |                      |       |                |         |       |       | 0.001                         |                | 0.001                       |                | N              |                |                |                |                |
| L <sub>3</sub> -M <sub>1</sub> 0 <sub>5</sub>   | 12018                                              | 6            |                      |       |                |         |       |       | 0.001                         |                | 0.001<br>ך                  |                | 0.002          |                |                |                |                |
| L <sub>3</sub> -M <sub>2</sub> N <sub>6</sub>   | 12029-12035                                        | 6            |                      |       |                |         |       |       | 0.006                         |                | 0.006                       |                | <0.004         |                |                |                |                |
| L <sub>3</sub> -M <sub>2</sub> N <sub>7</sub>   | 12043-12044                                        | 6            |                      | ••    | 10000          |         | 0.041 | 0.025 | J                             | 0.070          | J                           | 0.205          | 0.008          | 0 211          | F              | P              | ç              |
| L <sub>2</sub> -M <sub>2</sub> M <sub>3</sub> * | 12058-12070                                        |              |                      | 20    | 12063          | ь       | 0.341 | 0.035 | 0.214                         | 0.278          | 0.141                       | 0.205          | 0.082          | . 0.311        |                | n              | 5              |
| L <sub>3</sub> -m <sub>3</sub> n <sub>2</sub> * | 12065-12066                                        | / J<br>7 ]   |                      |       |                |         |       |       | 0.050 J                       |                | 0.050 <u>-</u>              |                | N)             |                |                |                |                |
| La-MaQa                                         | 12205                                              | 7            |                      |       |                |         |       |       | N                             |                | N                           |                | N              |                |                |                |                |
| L <sub>2</sub> -M <sub>1</sub> M <sub>2</sub>   | 12266-12279                                        | 3            |                      |       |                |         |       |       | 0.003                         |                | 0.002                       |                | 0.019          |                |                |                |                |
| 2 1 4                                           |                                                    | }            |                      | 21    | 12240          | 22      | 0.027 | 0.02  | }                             | 0.012          | 0.000                       | 0.011          | 0.010          | • 0.032        | F              | ALL<br>R,B     | VW             |
| L <sub>3</sub> -M <sub>2</sub> O <sub>3</sub> * | 12286                                              | 7]           |                      | 22    | 12206          | 10      | 0 225 | 0.02  | 0.009                         |                | 0.009                       | )              | 0.013          |                | 6              | NONE           | s              |
| L <sub>3</sub> -M <sub>3</sub> N <sub>3</sub>   | 12309-12331                                        | <i>'</i> ``  |                      | 22    | 12306          | 10      | 0.235 | 0.02  | 0.14/                         |                | 0.14/                       | I              | ر              |                | G              | R,B            | 5              |
| L <sub>3</sub> -M <sub>2</sub> 0 <sub>4</sub>   | 12389                                              | 7            |                      |       |                |         |       |       | N                             |                | N                           |                | N              |                |                |                |                |
| L <sub>3</sub> -M <sub>2</sub> 0 <sub>5</sub>   | 12399                                              | 5            |                      |       |                |         |       |       | 0.007                         |                | 0.007                       |                | 0.003          |                |                |                |                |
| L <sub>2</sub> -M <sub>1</sub> M <sub>5</sub>   | 1245/-124/4                                        | 3            |                      |       |                |         |       |       | 0.014                         |                | 0.009                       |                | 0.008          |                |                |                |                |
| L <sub>3</sub> -M <sub>4</sub> N <sub>1</sub>   | 12481-12483                                        | 1            |                      |       |                | _       |       |       | 0.004                         |                | 0.004                       |                | 0.000          |                |                | 455            | ç              |
| 18429 M <sub>1</sub>                            | 12496                                              | 8 }          |                      | 23F   | 12501          | 5       | 0.210 | 0.02  | ~0.13                         | [0.210]        | ~0.14                       | [0.210]        | ~0.13          | ,[0.510].      | Ł              | A33.           | 2              |
| L <sub>1</sub> -M <sub>1</sub> M <sub>3</sub> * | 12499-12545                                        | ر <i>ز</i>   |                      | J     |                |         |       |       | ( 0.051 )                     | 1              | 0.045                       | )              | 0.098          |                |                |                |                |
| L <sub>3</sub> -M <sub>3</sub> N <sub>4</sub> * | 12603-12609                                        | 5            | 0.94                 |       |                |         |       |       | 0.001                         |                | 0.001                       |                | 0.030          |                |                |                |                |
| L <sub>2</sub> -M <sub>2</sub> M <sub>4</sub>   | 1203/                                              | 5            | 90 <b>x</b>          | 24    | 12636          | 10      | 0490  | 0.03  | 0.123                         | 0.344          | 0.080                       | 0.301          | 0.114          | 0.356          | Ε              | NONE<br>NR,R,B | s              |
| <sup>3</sup> P <sub>2</sub>                     | 12677                                              | 5            | 2%                   |       |                |         |       |       |                               |                |                             |                |                |                |                |                |                |
| L <sub>3</sub> -M <sub>3</sub> N <sub>5</sub> * | 12649-12656                                        | 5            |                      |       |                |         |       |       | 0.132                         |                | 0.132                       |                | 0.123          |                |                |                |                |
| L <sub>3</sub> -M <sub>4</sub> N <sub>2</sub>   | 11661-12664                                        | 4            |                      |       |                |         |       |       | 0.005                         |                | 0.005                       |                | 0.004          |                |                |                |                |
| L <sub>3</sub> -M <sub>5</sub> N <sub>1</sub>   | 12675-12678                                        | 4<br>[]      |                      | J     |                |         |       |       | (0.003)                       |                | 0.003                       | )              | 0.01/          | )              |                |                |                |
| L <sub>2</sub> -M <sub>2</sub> M <sub>5</sub> * | 12843-12851                                        | °            |                      | 25    | 12860          | 5       | 0.204 | 0.02  | {                             | 0.292          | 0.14/                       | 0.216          | 0.140          | [0.204]        | <sup>1</sup> F | ASS.           | s              |
| L <sub>3</sub> -M <sub>5</sub> N <sub>2</sub> * | 12857-12858                                        | 4 }          |                      |       |                |         |       |       | 0.054                         |                | 0.054                       |                | 0.022          |                |                |                |                |
| 18429 M <sub>2</sub>                            | 12882                                              | ر و          |                      |       |                |         |       |       | [0.017+]                      |                | 0.019*                      | ł              | 0.042          | )<br>1         |                |                |                |
| L <sub>1</sub> -M <sub>2</sub> M <sub>3</sub>   | 12896-12908                                        | 9 }          |                      | 26    | 12932          | 10      | 0,065 | 0.02  | 0.003                         | 0.044          | 0.002                       | 0.043          | 0.001          | 0.066          | F              | R              | M              |
| L <sub>3</sub> -M <sub>4</sub> N <sub>3</sub> * | 12918-12924                                        | 4 J<br>- 1   |                      |       |                |         |       |       | (0.041)                       |                | 0.041                       | )<br>J         | 0.005          | )<br>)         |                |                |                |
| L <sub>2</sub> -M <sub>3</sub> M <sub>3</sub>   | 13023-13048                                        | í.           |                      | 27    | 13024          | 15      | 0.055 | 0.02  | 0.000                         | 0.033          | )                           | 0.031          | 0.011          | 0.029          | E              | NR             | w              |
| L 3 - M3 N6 ~                                   | 13022-13019                                        | 6            |                      | 2/    | 13024          | 13      | 0.035 | 0.02  | }0.027                        |                | }0.027                      | }              | 0.014          | ]              |                |                |                |
| L,-M,M,*                                        | 13104-13117                                        | 6]           |                      |       |                |         |       |       | 0.045                         |                | 0.039                       | ĺ              | 0.044          |                |                |                |                |
| LM_N_*                                          | 13111-13118                                        | 5 }          |                      | 28    | 13120          | 6       | 0.150 | 0.02  | 0.108                         | 0.160          | 0.108                       | 0.154          | 0.0 <b>9</b> 2 | 0.150          | G              | ALL            | M              |
| L <sub>3</sub> -M <sub>3</sub> O <sub>1</sub>   | 13119                                              | , ]          |                      |       |                |         |       |       | 0.007                         |                | 0.007                       | J              | 0.014          | J              |                |                |                |
| L <sub>3</sub> -M <sub>3</sub> 0 <sub>2</sub> * | 13189                                              | 7]           |                      |       |                |         |       |       | 0.014                         | )              | 0.014                       | ]              | 0.020          | ]              |                |                |                |
| L 3 - M4 N4                                     | 13187-13209                                        | 2            |                      |       |                |         |       |       | 0,021                         |                | 0.021                       |                | 0.021          |                |                |                |                |
| L <sub>3</sub> -M <sub>4</sub> N <sub>5</sub> * | 13247-13254                                        | 2            |                      |       |                |         |       |       | 0.161                         |                | 0.161                       |                | 0.162          |                |                |                |                |
| L <sub>3</sub> -M <sub>3</sub> 0 <sub>3</sub> * | 13270                                              | 7 }          |                      | 29    | 13246          | 5       | 0.326 | 0.03  | 0.034                         | 0.297          | 0.034                       | 0.277          | 0.041          | 0.299          | E              | NONE<br>NR,R   | S              |
| L <sub>1</sub> -M <sub>1</sub> M <sub>5</sub> * | 13295-13312                                        | 6)           |                      |       |                |         |       |       | 0.067                         | J              | 0.047                       | J              | 0.055          | J              |                |                |                |
| L <sub>3</sub> -M <sub>3</sub> 0 <sub>4</sub> * | 13373                                              | 5]           |                      |       |                |         |       |       | 0.017                         | ]              | 0.017                       | ]              | 0.020          | ]              |                |                |                |
| I-MO*                                           | 13383                                              | 5            |                      |       |                |         |       |       | 0.028                         |                | 0.028                       |                | 0.025          |                |                |                |                |
| 23-1305                                         | 10000                                              | Ĩ            |                      |       |                | (       |       |       |                               |                |                             |                |                |                |                | NONE           | ç              |
| L <sub>3</sub> -M <sub>5</sub> N <sub>4</sub> * | 13395-13401                                        | 2            | •                    | 30    | 13388          | {-10    | 0.632 | 0.03  | 0.206                         | 0.517          | 0.206                       | 0.517          | 0.197          | 0.493          | E              | NR,M,B         | งีร            |
| L <sub>3</sub> -M <sub>5</sub> N <sub>5</sub> * | 13437-13454                                        | 2            |                      | 31    | 13449          | 10      |       |       | 0.265                         |                | 0.265                       |                | 0.247          |                |                |                |                |
| L <sub>1</sub> -M <sub>2</sub> M <sub>4</sub>   | 13475-13515                                        | , , ]        |                      |       |                |         |       |       | L0.001                        | J              | 0.001                       | J              | 0.004          | J              |                |                |                |
| L <sub>3</sub> -M <sub>4</sub> N <sub>6</sub>   | 13605-13620                                        | ) 3          |                      |       |                |         |       |       | }0.032                        |                | }0.032                      | 1              | 0.006          | 6              | -              |                | ÷              |
| L <sub>3</sub> -M <sub>4</sub> N <sub>7</sub> * | 13622-13628                                        | 3 3          |                      | 32    | 13632          | 6       | 0.154 | 0.02  | Ĩ                             | 0.204          |                             | 0.145          | 0.020          | 0.109          | E              | M              | 2              |
| L <sub>2</sub> -M <sub>3</sub> M <sub>4</sub> * | 13632-13645                                        | ן זי<br>ריין |                      |       |                |         |       |       | L 0.1/2                       | ע<br>ר         | 0.113                       | ,<br>I         | 0.083          | 1              |                |                |                |
| L <sub>1</sub> -M <sub>2</sub> M <sub>5</sub>   | 13681-13689                                        | , /          |                      |       |                |         |       |       | 0.020                         |                | 5.01/                       |                | 0.021          |                |                | ALI            |                |
| L <sub>3</sub> -M <sub>4</sub> 0 <sub>1</sub>   | 13717                                              | 4            | ł                    | 33a   | 13730          | 12      | 0.04  | 0.02  | 10.001                        | 0.022          | 0.001                       | 0.029          | 0.002          | 0.023          | Р              | M,B            | W              |
| L <sub>3</sub> -M <sub>4</sub> 0 <sub>2</sub>   | 13787                                              | 5            | l                    |       |                |         |       |       | 0.001                         | J              | 0.001                       | J              | N              | J              |                |                |                |

TABLE IV. (Continued).

=

|                                                                                                                                                   | Predict                                            | ted Energ   | 9 <i>3</i>                       |       | Expe           | eriment | ald   |       |                                                                   | Th               | neoretical                  | Intensity      |                         |                      | Ag     | reementh       |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------|----------------------------------|-------|----------------|---------|-------|-------|-------------------------------------------------------------------|------------------|-----------------------------|----------------|-------------------------|----------------------|--------|----------------|----------------|
| Pu<br>Transition<br>(Auger/<br>Conversion)                                                                                                        | Energy<br>(Spread)<br>Larkins <sup>a</sup><br>(eV) | Unc.b       | Intm.<br>Coup.<br>X <sup>C</sup> | Lined | Energy<br>(eV) | Unc.    | Int.  | Unc.  | Non-Rel.e<br>Z=90                                                 | Line<br>Groups   | Mixedf<br>NR,Z=90<br>R,Z=94 | Line<br>Groups | Re1.9<br>Z≍94           | Line<br>Groups       | Energy | Int.           | Qual.<br>Evid. |
| L <sub>2</sub> -M <sub>3</sub> M <sub>5</sub><br>L <sub>3</sub> -M <sub>5</sub> N <sub>6</sub> *                                                  | 13807-13859<br>13803-13811                         | 5<br>3 }    |                                  | 33ь   | 13807          | 6       | 0.146 | 0.02  | 0.022                                                             | 0.176            | 0.015                       | 0.169          | 0.013                   | [0.146] <sup>1</sup> | E      | R              | s              |
| L <sub>3</sub> -M <sub>5</sub> N <sub>7</sub><br>L <sub>3</sub> -M <sub>4</sub> O <sub>3</sub>                                                    | 13811-13827<br>13868                               | 3<br>3      |                                  |       |                |         |       |       | 0.010                                                             |                  | 0.010                       |                | 0.055<br>0.014          |                      |        |                |                |
| L <sub>1</sub> -M <sub>3</sub> M <sub>3</sub><br>18429 M <sub>3</sub><br>LMLO                                                                     | 13861-13886<br>13861<br>13912                      | 9           |                                  |       |                |         |       |       | 0.001<br>~0.001+                                                  |                  | 0.001<br>~0.001*<br>0.001   |                | 0.002<br>[0]            |                      |        |                |                |
| L <sub>3</sub> -M <sub>4</sub> O <sub>4</sub><br>L <sub>3</sub> -M <sub>5</sub> O <sub>2</sub>                                                    | 13971<br>13982                                     | 5 }         |                                  | 34    | 13951          | 20      | 0.043 | 0.02  | {0.004<br>{0.012}                                                 | 0.048            | 0.004<br>0.012              | 0.048          | 0.004                   | 0.039                | Ρ      | ALL            | W              |
| L <sub>3</sub> -M <sub>4</sub> 0 <sub>5</sub> *<br>L <sub>3</sub> -M <sub>5</sub> 0 <sub>3</sub> *                                                | 13981<br>14063                                     | 2 ]<br>3    |                                  | 35    | 14049          | 20      | 0.015 | 0.01  | 0.032<br>0.025                                                    |                  | 0.032<br>0.025              |                | 0.030<br>0.020          |                      | G      | ALL            | VW             |
| L <sub>3</sub> -M <sub>5</sub> 0 <sub>4</sub> *<br>L <sub>3</sub> -M <sub>5</sub> 0 <sub>5</sub> *                                                | 14166<br>14176                                     | ²<br>2      |                                  | 36    | 14159          | 6       | 0.102 | 0.02  | $\left\{\begin{smallmatrix}0.043\\0.055\end{smallmatrix}\right\}$ | 0.098            | 0.043<br>0.055              | 0.098          | 0.039<br>0.048          | 0.087                | G      | ALL            | M              |
| L <sub>2</sub> -M,M, <sup>1</sup> S <sub>0</sub> *<br><sup>3p</sup> 2*                                                                            | 14200<br>14231                                     | 2<br>2      | 12%<br>88%                       | 37    | 14232          | 10      | 0.120 | 0.02  | 0.146                                                             |                  | 0.096                       |                | 0.081                   |                      | E      | NONE<br>M,B    | S              |
| L <sub>2</sub> -M <sub>4</sub> M <sub>5</sub> *<br>18429 M <sub>4</sub>                                                                           | 14411-14431<br>14459                               | 2<br>8      |                                  | 38 a  | 14420          | 6       | 0.347 | 0.03  | {0.655<br>N <sup>+</sup> }                                        | 0.679            | 0.430<br>N <sup>+</sup>     | 0.451          | 0.301<br>N <sup>+</sup> | 0.307                | 6      | NONE           | VS             |
| L <sub>1</sub> -M <sub>3</sub> M4<br>L <sub>2</sub> -MeMe                                                                                         | 14470-14483<br>14584-14622                         | 7           |                                  |       |                |         |       |       | 0.024                                                             |                  | 0.021                       |                | 0.006                   |                      |        | к,в            |                |
| 2 5 5<br>L <sub>1</sub> -M <sub>3</sub> M <sub>5</sub><br>18429 M <sub>5</sub>                                                                    | 14645-14697<br>14654                               | 5 8         |                                  | 38b   | 14621          | 30      | 0.021 | 0.015 | 0.018<br>N <sup>+</sup>                                           | 0.049            | 0.017<br>N <sup>+</sup>     | 0.037          | 0.004<br>N <sup>+</sup> | 0.019                | F      | R              | VW             |
| L <sub>2</sub> -M <sub>1</sub> N <sub>1</sub><br>L <sub>3</sub> -N <sub>1</sub> N <sub>1</sub>                                                    | 14720-14735<br>14895                               | 5 ]<br>6 }  |                                  | 39    | 14895          | 31      | 0.029 | 0.015 | [0.001]<br>{ N}                                                   | 0.002            | 0.001 )<br>N                | 0.005          | N ]<br>N }              | 0.016                | G      | R              | VW             |
| K <sub>2</sub> -M <sub>1</sub> N <sub>2</sub> ★<br>L <sub>1</sub> -M <sub>4</sub> M <sub>4</sub><br>L <sub>2</sub> -N₂N₂                          | 14909-14911<br>15038-15069<br>15079-15091          | 5 )<br>5    |                                  |       |                |         |       |       | (0.007)                                                           |                  | 0.005<br>0.002<br>N         |                | 0.016<br>0.002<br>N     |                      |        |                |                |
| L <sub>2</sub> -M <sub>2</sub> N <sub>1</sub> *                                                                                                   | 15110-15112<br>15166-15170                         | 7 }         |                                  | 40    | 15112          | 15      | 0.053 | 0.015 | 0.013                                                             | 0.017            | 0.009                       | 0.012          | 0.026                   | 0.030                | E      | NONE<br>R,B    | M              |
| L <sub>3</sub> -N <sub>2</sub> N <sub>2</sub><br>L <sub>1</sub> -M <sub>4</sub> M <sub>5</sub> *                                                  | 15252<br>15249-15269                               | 6<br>5 }    |                                  | 41    | 15258          | 10      | 0.144 | 0.02  | { N<br>{ 0.095 }                                                  | 0.120            | N<br>0.083                  | 0.100          | N<br>0.069              | 0.115                | G      | NONE<br>NR.R.B | S              |
| L <sub>2</sub> -M <sub>2</sub> N <sub>2</sub> *                                                                                                   | 15282-15297<br>15328-15350                         | 7 J         |                                  | 42    | 15351          | 20      | 0.027 | 0.015 | 0.025                                                             |                  | 0.017                       |                | 0.046                   |                      | G      | NONE           | VW             |
| L <sub>1</sub> -M <sub>5</sub> M <sub>5</sub>                                                                                                     | 15422-15460<br>15450-15451                         | 5<br>3      |                                  |       |                |         |       |       | 0.028                                                             |                  | 0.024                       |                | 0.019                   |                      |        | <b>K</b> ,0    |                |
| L <sub>2</sub> -M <sub>1</sub> N <sub>5</sub><br>L <sub>3</sub> -N <sub>2</sub> N <sub>3</sub> *                                                  | 15497-15498<br>15513-15519                         | 3<br>6      |                                  |       |                |         |       |       | 0.001<br>0.008                                                    |                  | 0.001<br>0.008              |                | N<br>0.014              |                      |        |                |                |
| L <sub>2</sub> -M <sub>2</sub> N <sub>3</sub> *<br>L <sub>1</sub> -M <sub>1</sub> N <sub>1</sub> *                                                | 15549-15550<br>15558-15573                         | 7 }         |                                  | 43    | 15563          | 10      | 0.123 | 0.02  | 0.053                                                             | • 0.0 <b>9</b> 6 | 0.034                       | 0.071          | 0.056<br>0.011          | > 0.103              | G      | R              | S              |
| L <sub>3</sub> -N <sub>1</sub> N <sub>5</sub>                                                                                                     | 15685-15693                                        | 4           |                                  |       |                |         |       |       |                                                                   |                  | 0.001                       |                | N<br>0.012              |                      |        |                |                |
| L <sub>3</sub> -N <sub>3</sub> N <sub>3</sub> *<br>L <sub>3</sub> -N <sub>2</sub> N <sub>4</sub>                                                  | 15764-15775<br>15787-15807                         | 6           |                                  | 44 a  | 15815          | 15      | 0.07  | 0.02  | 0.013                                                             | • 0.058          | 0.000                       | 0.047          | 0.012<br>0.018<br>N     | 0.062                | G      | NR,R           | м              |
| L <sub>2</sub> -M <sub>2</sub> N <sub>4</sub> *<br>L <sub>3</sub> -N <sub>2</sub> N <sub>5</sub> *                                                | 15830-15833<br>15839-15844                         | 5           |                                  |       |                |         |       |       | 0.029                                                             |                  | 0.019                       |                | 0.028<br>0.004          |                      |        |                |                |
| L <sub>2</sub> -M <sub>1</sub> N <sub>6</sub><br>L <sub>2</sub> -M <sub>1</sub> N <sub>7</sub><br>L <sub>2</sub> -M <sub>2</sub> N <sub>5</sub> * | 15858-15860<br>15870-15872<br>15879-15880          | 3<br>3<br>5 |                                  | 44b   | 15874          | 15      | 0.054 | 0.015 | 0.002<br>0.054                                                    | 0.056            | }0.001<br>0.035             | 0.036          | N<br>N<br>0.035         | <b>0.035</b>         | E      | NR             | м              |

| TABLE IV. (Contin |
|-------------------|
|-------------------|

=

|                                                 | Predict                                            | ed Ener | gу                   |       | Exp            | eriment | al q    |       | Theoretical Intensity |                |                             |                |               |                | Agreementh |      |  |
|-------------------------------------------------|----------------------------------------------------|---------|----------------------|-------|----------------|---------|---------|-------|-----------------------|----------------|-----------------------------|----------------|---------------|----------------|------------|------|--|
| Pu<br>Transition<br>(Auger/<br>Conversion)      | Energy<br>(Spread)<br>Larkins <sup>a</sup><br>(eV) | Unc.b   | Intm.<br>Coup.<br>%C | Lined | Energy<br>(eV) | Unc.    | Int.    | Unc.  | Non-Rel.e<br>Z=90     | Line<br>Groups | Mixedf<br>NR,Z=90<br>R,Z=94 | Line<br>Groups | Re1.9<br>Z=94 | Line<br>Groups | Energy     | Int. |  |
|                                                 |                                                    |         |                      |       |                |         |         |       |                       |                |                             |                |               |                |            |      |  |
| L <sub>1</sub> -M <sub>2</sub> N <sub>1</sub>   | 15948-15950                                        | 8]      |                      |       |                |         |         |       | 0.005                 |                | 0.003                       |                | 0.008         |                |            |      |  |
| L <sub>2</sub> -M <sub>1</sub> 0 <sub>1</sub>   | 15963                                              | 5       |                      |       |                |         |         |       | N                     |                | N                           |                | N             |                |            |      |  |
| L <sub>1</sub> -M <sub>1</sub> N <sub>3</sub> * | 16004-16008                                        | 6       |                      |       |                |         |         |       | 0.013                 |                | 0.012                       |                | 0.017         |                |            |      |  |
| L <sub>2</sub> -M <sub>1</sub> 0 <sub>2</sub>   | 16033                                              | 6       |                      |       |                |         |         |       | 0.002                 |                | 0.001                       |                | 0.004         |                |            |      |  |
| L <sub>3</sub> -N <sub>1</sub> N <sub>6</sub>   | 16022-16027                                        | 5       |                      |       |                |         |         |       | Bo.001                |                | }0.001                      |                | N             |                |            |      |  |
| L <sub>3</sub> -N <sub>1</sub> N <sub>7</sub>   | 16036-16039                                        | 5       |                      | 45    | 16051          | 20      | 0.084   | 0.02  |                       | 0.055          | j                           | 0.051          | N             | 0.069          | G          | R    |  |
| L <sub>3</sub> -N <sub>3</sub> N <sub>4</sub> * | 16051-16057                                        | 4       |                      |       |                |         |         |       | 0.011                 |                | 0.011                       |                | 0.016         |                |            |      |  |
| L <sub>2</sub> -M <sub>3</sub> N <sub>1</sub>   | 16092-16096                                        | 7       |                      |       |                |         |         |       | 0.002                 |                | 0.001                       |                | 0.002         |                |            |      |  |
| L <sub>3</sub> -N <sub>3</sub> N <sub>5</sub> * | 16090-16116                                        | 4       |                      |       |                |         |         |       | 0.021                 |                | 0.021                       |                | 0.022         |                |            |      |  |
| L <sub>2</sub> -M <sub>1</sub> 0 <sub>3</sub>   | 16114                                              | 3       |                      |       |                |         |         |       | N                     |                | N                           |                | N             |                |            |      |  |
| L <sub>3</sub> -N <sub>1</sub> 0 <sub>1</sub>   | 16123-16129                                        | 6       |                      |       |                |         |         |       | N                     |                | N                           |                | N             |                |            |      |  |
| L <sub>1</sub> -M <sub>2</sub> N <sub>2</sub>   | 16120-16135                                        | ر و     |                      |       |                |         |         |       | l n J                 |                | NJ                          |                | N             |                |            |      |  |
| I -N 0                                          | 16196-16107                                        | ٦,      |                      |       |                |         |         |       | ( N )                 |                | ⊾ ໄ                         |                | N             |                |            |      |  |
| -3 - 1 - N N                                    | 16200 16200                                        | ۲<br>۲  |                      |       |                |         |         |       | "                     |                |                             |                | 0 001         |                |            |      |  |
| -3-"2"6                                         | 16214-16216                                        | 5       |                      |       |                |         |         |       | 0.001                 |                | 0.001                       |                | 0 001         |                |            |      |  |
| -3-"2"7                                         | 16217                                              | e l     |                      |       |                |         |         |       |                       |                | N                           |                | 0.001<br>N    |                |            |      |  |
| L <sub>2</sub> -M <sub>1</sub> 0 <sub>4</sub>   | 16227                                              | 2       |                      |       |                |         |         |       |                       |                |                             |                | N             |                |            |      |  |
| <sup>2</sup> 2 <sup>-m</sup> 1 <sup>0</sup> 5   | 16220 16244                                        | 2       |                      |       |                |         |         |       |                       |                | 、                           |                | 0.002         |                |            |      |  |
| 2 <sup>-m</sup> 2 <sup>m</sup> 6                | 16252 16252                                        | 2       |                      |       |                |         |         |       | 0.010                 |                | 0.007                       |                | 0.002         |                |            |      |  |
| L2 <sup>-m</sup> 2 <sup>n</sup> 7               | 16260 16271                                        | 2       |                      |       |                |         |         |       | 0.001                 |                | 0.001                       |                | 0.00L<br>N    |                |            |      |  |
| L3-N103*                                        | 10209-102/1                                        | °       |                      | 46    | 16294          | 15      | 0.07    | 0.03  | { 0.001               | ~0.057         | {                           | 0.044          | 'n            | 0.055          | G          | ALL  |  |
| L <sub>2</sub> -M <sub>3</sub> N <sub>2</sub> * | 16274-16275                                        | 7       |                      |       |                |         |         |       | 0.035                 |                | 0.024                       |                | 0.038         |                |            |      |  |
| L <sub>1</sub> -M <sub>1</sub> N <sub>4</sub> * | 16288-16289                                        | 6       |                      |       |                |         |         |       | 0.010                 |                | 0.009                       |                | 0.011         |                |            |      |  |
| L <sub>3</sub> -N <sub>2</sub> 0 <sub>1</sub>   | 16303-16304                                        | 6 )     |                      |       |                |         |         |       | (N)                   |                | NJ                          |                | N             |                |            |      |  |
| L 3 - N4 N4                                     | 16324-16336                                        | 2]      |                      |       |                |         |         |       | 0.002                 |                | 0.002                       |                | N             |                |            |      |  |
| L <sub>1</sub> -M <sub>1</sub> N <sub>5</sub> * | 16335-16336                                        | 6       |                      |       |                |         |         |       | 0.016                 |                | 0.014                       |                | 0.013         |                |            |      |  |
| L <sub>2</sub> -M <sub>2</sub> 0 <sub>1</sub>   | 16344                                              | 7       |                      |       |                |         |         |       | 0.003                 |                | 0.002                       |                | 0.007         |                |            |      |  |
| L3-N202                                         | 16369-16375                                        | 7       |                      |       |                |         |         |       | N                     |                | N                           |                | N             |                |            |      |  |
| L <sub>3</sub> -N <sub>1</sub> 04               | 16375                                              | 7       |                      |       |                |         |         |       | N                     |                | N                           |                | N             |                |            |      |  |
|                                                 |                                                    | ļ       |                      | 47a   | 16385          | 15      | 0.113   | 0.02  | łł                    | 0.082          | ļ                           | 0.077          |               | 0.089          | G          | NONE |  |
| L3-N4N5*                                        | 16378-16386                                        | 2       |                      |       |                |         |         |       | 0.031                 |                | 0.031                       |                | 0.034         |                |            | K,D  |  |
| L <sub>3</sub> -N <sub>1</sub> 0 <sub>5</sub>   | 16383                                              | 4       |                      |       |                |         |         |       | N                     |                | N                           |                | N             |                |            |      |  |
| L <sub>1</sub> -M <sub>2</sub> N <sub>3</sub>   | 16387-16388                                        | 8       |                      |       |                |         |         |       | 0.001                 |                | 0.001                       |                | N             |                |            |      |  |
| L2-M202                                         | 16414                                              | 7       |                      |       |                |         |         |       | 0.006                 |                | 0.004                       |                | 0.011         |                |            |      |  |
| L <sub>3</sub> -N <sub>5</sub> N <sub>5</sub> * | 16418-16432                                        | 2)      |                      |       |                |         |         |       | [0.023]               |                | 0.023                       |                | 0.024         | J              |            |      |  |
| L <sub>3</sub> -N <sub>2</sub> 0 <sub>3</sub>   | 16446-16447                                        | 5]      |                      |       |                |         |         |       | ( 0.002 )             |                | 0.002 ک                     |                | N             | )              |            |      |  |
| L <sub>3</sub> -N <sub>3</sub> N <sub>6</sub>   | 16458-16466                                        | 5 [     |                      | A7+   | 16474          | +20     | 0 026   | 0 015 | Long                  | 0 019          | 30.002                      | 0 013          | N             | 0.013          | e          | ALI  |  |
| L <sub>3</sub> -N <sub>3</sub> N <sub>7</sub>   | 16467-16478                                        | 5       |                      | 4/D   | 104/4          | 120     | 0.020   | 0.013 | J (                   | 0.018          | ٢٠.003                      | 0.015          | N             | 0.015          | 3          |      |  |
| L <sub>2</sub> -M <sub>2</sub> 0 <sub>3</sub> * | 16495                                              | 7 ]     |                      |       |                |         |         |       | [ 0.013 ]             |                | 0.008                       |                | 0.013         | J              |            |      |  |
| L <sub>2</sub> -M <sub>3</sub> N <sub>3</sub>   | 16518-16540                                        | 7]      |                      |       |                |         |         |       | 0.002                 |                | 0.002                       |                | 0.002         |                |            |      |  |
| L <sub>3</sub> -N <sub>2</sub> 0 <sub>4</sub> * | 16551-16552                                        | 7       |                      |       |                |         |         |       | N                     |                | N                           |                | N             |                |            |      |  |
| L <sub>3</sub> -N <sub>2</sub> 0 <sub>5</sub>   | 16559-16560                                        | 4       |                      |       |                |         |         |       | 0.001                 |                | 0.001                       |                | N             |                |            |      |  |
| L <sub>3</sub> -N <sub>3</sub> 0 <sub>1</sub>   | 16561-16563                                        | 6       |                      |       |                |         |         |       | 0.001                 |                | 0.001                       |                | N             |                |            |      |  |
| L <sub>2</sub> -M <sub>2</sub> 0 <sub>4</sub> * | 16598                                              | 6 }     |                      | 48    | 16576          | 20 ]    |         |       | 0.006                 |                | 0.004                       |                | 0.006         |                | G          |      |  |
| L <sub>2</sub> -M <sub>2</sub> 0 <sub>5</sub> * | 16608                                              | 6       |                      |       |                |         |         |       | 0.012                 |                | 0.008                       |                | 0.007         |                |            |      |  |
| L <sub>3</sub> -N <sub>3</sub> 0 <sub>2</sub>   | 16631-16632                                        | 7 ]     |                      |       |                |         |         |       | 0,002                 |                | 0.002                       |                | N             |                |            |      |  |
| L, -M.N.                                        | 16668-16671                                        | ر 1     |                      |       |                |         |         |       | N                     |                | N                           |                | 0.001         |                |            |      |  |
| 1 - 2-4<br>La-M N.                              | 16690-16692                                        | 4       |                      |       |                | ĺ       | • 0.059 | 0.02  | 1 0.001               | 0.041          | N                           | 0.033          | 0.005         | 0.035          |            | NR   |  |
| _2                                              | 16696-16698                                        | 6       |                      |       |                |         |         |       | 0.002                 |                | 0.001                       |                | 0.001         |                |            |      |  |
| LN_0_*                                          | 16699-16707                                        | 5       |                      |       |                |         |         |       | 0.006                 |                | 0.006                       |                | 0.008         |                |            |      |  |
| 3 3 3<br>L,-M,N-                                | 16708-16710                                        | 6       |                      | 49    | 16683          | 20      |         |       | 0.002                 |                | 0.002                       |                | 0.001         |                | G          |      |  |
| 1                                               |                                                    | -       |                      |       |                |         |         |       | 0.002                 |                | 0.002                       |                | 0.004         |                |            |      |  |
| LM.N.                                           | 16717-16718                                        | \$ 71   |                      |       |                |         |         |       | 1 01000               |                |                             |                |               |                |            |      |  |
| L <sub>1</sub> -M <sub>2</sub> N <sub>5</sub>   | 16717-16718                                        | 3       |                      |       |                |         |         |       |                       |                | )                           |                | N             |                |            |      |  |

## TABLE IV. (Continued).

| TABLE IV. | (Continued). |
|-----------|--------------|
|-----------|--------------|

|                                                          | Predict                                            | ed Energ | gy                   |       | Exp            | eriment | ald   |       | Theoretical Intensity         |                      |                             |                      |               |                |        | Agreement <sup>h</sup> |                |  |  |
|----------------------------------------------------------|----------------------------------------------------|----------|----------------------|-------|----------------|---------|-------|-------|-------------------------------|----------------------|-----------------------------|----------------------|---------------|----------------|--------|------------------------|----------------|--|--|
| Pu<br>Transition<br>(Auger/<br>Conversion)               | Energy<br>(Spread)<br>Larkins <sup>a</sup><br>(eV) | Unc.b    | Intm.<br>Coup.<br>%C | Lined | Energy<br>(eV) | Unc.    | Int.  | Unc.  | Non-Rel. <sup>e</sup><br>Z=90 | Line<br>Groups       | Mixedf<br>NR,Z=90<br>R,Z=94 | Line<br>Groups       | Re1.9<br>Z=94 | Line<br>Groups | Energy | Int.                   | Qual.<br>Evid. |  |  |
|                                                          |                                                    |          |                      |       |                |         |       |       |                               |                      |                             | _                    |               |                |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>5</sub> N <sub>6</sub> *          | 16785-16795                                        | 3        |                      |       |                |         |       |       | }0.016                        |                      | }0.016                      |                      | 0.007         |                |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>5</sub> N <sub>7</sub> *<br>LM.O. | 16791-16813<br>16801                               | 3        |                      | 50 a  | 16807          | 15      | 0.038 | 0.02  | 0.001                         | 0.053                | )<br>0.001                  | 0.043                | 0.007         | 0.033          | G      | ALL                    | VW             |  |  |
| <br>N O *                                                | 16809-16812                                        | 7        |                      |       |                |         |       |       | 0.001                         |                      | 0 001                       |                      | N             |                |        | к,в                    |                |  |  |
| L_3-11304                                                | 16816-16819                                        | 4        |                      |       |                |         |       |       | 0.003                         |                      | 0.003                       |                      | N             |                |        |                        |                |  |  |
| 3 3 5<br>L <sub>2</sub> -M <sub>3</sub> N <sub>4</sub> * | 16812-16818                                        | 5        |                      |       |                |         |       |       | 0.032                         |                      | 0.022                       |                      | 0.017         |                |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>4</sub> 0 <sub>1</sub>            | 16841-16842                                        | 4        |                      |       |                |         |       |       | ( N )                         |                      | N                           | ĺ                    | N             | )              |        |                        |                |  |  |
| L2-M3N5                                                  | 16858-16865                                        | 5        |                      |       |                |         |       |       | 0.004                         |                      | 0.003                       |                      | 0.003         |                |        |                        |                |  |  |
| L <sub>2</sub> -M <sub>4</sub> N <sub>2</sub> *          | 16870-16873                                        | 4 }      |                      | 50b   | 16870          | 6       | 0.119 | 0.02  | 0.022                         |                      | 0.015                       |                      | 0.019         |                |        |                        |                |  |  |
| 18429 N,*                                                | 16870                                              | 8        |                      |       |                |         |       |       | [0.089]                       | [0.119] <sup>i</sup> | [0.098]                     | [0.119] <sup>1</sup> | [0.093]       | [0.119]        | E      | ASS.                   | м              |  |  |
| L <sub>1</sub> -M <sub>1</sub> 0 <sub>2</sub>            | 16871                                              | 7        |                      |       |                |         |       |       | 0.001                         |                      | 0.001                       |                      | 0.004         |                |        |                        |                |  |  |
| La-M-N.                                                  | 16884-16887                                        | 4        |                      |       |                |         |       |       | 0.003                         |                      | 0.002                       |                      | N             |                |        |                        |                |  |  |
| 2 5 1<br>L <sub>2</sub> -N <sub>E</sub> O,               | 16889-16890                                        | 4        |                      |       |                |         |       |       | N                             |                      | N                           | ]                    | N             | }              |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>L</sub> O <sub>2</sub>            | 16910-16911                                        | 5)       |                      |       |                |         |       |       |                               | )                    | N                           | ĺ                    | N             | )              |        |                        |                |  |  |
| L,-M,N,*                                                 | 16930-16934                                        | 8        |                      |       |                |         |       |       | 0.008                         |                      | 0.007                       |                      | 0.012         |                |        |                        |                |  |  |
| L <sub>1</sub> -M <sub>1</sub> 0 <sub>3</sub>            | 16952                                              | 7 }      |                      | 50c   | 16955          | 20      | 0.022 | 0.015 | 0.003                         | 0.016                | 0.002                       | 0.014                | 0.003         | <0.019         | G      | AL.L                   | VW             |  |  |
| L <sub>3</sub> -N <sub>5</sub> 0 <sub>2</sub>            | 16958-16959                                        | 5        |                      |       |                |         |       |       | 0.003                         |                      | 0.003                       |                      | N             |                |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>4</sub> 0 <sub>3</sub> *          | 16983-16986                                        | 3 ]      |                      |       |                |         |       |       | 0.002                         | J                    | 0.002                       | J                    | <0.004        | J              |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>5</sub> 0 <sub>3</sub> *          | 17030-17033                                        | 3]       |                      |       |                |         |       |       | 0.005                         |                      | 0.005                       | ]                    | 0.005         |                |        |                        |                |  |  |
| 18429 N <sub>2</sub>                                     | 17049                                              | 9 }      |                      | 51    | 17051          | 12      | 0.033 | 0.02  | { 0                           | 0.049                | 0                           | 0.037                | [0.004]       | [0.033]        | F      |                        | w              |  |  |
| -<br>- M O                                               | 17055                                              | ,        |                      |       |                |         |       |       | 0.002                         |                      | 0 002                       |                      | 0 002         |                |        |                        |                |  |  |
| LM.O.                                                    | 17065                                              | 6        |                      |       |                |         |       |       | 0.003                         |                      | 0.002                       |                      | 0.002         |                |        |                        |                |  |  |
| La-Mr.Na*                                                | 17069-17071                                        | 4        |                      |       |                |         |       |       | 0.032                         |                      | 0.022                       |                      | 0.019         |                |        |                        |                |  |  |
| 2 5 2<br>L,-MaNe                                         | 17076-17082                                        | 7        |                      |       |                |         |       |       | 5                             |                      | 1                           |                      | N             |                |        |                        |                |  |  |
| 1 2 0<br>L1-M2N7                                         | 17090-17091                                        | 7        |                      |       |                |         |       |       | }0.003                        |                      | }0.002                      |                      | 0.001         |                |        |                        |                |  |  |
| L3-N404                                                  | 17084-17091                                        | 5 ]      |                      |       |                |         |       |       | 0.004                         | J                    | 0.004                       | J                    | N             | J              |        |                        |                |  |  |
| L3-N405*                                                 | 17096-17099                                        | 2]       |                      |       |                |         |       |       | 0.006                         |                      | 0.006                       | J                    | >0.007        | )              |        |                        |                |  |  |
| L <sub>1</sub> -M <sub>3</sub> N <sub>2</sub>            | 17112-17113                                        | 8        |                      |       |                |         |       |       | 0.001                         |                      | 0.001                       |                      | N             |                |        |                        |                |  |  |
| L <sub>2</sub> -M <sub>4</sub> N <sub>3</sub> *          | 17127-17133                                        | 4        |                      |       |                |         |       |       | 0.040                         |                      | 0.026                       |                      | 0.020         |                |        |                        |                |  |  |
| L3-N504*                                                 | 17136-17139                                        | 5 [      |                      | 52.   | 17126          | 12      | 0 044 | 0.02  | 0.006                         | 0.065                | 0.006                       | 0.051                | 0.007         | 0 045          | F      | ALL                    | w              |  |  |
| L3-N505*                                                 | 17140-17148                                        | 2        |                      | 52.0  | 1/120          | 10      | 0.044 | 0.02  | 0.009                         | 0.005                | 0.009                       | 0.051                | 0.009         | 0.045          |        | R,M                    |                |  |  |
| L <sub>3</sub> -N <sub>6</sub> N <sub>6</sub>            | 17137-17154                                        | 3        |                      |       |                |         |       |       |                               |                      |                             |                      | N             |                |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>6</sub> N <sub>7</sub> *          | 17156-17167                                        | 3        |                      |       |                |         |       |       | 0.002                         |                      | 0.002                       |                      | N             |                |        |                        |                |  |  |
| L3-N7N7                                                  | 17163-17178                                        | 3        |                      |       |                |         |       |       | ľ                             |                      | ,                           |                      | N             |                |        |                        |                |  |  |
| L <sub>1</sub> -M <sub>2</sub> 0 <sub>1</sub>            | 17182                                              | 8 ]      |                      |       |                |         |       |       | 0.001                         |                      | 0.001                       | J                    | 0.002         | J              |        |                        |                |  |  |
| L <sub>2</sub> -M <sub>3</sub> N <sub>6</sub>            | 17221-17228                                        | 6]       |                      |       |                |         |       |       | 0.006                         |                      | 0.004                       | ]                    | N             | ]              |        |                        |                |  |  |
| L <sub>2</sub> -M <sub>3</sub> N <sub>7</sub>            | 17230-17239                                        | 6        |                      | 52h   | 17223          | 20      | 0.020 | 0.015 | Į                             | 0.006                |                             | 0.004                |               | } N            | E      | NR                     | VW             |  |  |
| L <sub>1</sub> -M <sub>2</sub> 0 <sub>2</sub>            | 17252                                              | 9        |                      |       |                |         |       |       | 0.000                         |                      | 0.000                       |                      | N             |                |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>6</sub> 0 <sub>1</sub>            | 17251-17252                                        | 5        |                      |       |                |         |       |       | } N                           |                      | }                           |                      | } N           |                |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>7</sub> 0 <sub>1</sub>            | 17263-17264                                        | 5        |                      |       |                |         |       |       |                               |                      | J                           |                      | J             |                |        |                        |                |  |  |
| 18429 N <sub>3</sub>                                     | 17306                                              | ر و      |                      |       |                |         |       |       |                               | <b>`</b>             |                             | J                    |               | )              |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>6</sub> 0 <sub>2</sub>            | 17320-17321                                        | 5        |                      |       |                |         |       |       | N                             |                      | N                           |                      | N             |                |        |                        |                |  |  |
| L <sub>2</sub> -M <sub>5</sub> N <sub>3</sub>            | 17320-17327                                        | 4        |                      |       |                |         |       |       | 0.005                         |                      | 0.003                       |                      | 0.003         |                |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>3</sub> U <sub>1</sub>            | 1/328                                              | р<br>7   |                      |       |                |         |       |       | 0.001                         |                      | 0.001<br>N                  |                      | N             |                |        |                        |                |  |  |
| 2 <sup>-m</sup> 3 <sup>0</sup> 1                         | 1/328                                              |          |                      |       |                |         |       |       |                               |                      |                             |                      |               |                |        |                        |                |  |  |
| L <sub>3</sub> -N <sub>7</sub> 0 <sub>2</sub>            | 17332                                              | 5        |                      |       |                |         |       |       | N                             |                      | N                           |                      | N             |                |        |                        |                |  |  |
| L <sub>1</sub> -M <sub>2</sub> 0 <sub>3</sub>            | 17333                                              | 7        |                      |       |                |         |       |       | N N                           |                      | N<br>0.001                  |                      | N             |                |        |                        |                |  |  |
| L <sub>1</sub> -M <sub>3</sub> N <sub>3</sub>            | 1/356-17378                                        | 8        |                      |       |                |         |       |       | 0.001                         |                      | 0.001                       |                      | 0.001         |                |        |                        |                |  |  |
| L_2 <sup>-m</sup> 3 <sup>U</sup> 2 <sup>≭</sup>          | 1/398                                              | , ,      |                      |       |                |         |       |       | 0.008                         |                      | 0.005                       |                      | 0.009<br>J    |                |        |                        |                |  |  |
| -3-"6 <sup>0</sup> 3                                     | 17404 17403                                        |          |                      |       |                |         |       |       | 0.001                         |                      | } 0.001                     |                      | } N           |                |        |                        |                |  |  |
| -3-17 <sup>0</sup> 3                                     | 1/404-1/40/                                        | 3        |                      |       |                |         |       |       | T.                            | 1                    |                             | 1                    |               | I              |        |                        |                |  |  |

|                                                 | Predict                                            | ed Ener | ду                               |       | Exp            | eriment | ald   |      | Theoretical Intensity |                |                                         |                |               |                |        | Agreementh   |                |  |  |
|-------------------------------------------------|----------------------------------------------------|---------|----------------------------------|-------|----------------|---------|-------|------|-----------------------|----------------|-----------------------------------------|----------------|---------------|----------------|--------|--------------|----------------|--|--|
| Pu<br>Transition<br>(Auger/<br>Conversion)      | Energy<br>(Spread)<br>Larkins <sup>a</sup><br>(eV) | Unc.b   | Intm.<br>Coup.<br>X <sup>C</sup> | Lined | Energy<br>(eV) | Unc.    | Int.  | Unc. | Non-Rel.e<br>Z=90     | Line<br>Groups | Mixed <sup>f</sup><br>NR,Z=90<br>R,Z=94 | Line<br>Groups | Re1.9<br>Z=94 | Line<br>Groups | Energy | Int.         | Qual.<br>Evid. |  |  |
| L2-M4N4*                                        | 17396-17418                                        | 2 }     |                                  | 53    | 17442          | 7       | 0.146 | 0.02 | 0.057                 | 0.214          | 0.037                                   | 0.141          | 0.033         | } 0.112        | G      | M            | м              |  |  |
| L <sub>1</sub> -M <sub>2</sub> 0 <sub>4</sub>   | 17436                                              | 7       |                                  |       |                |         |       |      | N                     |                | N                                       |                | N             |                |        |              |                |  |  |
| L <sub>1</sub> -M <sub>2</sub> 0 <sub>5</sub>   | 17446                                              | 7       |                                  |       |                |         |       |      | N                     |                | 0.001                                   |                | 0.001         | 1              |        |              |                |  |  |
| L <sub>2</sub> -M <sub>4</sub> N <sub>5</sub> * | 17456-17463                                        | 2       |                                  |       |                |         |       |      | 0.140                 |                | 0.092                                   |                | 0.066         |                |        |              |                |  |  |
| L <sub>2</sub> -M <sub>3</sub> 0 <sub>3</sub>   | 17479                                              | 6 ]     |                                  |       |                |         |       |      | [ 0.001 ]             |                | N                                       |                | Ν.            | J              |        |              |                |  |  |
| L <sub>3</sub> -N <sub>6</sub> 04               | 17497-17500                                        | 6]      |                                  |       |                |         |       |      | [ N ]                 |                | N                                       | 1              | N             | )              |        |              |                |  |  |
| L <sub>3</sub> -N <sub>6</sub> 0 <sub>5</sub> * | 17505-17509                                        | 3 }     |                                  | 54 a  | 17535          | 20      | 0.032 | 0.02 | 0.001                 | • 0.010        | 0.001                                   | 0.010          | N             | 0.007          | G      | NONE<br>NR,B | VW             |  |  |
| L <sub>3</sub> -N <sub>7</sub> 0 <sub>4</sub> * | 17510-17513                                        | 6       |                                  |       |                |         |       |      | 0.001                 |                | 0.001                                   |                | N             |                |        |              |                |  |  |
| L3-N705                                         | 17517-17521                                        | 3       |                                  |       |                |         |       |      | 0.002                 |                | 0.002                                   |                | N             |                |        |              |                |  |  |
| L1-M4N1                                         | 17528-17530                                        | 7       |                                  |       |                |         |       |      | [ 0.007 ]             |                | 0.006                                   | ļ              | 0.007         | J              |        |              |                |  |  |
| L2-M304                                         | 17582                                              | 71      |                                  |       |                |         |       |      | ( 0.005 )             |                | N                                       | l l            | 0.007         | 1              |        |              |                |  |  |
| 18429 N <sub>4</sub>                            | 17583                                              | 8       |                                  |       |                |         |       |      |                       |                |                                         |                |               |                |        |              |                |  |  |
| L <sub>2</sub> -M <sub>3</sub> 0 <sub>5</sub>   | 17592                                              | 5       |                                  |       |                |         |       |      | 0.001                 |                | 0.001                                   |                | N             |                |        |              |                |  |  |
| L <sub>2</sub> -M <sub>5</sub> N <sub>4</sub> * | 17604-17610                                        | 2 }     |                                  | 54b   | 17614          | 6       | 0.073 | 0.02 | 0.99                  | 0.123          | 0.066                                   | 0.080          | 0.052         | 0.067          | G      | M,R          | м              |  |  |
| 18429 N <sub>5</sub>                            | 17631                                              | 8       |                                  |       |                |         |       |      |                       |                |                                         |                |               |                |        |              |                |  |  |
| L2-M5N5                                         | 17646-17653                                        | 2       |                                  |       |                |         |       |      | 0.012                 |                | 0.008                                   |                | 0.006         |                |        |              |                |  |  |
| L <sub>1</sub> -M <sub>3</sub> N <sub>4</sub>   | 17650-17656                                        | 7       |                                  |       |                |         |       |      | 0.003                 |                | 0.003                                   |                | 0.001         |                |        |              |                |  |  |
| L <sub>1</sub> -M <sub>3</sub> N <sub>5</sub>   | 17696-17703                                        | 7       |                                  |       |                |         |       |      | 0.003                 |                | 0.002                                   |                | N             |                |        |              |                |  |  |
| L1-M4N2                                         | 17708-17711                                        | , ]     |                                  |       |                |         |       |      | L N J                 |                | N                                       |                | 0.001         | J              |        |              |                |  |  |
| L1-M2N1                                         | 17722-17725                                        | 7]      |                                  |       |                |         |       |      | [ 0.010 ]             |                | 0.009                                   | 1              | 0.008         | )              |        |              |                |  |  |
| L2-M4N6*                                        | 17814-17829                                        | 3       |                                  |       |                |         |       |      | ſ                     |                | 1                                       |                | 0.007         |                | -      |              |                |  |  |
| L <sub>2</sub> -M <sub>4</sub> N <sub>7</sub> * | 17831-17837                                        | 3       |                                  | 55    | 17834          | 10      | 0.054 | 0.02 | 110.068               | 0.083          | } 0.044                                 | 0.056          | 0.014         | 0.034          | E      | м,к          | VW             |  |  |
| L <sub>1</sub> -M <sub>5</sub> N <sub>2</sub>   | 17904-17905                                        | 7       |                                  |       |                |         |       |      | 0.005                 |                | 0.004                                   |                | 0.005         |                |        |              |                |  |  |
| L2-H,01                                         | 17926                                              | ٩J      |                                  |       |                |         |       |      | L N J                 |                | N                                       |                | N .           | J              |        |              |                |  |  |
| L1-M4N3                                         | 17 <b>96</b> 5                                     | 6]      |                                  |       |                |         |       |      | ( N )                 |                | N                                       |                | N             | )              |        |              |                |  |  |
| L2-M402                                         | 17996                                              | 5       |                                  |       |                |         |       |      | 0.005                 |                | 0.003                                   |                | 0.004         |                |        |              |                |  |  |
| L <sub>2</sub> -M <sub>5</sub> N <sub>6</sub> * | 18012-18020                                        | 3       |                                  |       |                |         |       |      | hand                  |                | 1                                       |                | 1             | {              |        |              |                |  |  |
| L <sub>2</sub> -M <sub>5</sub> N <sub>7</sub>   | 18020-18036                                        | 3       |                                  |       |                |         |       |      | J <sup>0.014</sup>    |                | o.009 ک                                 |                | 0.004 ک       |                |        |              |                |  |  |
|                                                 |                                                    | }       |                                  | 56    | 18068          | 20      | 0.035 | 0.02 |                       | 0.030          |                                         | 0.023          |               | 0.020          | E**    | ALL<br>NR,B  | VW             |  |  |
| L <sub>1</sub> -M <sub>3</sub> N <sub>6</sub>   | 18059-18066                                        | 7       |                                  |       |                |         |       |      | 0.006                 |                | 0.006                                   |                | 0.008         |                |        |              |                |  |  |
| L1-M3N7                                         | 18068-18077                                        | 7       |                                  |       |                |         |       |      |                       |                | J                                       |                | J             |                |        |              |                |  |  |
| L2-M,03                                         | 18077                                              | 3       |                                  |       |                |         |       |      | 0.005                 |                | 0.005                                   |                | 0.004         | J              |        |              |                |  |  |
| LM_0,                                           | 18121                                              | 4       |                                  |       |                |         |       |      |                       |                | N                                       |                | N             | -              |        |              |                |  |  |

TABLE IV. (Continued).

<sup>e</sup> Nonrelativistic theoretical transition probabilities for Z = 90 were obtained from McGuire (Ref. 5) and Scofield (Ref. 25); see text of Sec. VII. L-shell primary vacancy distribution was taken from Table II. The letter N means the intensity is less than 0.001 ( $L_3$ - $M_4M_5$ =1.0).

<sup>f</sup> See text of Sec. VII for the description of and reasons for "Mixed" calculation. All rates were divided by the Pu  $L_3$ - $M_4M_5$  rate to get relative intensities. N < 0.001.

<sup>g</sup> Relativistic theoretical line intensities relative to  $L_3$ - $M_4M_5$  were calculated as described in the text of Sec. VII. N means less than 0.007 because not all transitions were treated in Ref. 8. L-shell primary vacancy distribution was taken from Table II.

<sup>&</sup>lt;sup>a</sup> All energies are with respect to the Fermi level. Values, except for *L-MO* are taken from Larkins (Ref. 7) together with the interchanges of  $L_3$ - $M_5N_2$  and  $L_3$ - $M_4N_3$ . For *L-MO* values see text, Sec. VII. To the experimental energies are added the work function of Al (3.5 eV), see text.

<sup>&</sup>lt;sup>b</sup> Uncertainties in each of the Larkins values are the combined uncertainties of the three binding energies involved in the transition taken from the Porter and Freedman values used by Larkins in footnote a.

<sup>&</sup>lt;sup>c</sup> For cases where some intermediate coupling components are widely separated (>20 eV), we get an estimate of the relative importance of the different intermediate coupling components from computations by Haynes (see text, Sec. VII).

<sup>&</sup>lt;sup>d</sup> Refer to Fig. 1. Lines principally Auger are numbered. Lines principally internal conversion are given capital letters. Experimental intensities (with uncertainties) are given relative to Pu  $L_3$ - $M_4M_5$ .

<sup>&</sup>lt;sup>h</sup> This column summarizes qualitatively the agreement in energy and intensity between experiment and theory. The theoretical energy is taken as the energy of the most intense component of the experimental line except where there are two or more nearly equal components, in which case an intensity-weighted average is used in the comparison. The quality of the evidence is dependent primarily on the intensity of the experimental line but also to some extent on its shape. The quality designations are VS, very strong; S, strong; M, medium; W, weak; VW, very weak. For the intensity agreement we have shown by the symbols NR, nonrelativistic; M, mixed; R, relativistic; ALL, NONE, those theoretical predictions which were within 1 s.d. (standard deviation). The letter B is used when appropriate to indicate the best under conditions of ALL or NONE. The designations for energy agreement are E, excellent ( $<\frac{1}{2}$  s.d.); G, good (<1 s.d.); F, fair (<2 s.d.); P, poor (>2 s.d.). The double asterisks (\*\*) indicate the following: For line 56 the quality of

the energy agreement depends on which theory is used. For NR and  $M L_2 - M_5 N_{6,7}$  are the most intense, which results in good agreement, while for R,  $L_1 - M_3 N_{6,7}$  are the most intense, which results in *excellent* energy agreement. The evidence, however, is not strong.

<sup>i</sup> In some cases there are conversion lines and Auger lines so close together as to be unresolved. Usually in these cases there is no experimental or theoretical information on the intensity of the conversion line. In these cases we have, for each theory, subtracted the total of the theoretical predictions for the included Auger lines from the experimental line intensity to obtain an estimate of the intensity of the internal conversion line. In such cases the line group intensity which was made to equal the experimental intensity, is enclosed in square brackets and the indication ASS. (assigned) is given under the heading "Intensity Agreement." A + sign denotes a conversion line intensity assigned on the basis of an M1 multipolarity for the 18.429-keV transition.

We have found a few places in each spectrum where there seemed to be no intensity above the continuous background ( $\beta$  and detector). By a combination of sketching in the background between these points and adding appropriate line tails, we have succeeded in approximating the experimental continuum under the peaks. Each peak was then outlined, including its tail, with reasonable widths where lines were incompletely resolved.

Momenta were determined from the intersect of the upward extrapolated linear sides of the upper half of the line peaks. Spectrometer calibration was based on the  $114939\pm 5$  eV K internal conversion line of the  $122060 \pm 4$  eV transition in <sup>57</sup>Fe. This was consistent with an internal standard in the <sup>239</sup>Pu spectrum which was independently measured, the internal conversion lines of the 7860±3 eV transition (Fig. 1 and Table IV). To the energies determined from these momenta was added the work function of the spectrometer material surrounding and equipotential with the source, aluminum ( $\sim 3.5$  eV), to refer the Auger energies to the Fermi level of the (metal oxide) source for comparison with Larkins's calculated Fermi-level values. The graphs plot count rate against the setting of the spectrometer instrumental current control potentiometer. Since in a magnetic spectrometer the instrumental linewidth is proportional to momentum, line intensity is proportional to the area of a line (measured via planimeter) divided by its momentum. All intensity measurements were normalized to that of the strongest line,  $I_{L_2-M_4M_5} = 1.000$ . Auger lines were numbered sequentially while clear conversion lines were lettered A, B, C, etc. in Figs. 1-3 and 5. The results of these energy and intensity measurements are recorded in Table IV for Pu and Table V for Fm and will be discussed in Sec. VIII.

The spectra of Am and Cf (Figs. 5 and 3) have much poorer counting statistics on many lines than the Pu and Fm spectra and have strong spectator vacancy satellites as well. Therefore, analysis of these spectra was attempted only for L-MM lines and the intensity comparisons were only qualitative except for  $L_i$ - $M_4M_5$ . The results of these analyses are shown in Tables VI and VII and will also be discussed in Sec. VIII. Finally, quantitative experimental values were obtained for the intensity ratios  $I_{L_2-M_4M_5}/I_{L_3-M_4M_5}$  for Am and Cf and for the ratio  $I_{L_1-M_4M_5}/I_{L_3-M_4M_5}$  for Am. A summary of these values together with those for Pu and Fm and comparison with theory is given in Table XIII, to be discussed in Sec. VIII.

#### VII. THEORETICAL ENERGIES AND INTENSITIES

For energy comparison we have used the semiempirical calculations of Larkins<sup>7</sup> which give the Auger energy

values for each total angular momentum J of a given j-j-j transition referred to the Fermi level. For  $L_i$ - $M_jO_k$ , which is not in his tables, we used the (Z + 1) approximation,

$$E_{\text{Fermi}} = [B_L(Z) - B_M(Z) - B_O(Z+1)]_{\text{Fermi}}$$

The binding energies used by us for L-MO and by Larkins for all high-Z Augers were those of Porter and Freedman.<sup>12</sup> These are semiempirical interpolations of all heavy-element binding energies for all inner shells. The values are Z-wise smoothed averages of heavy-element data based on all available photoelectron and x-ray spectroscopy, together with values obtained from precision electron spectroscopy of internal conversion electrons in the complex nuclear decays in these same experiments. These latter values are thus intrinsically "fully relativistic" and refer to the Fermi level of the presumably oxide form to which these monolayer source films rapidly convert. Comparison was made<sup>12</sup> to several recent precision relativistic binding-energy calculations, some of which include orbital relaxation and all field-theoretic corrections, and all show a generally monotonically increasing significant deviation with Z above the experimental averages in the transuranic region. Also, because of the compensation for experimental error associated with giving weight to the binding-energy values derived from the same electron spectroscopic measurements, we agree with and accept Larkins's use of the Porter and Freedman values.

The uncertainties in Larkins's and the L-MO values, Tables IV-VII, were calculated from the combination of the three orbital binding uncertainties in Porter and Freedman's values. The uncertainties in Larkin's calculations of the interaction of the final-state vacancies were assumed to be negligible.

For the intensities, we wished to compare both the relativistic and the nonrelativistic Auger theories with our results. Unfortunately, McGuire's<sup>5</sup> nonrelativistic calculations go only to atomic number 90. He was so kind as to supply matrix elements for fermium<sup>23</sup> which Haynes inserted in the equation of Asaad<sup>24</sup> to calculate the L-MM transition probabilities for each J-value member of the intermediate coupling multiplet comprising each "j-j-labeled" transition.<sup>7</sup> These are nonrelativistic estitermediate mates. Since the total intensity of each *j*-*j* transition relative to that of  $L_i$ - $M_4M_5$  was nearly the same for Z = 100as McGuire's value for Z = 90, it is clear that the nonrelativistic relative intensities within an  $L_i$ -MM band are essentially constant from Z = 90 to 100. We further assumed that the relative intensities  $I_{L_i-X_iY_k}/I_{L_i-M_4M_5}$ , where X stands for M, N, O, etc. and Y for N, O, etc. were constant from Z = 90 to 100. However, this constancy

TABLE V. L-Auger (and internal conversion lines) in  $^{254}$ Fm (and in  $^{250}$ Cf and  $^{250}$ Bk). The superscript  $\alpha$  designates transitions in Bk and Cf which follow  $\alpha$  decays respectively, of Es and Fm. For discussion of the associated line shapes see the text of Sec. VI. Asterisks (\*) indicate those transitions which, according to the criteria of Haynes (Ref. 22) are expected to be the most important.

|                                                              | Predicted E                        | nerav           |                   | Ex            | perimen | tal                        |       | Theoret          | ical Inter                                                     | nsity          |              | Aareemen      | t.             |
|--------------------------------------------------------------|------------------------------------|-----------------|-------------------|---------------|---------|----------------------------|-------|------------------|----------------------------------------------------------------|----------------|--------------|---------------|----------------|
|                                                              |                                    |                 |                   | Expt.         | 1       |                            |       | Theor.d          | Theor.e                                                        | Line           |              | Int.          | -              |
| Transition                                                   | eva                                | Unc.b           | Peak<br>Desig.    | En.<br>eV.    | Unc.    | Expt. <sup>C</sup><br>Int. | Unc.  | Int.<br>Non-Rel. | Int.<br>Rel.                                                   | Groups<br>Rel. | En.<br>Agree | Agree<br>Rel. | Qual.<br>Evid. |
|                                                              |                                    |                 |                   |               |         |                            |       | •                |                                                                |                |              |               |                |
| CfL <sub>3</sub> -M <sub>1</sub> M <sub>1</sub>              | 6280 <sup>a</sup>                  | 13              |                   |               |         |                            |       |                  | 0.001                                                          | 0.001          |              | 6             | F              |
| FmL <sub>3</sub> -M <sub>1</sub> M <sub>1</sub>              | 6348                               | 19              |                   |               |         |                            |       | 0.005            | 0.003                                                          | 0.003          |              | G             | F              |
| CfL <sub>3</sub> -M <sub>1</sub> M <sub>2</sub>              | 6713-6740ª                         | 10              |                   |               |         |                            |       |                  | N                                                              | N              |              | G             | F              |
| FmL <sub>3</sub> -M <sub>1</sub> M <sub>2</sub>              | 6796-6822                          | 14              | 0                 | 6916          | 38      | 0.028                      | 0.014 | € 0.008          | 0.001                                                          | 0.001          | Р            | P             | F              |
| CfL <sub>3</sub> -M <sub>2</sub> M <sub>2</sub>              | 7122ª                              | 13              |                   |               |         |                            |       | l                | N                                                              | N              |              |               |                |
| FmL <sub>3</sub> -M <sub>2</sub> M <sub>2</sub>              | 7219                               | 16              | 1                 | 7296          | 20      | 0.044                      | 0.015 | 0.002            | N                                                              | N              | Ρ            | G<br>P        | F              |
| $CfL_3-M_1M_3$                                               | 7919-7 <b>969ª</b>                 | 9               | 2                 | 7882          | 50      | 0.046                      | 0.015 |                  | 0.049                                                          | 0.049          | F            | E             | F              |
| Fml "M M *                                                   | ∫ <sup>3</sup> P <sub>1</sub> 8143 | 14              | 3a                | 8133          | 4       | 0.140                      | 0.020 | 0.076 ]          | 0 221                                                          | 0 221          | F            | 6             | 6              |
| 1 1 3 - 1 1 3                                                | <b>₹</b> 193 \$193                 | 14              | 3ь                | 8191          | 8       | 0.113                      | 0.018 | 0.049∫           | 0.221                                                          | 0.221          |              | U             | Ū              |
| CfL <sub>3</sub> -M <sub>2</sub> M <sub>3</sub> *            | 8353-8366ª                         | 9               | 4                 | 8368          | 40      | 0.083                      | 0.019 |                  | 0.074                                                          | 0.074          | E -          | G             | F              |
| CfL <sub>3</sub> -M <sub>1</sub> M                           | 8559-8573ª                         | <sup>10</sup> ] |                   | 96.76         |         | 0 216                      | 0 026 | 0 200            | ( 0.010 )                                                      | [±5%]          | F            | r             | c              |
| FmL <sub>3</sub> -M <sub>2</sub> M <sub>3</sub> *            | 8593-8607                          | 12 J            | 5                 | 8576          | •       | 0.315                      | 0.020 | 0.209            | $\left\{ \begin{array}{c} 0.335 \\ 0.335 \end{array} \right\}$ | 0.345          | r            | Ľ             | 0              |
| CfL <sub>3</sub> -M <sub>1</sub> M <sub>5</sub>              | 8792-8810ª                         | 10 ]            | 4                 | 8905          | 12      | 0.053                      | 0 019 | 0.016            | <u>ر</u> 0.019 ک                                               | 0.062          | r            | c             |                |
| FmL <sub>3</sub> -M <sub>1</sub> M <sub>4</sub> *            | 8804-8818                          | 14 5            | 0                 | 8805          | 10      | 0.055                      | 0.010 | 0.016            | <b>∖0.043</b> ∫                                                | 0.002          | Ľ            | 0             | r              |
| CfL <sub>3</sub> -M <sub>2</sub> M <sub>4</sub>              | 8966-9009ª                         | 10              |                   |               |         |                            |       |                  | 0.004                                                          |                |              |               |                |
| FmL <sub>3</sub> -M <sub>1</sub> M <sub>5</sub> *            | 9061-9079                          | 15              | ∫7a               | 9065          | 12      | 0.261                      | 0.039 | 0.018            | 0.098                                                          | [0.161]9       | E            |               | F              |
| BkL <sub>1</sub> 34.46*                                      | 9204ª                              | ſ               | <u>۲</u> ه        | 9205          | 8∫      |                            |       |                  | [0.124                                                         |                | E            |               |                |
| CfL <sub>3</sub> -M <sub>2</sub> M <sub>5</sub>              | 9214-9223ª                         | 10              |                   |               |         |                            |       |                  | 0.021                                                          |                |              |               |                |
| FmL <sub>3</sub> -M <sub>2</sub> M <sub>4</sub>              | 9227-9271                          | 12              |                   |               |         |                            |       | 0.022            | 0.016                                                          |                |              |               |                |
| FmL <sub>3</sub> -M <sub>2</sub> M <sub>5</sub> *            | 9499-9508                          | 14              | 8a                | 9 <b>49</b> 0 | 4 ]     |                            | 0.000 | 0 1 77           | ر 0.0 <del>96</del> ک                                          | 0.100          | G            | E             | G              |
| CfL <sub>3</sub> -M <sub>3</sub> M <sub>3</sub>              | 9563-9589 <sup>a</sup>             | 11              | 8ь                | 9565          | 10 J    | 0.190                      | 0.036 | 0.1//            | { 0.090 }                                                      | 0.186          | G            | E             | G              |
|                                                              | ∫ <sup>3</sup> P <sub>0</sub> 9945 | 16 ]            | 0                 | 0056          |         | 0 402                      | 0.035 | ∫0.102           | 0 417                                                          | 0 417          | ~            |               | <u>,</u>       |
| rmL3- <sup>-11</sup> 3 <sup>11</sup> 3"                      | <b>3</b> ₽₂ 9971                   | 16 ∫            | 9                 | 00566         | 4       | 0.493                      | 0.035 | <b>{0.245</b> ∫  | 0.41/                                                          | 0.41/          | G            | P             | 6              |
| BkL <sub>2</sub> 34.46*                                      | 10089 <sup>a</sup>                 | ١               | Aa                | 10078         | 13]     |                            |       |                  | [0.159]                                                        |                |              |               |                |
| CfL <sub>3</sub> -M <sub>3</sub> M <sub>4</sub>              | 10206-10220ª                       | 9               | $\left\{ \right.$ |               | }       | 0.604                      | 0.046 |                  | 0.094                                                          | [0.604]9       |              |               |                |
| BkL <sub>1</sub> 35.59*                                      | 10334 <sup>a</sup>                 | [               | Ab                | 10322         | ٩J      |                            |       |                  | [0.235                                                         |                |              |               |                |
| CfL <sub>3</sub> -M <sub>3</sub> M <sub>5</sub>              | 10422-10477ª                       | 9 ]             |                   |               |         |                            |       |                  | 0.116                                                          |                |              |               |                |
| FmL <sub>3</sub> -M <sub>3</sub> M <sub>4</sub> *            | 10610-10624                        | 12              | 10                | 10604         | 4       | 0.446                      | 0.045 | 0.331            | 0.432                                                          | 0.432          | Ε            | E             | E              |
| CfL <sub>3</sub> -M <sub>4</sub> M <sub>4</sub>              | 10808-10839ª                       | 13]             |                   |               |         |                            |       |                  | 0.012 ]                                                        |                |              |               |                |
| ( <sup>3</sup> P <sub>1</sub> *, <sup>3</sup> F <sub>3</sub> | 10849-10863                        | 14              |                   |               |         |                            |       | 0.498            |                                                                |                |              |               |                |
| Fm { L <sub>3</sub> -M <sub>3</sub> M <sub>5</sub>           |                                    | ſ               | 11                | 10853         | 6       | 0.571                      | 0.033 | $\{ \}$          | 0.523                                                          | 0.535          | Ε            | F             | Ε              |
| 1023F4                                                       | 10889-10905                        | 14              |                   |               |         |                            |       | [0.057]          | 1 <b>3</b> * ]                                                 |                |              |               |                |
| CfL <sub>3</sub> -M <sub>4</sub> M <sub>5</sub> *            | 11062-11082ª                       | 10              | 12                | 11046         | 9       | 0.261                      | 0.036 |                  | 0.220                                                          | 0.220          | F            | F             | F              |
| BkL <sub>2</sub> 35.59                                       | 11219 <sup>a</sup>                 | )               |                   |               |         |                            |       |                  | <0.016                                                         |                |              |               |                |
| FmL 3-M" M" +                                                | 11231-11264                        | 16 }            | 13                | 11260         | 13      | 0.200                      | 0.035 | 0.049            | 0.053                                                          | 0.200          | G            | Ε             | F              |
| $CfL_3-M_1N_1$                                               | 11277-11293ª                       | 13              |                   |               |         |                            |       |                  | N                                                              |                |              |               |                |
| CfL <sub>3</sub> -M <sub>5</sub> M <sub>5</sub> *            | 11275-11314ª                       | 13              |                   |               |         |                            |       |                  | 0.147                                                          |                |              |               |                |
| $CfL_2-M_1M_1$                                               | 11482ª                             | 13]             |                   |               |         |                            |       | $\left( \right)$ | 0.001                                                          |                |              |               |                |
| CfL <sub>3</sub> -M <sub>1</sub> N <sub>2</sub>              | 11484-11486 <sup>a</sup>           | 13              |                   |               |         |                            |       |                  | N                                                              |                |              |               |                |
| 3P1,1G4                                                      | 11510-11511                        | 14              |                   |               |         |                            |       | 0.718            |                                                                |                |              |               |                |
| Fm { L <sub>3</sub> -M <sub>4</sub> M <sub>5</sub>           |                                    | }               | 14                | 11508         | 2       | 1.000                      | Std.  | $\{ \}$          | 1.000                                                          | 1.001          | Ε            | Std.          | E              |
| 102,3F3                                                      | 11517-11531                        | 14              |                   |               |         |                            |       | 0.282            |                                                                |                |              |               |                |

|                                                           | Predicted E              | nergy |        | Experimental |      |        | Theoretical Intensity |          |                                                          | Agreementf |       |      |       |
|-----------------------------------------------------------|--------------------------|-------|--------|--------------|------|--------|-----------------------|----------|----------------------------------------------------------|------------|-------|------|-------|
|                                                           |                          |       | Peak   | Expt.        |      | Evet C |                       | Theor.d  | Theor.e                                                  | Line       | Fr    | Int. | 0     |
| Transition                                                | eya                      | Unc.b | Desig. | eV.          | Unc. | Int.   | Unc.                  | Non-Rel. | Rel.                                                     | Rel.       | Agree | Rel. | Evid. |
| FmL <sub>3</sub> -M <sub>1</sub> N <sub>1</sub>           | 11651-11668              | 18    |        |              |      |        |                       |          | ( 0.001 )                                                |            |       |      |       |
| $CfL_3-M_2N_1$                                            | 11703-11705ª             | 10    |        |              |      |        |                       |          | N                                                        |            |       |      |       |
| <sup>3</sup> F <sub>2</sub> , <sup>3</sup> F <sub>4</sub> | 11775-11787              | 21    |        |              |      |        |                       | 0.629    |                                                          |            |       |      |       |
| FmL <sub>3</sub> - M <sub>5</sub> M <sub>5</sub>          | }                        | · }   | 15     | 11782        | 3    | 0.615  | 0.055                 | { }      | 0.667                                                    | 0.676      | E     | G    | ε     |
| <sup>3</sup> P <sub>0</sub>                               | 11746                    | 21    |        |              |      |        |                       | 0.029    |                                                          |            |       |      |       |
| CfL <sub>3</sub> -M <sub>1</sub> N <sub>3</sub>           | 11810-11814ª             | 9 ]   |        |              |      |        |                       |          | {0.008}                                                  |            |       |      |       |
| $FmL_3-M_1N_2$                                            | 11869-11871              | 17]   |        |              |      |        |                       |          | [ " ]                                                    |            |       |      |       |
| CfL <sub>3</sub> -M <sub>2</sub> N <sub>2</sub>           | 11891-11908 <sup>a</sup> | 13    |        |              |      |        |                       |          | N                                                        |            |       |      |       |
| CfL <sub>2</sub> -M <sub>1</sub> M <sub>2</sub> *         | 11914-11941ª             | 10 }  | 16     | 11941        | 14   | 0.018  | 0.011                 |          | { 0.052 }                                                | 0.052      | F     | Ρ    | Ρ     |
| FmL <sub>3</sub> -M <sub>2</sub> N <sub>1</sub>           | 12093-12096              | 18    |        |              |      |        |                       |          |                                                          |            |       |      |       |
| CfL <sub>3</sub> -M <sub>1</sub> N <sub>4</sub>           | 12116-12117ª             | 8     |        |              |      |        |                       |          | 0.001                                                    |            |       |      |       |
| $FmL_2-M_1M_1$                                            | 12121                    | 19    |        |              |      |        |                       |          | 0.004                                                    |            |       |      |       |
| CfL <sub>3</sub> -M <sub>1</sub> N <sub>5</sub>           | 12177-12178ª             | 8     |        |              |      |        |                       |          | 0.002                                                    |            |       |      |       |
| CfL <sub>3</sub> -M <sub>2</sub> N <sub>3</sub>           | 12228-122 <b>3</b> 0ª    | 10    |        |              |      |        |                       |          | 0.014                                                    |            |       |      |       |
| FmL <sub>3</sub> -M <sub>1</sub> N <sub>3</sub> *         | 12237-12241              | 14    |        |              |      |        |                       |          | 0.038                                                    |            |       |      |       |
| FmL 3 - M2 N2                                             | 12292-12310              | 16    |        |              |      |        |                       |          | N                                                        |            |       |      |       |
| FmL <sub>1</sub> 39.881                                   | 12301                    | 8 }   | B      | 12286        | 7    | 0.129  | 0.022                 |          | [0.022]                                                  | [0.129]9   |       |      |       |
| CfL <sub>2</sub> -M <sub>2</sub> M <sub>2</sub> *         | 12323ª                   | 13    |        |              |      |        |                       |          | 0.047                                                    |            |       |      |       |
| CfL <sub>1</sub> -M <sub>1</sub> M <sub>1</sub>           | 12388 <sup>a</sup>       | 14 J  |        |              |      |        |                       |          | (0.001 J                                                 |            |       |      |       |
| CfL <sub>3</sub> -M <sub>2</sub> N <sub>4</sub>           | 12532-12535ª             | 8     |        |              |      |        |                       |          | 0.001                                                    |            |       |      |       |
| FmL <sub>3</sub> -M <sub>1</sub> N <sub>4</sub>           | 12554-12555              | 13    |        |              |      |        |                       |          | 0.006                                                    |            |       |      |       |
| CfL <sub>3</sub> -M <sub>1</sub> N <sub>6</sub>           | 12567-12569ª             | 8     |        |              |      |        |                       |          | 0.001                                                    |            |       |      |       |
| FmL <sub>2</sub> -M <sub>1</sub> M <sub>2</sub> *         | 12569-12595              | 13 }  | 17     | 12562        | 10   | 0.170  | 0.022                 | •        | 0.195                                                    | 0.209      | 6     | F    | 6     |
| CfL <sub>3</sub> -M <sub>1</sub> N <sub>7</sub>           | 12585-12587ª             | 8     |        |              |      |        |                       |          | 0.002                                                    |            |       |      |       |
| CfL <sub>3</sub> -M <sub>2</sub> N <sub>5</sub>           | 12594-12594ª             | 8 ]   |        |              |      |        |                       |          | 0.004                                                    |            |       |      |       |
| FmL <sub>3</sub> -M <sub>1</sub> N <sub>5</sub>           | 12621-12622              | 15]   |        |              |      |        |                       |          | 0.012                                                    |            |       |      |       |
| FmL <sub>3</sub> -M <sub>2</sub> N <sub>3</sub> *         | 12671-12673              | 14 }  | 18     | 12658        | 15   | 0.063  | 0.021                 | •        | 0.067                                                    | 0.079      | G     | G    | F     |
| CfL <sub>3</sub> -M <sub>1</sub> 0 <sub>1</sub>           | 12712ª                   | 11 J  |        |              |      |        |                       |          | l N J                                                    |            |       |      |       |
| CfL <sub>3</sub> -M <sub>1</sub> 0 <sub>2</sub>           | 12789 <sup>a</sup>       | 14    |        |              |      |        |                       |          | $\left[ \begin{array}{c} \mathbf{N} \end{array} \right]$ |            |       |      |       |
| $CfL_1-M_1M_2$                                            | 12816-12843ª             | 11    |        |              |      |        |                       |          | 0.002                                                    |            |       |      |       |
| CfL <sub>3</sub> -M <sub>1</sub> 0 <sub>3</sub>           | 128 <b>9</b> 1ª          | 11    |        |              |      |        |                       |          | 0.002                                                    |            |       |      |       |
| CfL <sub>3</sub> -M <sub>3</sub> N <sub>1</sub>           | 12930-12934ª             | 9     |        |              |      |        |                       |          | 0.012                                                    |            |       |      |       |
| CfL <sub>3</sub> -M <sub>2</sub> N <sub>6</sub>           | 12982-12988ª             | 8     |        |              |      |        |                       |          | 0.001                                                    |            |       |      |       |
| FmL <sub>3</sub> -M <sub>2</sub> N <sub>4</sub>           | 12986-12989              | 15    |        |              |      |        |                       |          | 0.003                                                    |            |       |      |       |
| FmL <sub>2</sub> -M <sub>2</sub> M <sub>2</sub> *         | 12992                    | 16 }  | 19     | 12966        | 5    | 0.198  | 0.028                 |          | 0.213                                                    | 0.235      | F     | F    | G     |
| CfL <sub>3</sub> -M <sub>2</sub> N <sub>7</sub>           | 13001-13003ª             | 8     |        |              |      |        |                       |          | 0.002                                                    |            |       |      |       |
| CfL,-M,0.                                                 | 13004 <sup>a</sup>       | 11    |        |              |      |        |                       |          |                                                          |            |       |      |       |
| CfL,-M,O_                                                 | 13019ª                   | 11)   |        |              |      |        |                       |          | ( N )                                                    |            |       |      |       |
| FmL,-M.N.                                                 | 13027-13030              | 14    |        |              |      |        |                       |          | 0.006                                                    |            |       |      |       |
| FmL_3-M.N.                                                | 13046-13049              | 14    |        |              |      |        |                       |          | 0.010                                                    |            |       |      |       |
| FmL,-M.M.                                                 | 13050                    | 14    | 20     | 13046        | 10   | 0.048  | 0.020                 |          | 0.004                                                    | 0 035      | F     | e    | p     |
| FmLM_N_*                                                  | 13054-13055              | 18    |        | 10040        |      | 0.040  | 0.020                 |          | 0.004                                                    | 0.000      | L     | u    | r     |
| CfLM_0.                                                   | 13128ª                   | 11)   |        |              |      |        |                       | 1        | ( N )                                                    |            |       |      |       |
| CfLM_N_                                                   | 13129-13130ª             | 12    |        |              |      |        |                       |          | 0 010                                                    |            |       |      |       |
| CfLM_M                                                    | 13120-131704             | 10    |        |              |      |        |                       |          | 0.019                                                    |            |       |      |       |
| FmLML0                                                    | 13189                    | 16    |        |              |      |        |                       |          | 0.004                                                    |            |       |      |       |
| CfLM_0                                                    | 13205ª                   | 14    |        |              |      |        |                       |          | N                                                        |            |       |      |       |
| CfLM_M_                                                   | 13225ª                   | 14    |        |              |      |        |                       |          | N                                                        |            |       |      |       |
| FmL39.881                                                 | IJELJ                    | - T   | c      | 13230        | 1    | 0 629  | 0 040                 |          | 0 602                                                    | [0 62030   |       |      |       |
| 2 00.001                                                  |                          | 1     | U U    | 13230        | •    | v.320  | 0.043                 |          | 0.502                                                    | [0.959]a   |       |      |       |

TABLE V. (Continued).

|                                                   | Predicted E              | nergy    |                   | Ex           | perimen | ntal   |       | Theoretical Intensity |                    |                | Agreementf |               |       |
|---------------------------------------------------|--------------------------|----------|-------------------|--------------|---------|--------|-------|-----------------------|--------------------|----------------|------------|---------------|-------|
| Tuerstell                                         | -1/3                     | 11e - N  | Peak              | Expt.<br>En. | 11      | Expt.C | 11    | Theor.d<br>Int.       | Theor.e<br>Int.    | Line<br>Groups | En.        | Int.<br>Agree | Qual. |
| iransition                                        |                          | Unc.P    | Desig.            | ev           | unc.    | Int.   | Unc.  | Non-Kel.              | Kel.               | Kel.           | Agree      | Ke1.          | Evid. |
| FmLa-M102                                         | 13271                    | 20       |                   |              |         |        |       |                       | N                  |                |            |               |       |
| CfL,-M,0,                                         | 13307ª                   | 11       |                   |              |         |        |       |                       | 0.003              |                |            |               |       |
| FmL_3-M_103                                       | 13388                    | 15)      |                   |              |         |        |       |                       | (0.009)            |                |            |               |       |
| CfL3-M20                                          | 13 <b>4</b> 20°          | 11       |                   |              |         |        |       |                       | N                  |                |            |               |       |
| CfL3-M205                                         | 13435 <sup>a</sup>       | 11       |                   |              |         |        |       |                       | 0.001              |                |            |               |       |
| CfL3-M3N3*                                        | 13441-13465ª             | { و      | 21                | 13450        | 10      | 0.125  | 0.021 |                       | {0.040}            | 0.132          | G          | Ε             | F     |
| FmL <sub>3</sub> -M <sub>2</sub> N <sub>6</sub>   | 13459-13465              | 13       |                   |              |         |        |       |                       | 0.004              |                |            |               |       |
| FmL <sub>3</sub> -M <sub>3</sub> N <sub>1</sub> * | 13452-13467              | 17       |                   |              |         |        |       |                       | 0.060              |                |            |               |       |
| FmL <sub>3</sub> -M <sub>2</sub> N <sub>7</sub>   | 13479-13481              | 13       |                   |              |         |        |       |                       | 0.010              |                |            |               |       |
| FmL <sub>1</sub> -M <sub>1</sub> M <sub>2</sub>   | 13498-13524              | 14)      |                   |              |         |        |       |                       | 0.008              |                |            |               |       |
| FmL <sub>3</sub> -M <sub>1</sub> 0 <sub>4</sub>   | 13506                    | 15]      |                   |              |         |        |       |                       | (0.001)            |                |            |               |       |
| FmL <sub>3</sub> -M <sub>1</sub> 0 <sub>5</sub>   | 13523                    | 15       | 22                | 10506        | 10      | 0.000  | 0.020 |                       | 0.002              | 0.004          | -          | -             | -     |
| CfL <sub>2</sub> -M <sub>2</sub> M <sub>3</sub> * | 13554-13567ª             | 10       | 22                | 13536        | 10      | 0.089  | 0.020 |                       | 0.089              | 0.094          | r          | E             | r     |
| CfL <sub>3</sub> -M <sub>4</sub> N <sub>1</sub>   | 13562-13563ª             | 10       |                   |              |         |        |       |                       | [0.002]            |                |            |               |       |
| FmL <sub>3</sub> -M <sub>2</sub> 0 <sub>1</sub>   | 13621                    | 15       |                   |              |         |        |       |                       | ( N )              |                |            |               |       |
| FmL <sub>3</sub> -M <sub>3</sub> N <sub>2</sub> * | 13674                    | 16 }     | 23                | 13654        | 10      | 0.133  | 0.021 |                       | { 0.089 }          | 0.089          | F          | Ρ             | F     |
| FmL <sub>3</sub> -M <sub>2</sub> 0 <sub>2</sub>   | 13703                    | 19       |                   |              |         |        |       |                       | (N)                |                |            |               |       |
| CfL <sub>3</sub> -M <sub>4</sub> N <sub>2</sub>   | 13759-13763ª             | 13]      |                   |              |         |        |       |                       | (0.001)            |                |            |               |       |
| CfL <sub>3</sub> -M <sub>3</sub> N <sub>4</sub> * | 13758-13765ª             | 7        |                   |              |         |        |       |                       | 0.023              |                |            |               |       |
| CfL <sub>2</sub> -M <sub>1</sub> M <sub>4</sub>   | 13760-13774ª             | 10       | 24                | 13792        | 15      | 0 106  | 0 021 |                       | 0.009              | 0 081          | 6          | F             | 6     |
| CfL <sub>3</sub> -M <sub>5</sub> N <sub>1</sub>   | 13798-13800 <sup>a</sup> | 10       | 24                | 15/ 52       | 15      | 0.100  | 0.021 |                       | 0.004              | 0.001          | u          |               | u     |
| FmL <sub>3</sub> -M <sub>2</sub> 0 <sub>3</sub>   | 13820                    | 13       |                   |              |         |        |       |                       | 0.015              |                |            |               |       |
| CfL <sub>3</sub> -M <sub>3</sub> N <sub>5</sub> * | 13817-13825ª             | 7)       |                   |              |         |        |       |                       | [0.031]            |                |            |               |       |
| $FmL_1-M_2M_2$                                    | 13921                    | 16]      |                   |              |         |        |       |                       | $\left( N \right)$ |                |            |               |       |
| FmL <sub>3</sub> -M <sub>2</sub> 0 <sub>4</sub>   | 13938                    | 14       |                   |              |         |        |       |                       | 0.001              |                |            |               |       |
| FmL <sub>3</sub> -M <sub>2</sub> 0 <sub>5</sub>   | 13955                    | 14       |                   |              |         |        |       |                       | 0.003              |                |            |               |       |
| FmL <sub>2</sub> -M <sub>1</sub> M <sub>3</sub>   | 13966-14016              | 13       |                   |              |         |        |       |                       | 0.012              |                |            |               |       |
| CfL <sub>3</sub> -M <sub>5</sub> N <sub>2</sub>   | 13997-13998ª             | 13       |                   |              |         |        |       |                       | 0.004              |                |            |               |       |
| CfL <sub>2</sub> -M <sub>1</sub> M <sub>5</sub>   | 13993-14011ª             | 8        |                   |              |         |        |       |                       | 0.017              |                |            |               |       |
| FmL <sub>3</sub> -M <sub>3</sub> N <sub>3</sub> * | 14025-14050              | 14       | 25 a              | 14032        | 2]      |        |       |                       | 0.182              |                | Ε          |               | E     |
| CfL <sub>1</sub> -M <sub>1</sub> M <sub>3</sub>   | 14022-14072ª             | 11       |                   |              |         |        |       |                       | 0.002              |                |            |               |       |
| CfL <sub>3</sub> -M <sub>4</sub> N <sub>3</sub> * | 14086-14092 <sup>α</sup> | 10       | 1                 |              | }       | 0.318  | 0.042 |                       | 0.015              | 0.293          |            | E             | E     |
| rmL <sub>3</sub> -M <sub>4</sub> N <sub>1</sub>   | 14115-14117              | 17       | 25Ь               | 14149        | 10      |        |       |                       | 0.010              |                | G          |               | P     |
| CfL <sub>2</sub> -M <sub>2</sub> M <sub>4</sub> * | 14157-14210 <sup>a</sup> | 8J<br>۱- | -                 |              |         |        |       |                       | (0.047)            |                |            |               |       |
| UTL3-M3N6                                         | 14210-14218ª             |          |                   |              |         |        |       |                       | 0.003              |                |            |               |       |
| CTL3-M3N7                                         | 14224-14234              |          |                   |              |         |        |       |                       | 0.003              |                |            |               |       |
| CfL <sub>3</sub> -M <sub>5</sub> N <sub>3</sub> * | 14320-1432/*             | 10       |                   |              |         |        |       |                       | 0.020              |                |            |               |       |
| FmL 3 - M4 N2                                     | 14323-14327              | 16       |                   |              |         |        |       |                       | 0.005              |                |            |               |       |
| CfL <sub>3</sub> -M <sub>3</sub> 0 <sub>1</sub>   | 14357ª                   | 10       | 26 a              | 14352        | 2]      |        |       |                       | 0.004              |                | G          |               | Ε     |
| FmL <sub>3</sub> -M <sub>3</sub> N <sub>4</sub> * | 14354-14361              | 15       |                   |              |         |        |       |                       | 0.106              |                |            |               |       |
| FmL <sub>2</sub> -M <sub>2</sub> M <sub>3</sub> * | 14366-14380              | 12 }     | $\left\{ \right.$ |              | }       | 0.820  | 0.063 |                       | {0.406}            | 0.811          |            | E             | E     |
| FmL <sub>3</sub> -M <sub>5</sub> N <sub>1</sub>   | 14375-14378              | 19       |                   |              |         |        |       |                       | 0.023              |                |            |               |       |
| CfL <sub>3</sub> -M <sub>4</sub> N <sub>4</sub>   | 14376-14400ª             | 8        | 26b               | 14402        | 5       |        |       |                       | 0.004              |                | 6          |               | F     |
| CfL <sub>2</sub> -M <sub>2</sub> M <sub>5</sub> * | 14415-14424ª             | 10       |                   |              |         |        |       |                       | 0.053              |                |            |               |       |
|                                                   |                          |          |                   |              |         |        |       |                       |                    |                |            |               |       |

TABLE V. (Continued).

\_

| TABLE | V. | (Continued). |
|-------|----|--------------|
|-------|----|--------------|

|                                                      | Predicted E              | nergy |                | Ex                 | perime | ntal                       |       | Theore                      | tical Inte                          | ensity                 | Agreementf   |                       |                |  |
|------------------------------------------------------|--------------------------|-------|----------------|--------------------|--------|----------------------------|-------|-----------------------------|-------------------------------------|------------------------|--------------|-----------------------|----------------|--|
| Transition                                           | eVā                      | Unc.b | Peak<br>Desig. | Expt.<br>En.<br>eV | Unc.   | Expt. <sup>C</sup><br>Int. | Unc.  | Theor.d<br>Int.<br>Non-Rel. | Theor. <sup>e</sup><br>Int.<br>Rel. | Line<br>Groups<br>Rel. | En.<br>Agree | Int.<br>Agree<br>Rel. | Qual.<br>Evid. |  |
| FmLa-MaNe*                                           | 14419-14427              | 18    |                |                    |        |                            |       |                             | 0.138                               |                        |              |                       |                |  |
| CfL,-M,0,                                            | 14434ª                   | 13    |                |                    |        |                            |       |                             | 0.005                               |                        |              |                       |                |  |
| CfL3-M"N"                                            | 14450-14457ª             | 8     |                |                    |        |                            |       |                             | 0.036                               |                        |              |                       |                |  |
| CfL,-M,M,                                            | 14456-14469ª             | ا و   |                |                    |        |                            |       |                             | N                                   |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>3</sub> O <sub>3</sub>      | 14536ª                   | 10 ]  |                |                    |        |                            |       |                             | ( 0.010 )                           |                        |              |                       |                |  |
| FmL <sub>2</sub> -M <sub>1</sub> M <sub>4</sub>      | 14577-14591              | 13    |                |                    |        |                            |       |                             | 0.033                               |                        |              |                       |                |  |
| FmL <sub>3</sub> -M <sub>5</sub> N <sub>2</sub> *    | 14585-14586              | 18 }  | 27             | 14575              | 2      | 0.148                      | 0.021 |                             | { 0.021 }                           | 0.109                  | F            | Р                     | G              |  |
| CfL <sub>3</sub> -M <sub>5</sub> N <sub>4</sub> *    | 14627-14633ª             | 8 ]   |                |                    |        |                            |       |                             | 0.045                               |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>3</sub> 0 <sub>4</sub>      | 14649ª                   | 10 ]  |                |                    |        |                            |       |                             | ( 0.004 ]                           |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>3</sub> 0 <sub>5</sub>      | 14664ª                   | 10    |                |                    |        |                            |       |                             | 0.006                               |                        |              |                       |                |  |
| CfL1-M1M4                                            | 14662-14676ª             | 10    |                |                    |        |                            |       |                             | 0.001                               |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>5</sub> N <sub>5</sub>      | 14671-14700 <sup>α</sup> | 8 }   | 28             | 14686              | 10     | 0.124                      | 0.020 |                             | 0.056                               | 0.136                  | E            | G                     | G              |  |
| FmL <sub>3</sub> -M <sub>4</sub> N <sub>3</sub> *    | 14691-14698              | 14    |                |                    |        |                            |       |                             | 0.069                               |                        |              |                       |                |  |
| CfL <sub>2</sub> -M <sub>3</sub> M <sub>3</sub>      | 14764-14790 <sup>a</sup> | 11 ]  |                |                    |        |                            |       |                             | ( 0.002                             |                        |              |                       |                |  |
| FmL <sub>3</sub> -M <sub>3</sub> N <sub>6</sub>      | 14828-14836              | 13    |                |                    |        |                            |       |                             | 0.012                               |                        |              |                       |                |  |
| FmL <sub>2</sub> - M <sub>1</sub> M <sub>5</sub>     | 14834-14852              | 15 }  | 29             | 14846              | 15     | 0.036                      | 0.020 |                             | { 0.009 }                           | 0.042                  | E            | E                     | P              |  |
| CfL <sub>3</sub> -M <sub>4</sub> N <sub>6</sub>      | 14836-14852ª             | 8     |                |                    |        |                            |       |                             | 0.001                               |                        |              |                       |                |  |
| FmL <sub>3</sub> -M <sub>3</sub> N <sub>7</sub>      | 14844-14854              | 13    |                |                    |        |                            |       |                             | 0.014                               |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>4</sub> N <sub>7</sub>      | 14859-14865              | 8 )   |                |                    |        |                            |       |                             | 0.004                               |                        |              |                       |                |  |
| CfL <sub>1</sub> -M <sub>1</sub> M <sub>5</sub>      | 14895-14912              | 10    |                |                    |        |                            |       |                             | 0.002                               |                        |              |                       |                |  |
| $FmL_1-M_1M_3$                                       | 14895-14945              | 14    |                |                    |        |                            |       |                             | 0.010                               |                        |              |                       |                |  |
| FmL <sub>3</sub> -M <sub>5</sub> N <sub>3</sub> *    | 14950-14957              | 16    |                |                    |        |                            |       |                             | 0.094                               |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>4</sub> 0 <sub>1</sub>      | 14989 <sup>a</sup>       | 11    | <b>∫</b> 30 a  | 14983              | 5]     |                            |       |                             | N                                   |                        | F            | F                     |                |  |
| $FmL_3-M_3O_1$                                       | 14992                    | 15    |                |                    |        |                            |       |                             | 0.016                               |                        |              |                       |                |  |
| FmL 3 - M4 N4                                        | 14992-15017              | 15    |                |                    |        |                            |       |                             | 0.021                               |                        |              |                       |                |  |
| <sup>1</sup> P <sub>1</sub>                          | 15000                    |       |                |                    |        |                            |       | 0.185                       |                                     |                        |              |                       |                |  |
| Fm { L <sub>2</sub> -M <sub>2</sub> M <sub>4</sub> * | }                        | 15 }  | 1              |                    | }      | 0.715                      | 0.057 | } }.                        | { 0.212 }                           | [0.715]9               |              |                       |                |  |
| ( <sup>3</sup> D <sub>2</sub>                        | 15044                    |       |                |                    |        |                            |       | 0.003                       |                                     |                        |              |                       |                |  |
| BkL <sub>3</sub> 34.46                               | 15030 <sup>a</sup>       | 12    |                |                    |        |                            |       |                             | [0.148]                             |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>4</sub> 0 <sub>2</sub>      | 15066 <sup>α</sup>       | 14    | ( 30ь          | 15062              | 3 )    |                            |       |                             | N                                   |                        | G            |                       | F              |  |
| FmL <sub>3</sub> -M <sub>3</sub> 0 <sub>2</sub>      | 15074                    | 19    |                |                    |        |                            |       |                             | 0.024                               |                        |              |                       |                |  |
| FmL <sub>3</sub> -M <sub>4</sub> N <sub>5</sub> *    | 15073-15080              | 18    |                |                    |        |                            |       |                             | 0.168                               |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>5</sub> N <sub>6</sub> *    | 15076-15085ª             | 8     |                |                    |        |                            |       |                             | 0.012                               |                        |              |                       |                |  |
| UTL1-M2M4                                            | 15069-15112ª             | 11    |                |                    |        |                            |       |                             | N                                   |                        |              |                       |                |  |
| UTL3-M5N7                                            | 15090-15107ª             | 8 J   |                |                    |        |                            |       |                             | (0.008 J                            |                        |              |                       |                |  |
| CTL3-M403*                                           | 151684                   | -11   |                |                    |        |                            |       |                             | 0.004                               |                        |              |                       |                |  |
| FmL <sub>3</sub> -M <sub>3</sub> O <sub>3</sub> *    | 15191                    | 13    |                |                    |        |                            |       |                             | 0.045                               |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>5</sub> 0 <sub>1</sub>      | 15226 <sup>œ</sup>       | 11    |                |                    |        |                            |       |                             | 0.001                               |                        |              |                       |                |  |
| FmL <sub>3</sub> -M <sub>5</sub> N <sub>4</sub> *    | 15267-15271              | 16    | <b>31</b> a    | 152 <b>65</b>      | 2]     |                            |       |                             | 0.203                               |                        | (E)          |                       |                |  |
| FmL <sub>2</sub> -M <sub>2</sub> M <sub>5</sub> *    | 15272-15281              | 14    |                |                    |        |                            |       |                             | 0.236                               |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>4</sub> 0 <sub>4</sub>      | 15281ª                   | 11    |                |                    |        |                            |       |                             | 0.001                               |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>4</sub> 0 <sub>5</sub>      | 152 <b>96ª</b>           | 11 }  | {              |                    | }      | 1.000                      | 0.070 | •                           | 0.008 }                             | 0.809                  | $\{\}$       | Ρ                     | E              |  |
| FmL <sub>1</sub> -M <sub>2</sub> M <sub>3</sub>      | 15295-15303              | 13    |                |                    |        |                            |       |                             | N                                   |                        |              |                       |                |  |
| CfL <sub>3</sub> -M <sub>5</sub> 0 <sub>2</sub>      | 15303ª                   | 14    |                |                    |        |                            |       |                             | 0.001                               |                        |              |                       |                |  |
|                                                      |                          | 1     | 1              |                    | 1      |                            |       |                             | 1 I                                 |                        |              |                       |                |  |

·----

| 20 | 3 |
|----|---|
| 20 | - |

|                                                                            | Predicted E                       | nergy |            | Ex             | perime | ntal   |       | Theoretic         | cal Inte                    | ensity         | ,     | Agreemen      | f     |
|----------------------------------------------------------------------------|-----------------------------------|-------|------------|----------------|--------|--------|-------|-------------------|-----------------------------|----------------|-------|---------------|-------|
| Turnihing                                                                  | -va                               |       | Peak       | Expt.<br>En.   |        | Expt.C |       | Theor.d I<br>Int. | Theor. <sup>e</sup><br>Int. | Line<br>Groups | En.   | Int.<br>Agree | Qual. |
|                                                                            | ev"                               |       | Uesig.     | ev             | Unc.   | Int.   | Unc.  | Non-Kel.          | Rel.                        | Kel.           | Agree | Rel.          | Evid. |
| rmL <sub>3</sub> -m <sub>3</sub> 0 <sub>4</sub>                            | 15309                             | 14    | 214        | 15220          |        |        |       |                   | .024                        |                |       |               |       |
| Em _ M 0                                                                   | 15317-15320                       | 14    | رعته       | 15320          | رہ     |        |       |                   |                             |                | (E)   |               |       |
| Fmi _M N *                                                                 | 15317-15347                       | 14    |            |                |        |        |       |                   | 250                         |                |       |               |       |
| Cfl = M 0                                                                  | 154059                            | 11)   |            |                |        |        |       |                   | 004                         |                |       |               |       |
| Cfl _M M *                                                                 | 15407-154219                      |       |            |                |        |        |       |                   | 0.022                       |                |       |               |       |
| Emi _M N                                                                   | 15476-15492                       | 13    |            |                |        |        |       |                   | 0.005                       |                |       |               |       |
| Fmi _M N *                                                                 | 15499-15507                       | 13    | 32         | 15490          | 5      | 0.135  | 0.024 | {                 | }                           | 0.089          | G     | Ρ             | G     |
| Fmi _M M                                                                   | 15506-15520                       | 14    |            |                |        |        |       |                   | 006                         |                |       |               |       |
| Cfl =M 0 *                                                                 | 155189                            | 11    |            |                |        |        |       |                   | 000                         |                |       |               |       |
| CflM.O.*                                                                   | 155330                            | 11    |            |                |        |        |       |                   | 011                         |                |       |               |       |
| Fml -M 0.                                                                  | 15645                             | 15)   |            |                |        |        |       |                   |                             |                |       |               |       |
| CfLM.M.                                                                    | 15623-156789                      | 4     |            |                |        |        |       |                   | 005                         |                |       |               |       |
|                                                                            | 15666-156929                      | 12    |            |                |        |        |       |                   | N 1                         |                |       |               |       |
| FmL Mc M-                                                                  | 15718-15744                       | 16    |            |                |        |        |       |                   | 004                         |                |       |               |       |
| FmLM, 0_                                                                   | 15724                             | 19    |            |                |        |        |       |                   | 0.001                       |                |       |               |       |
| 3 4 2                                                                      |                                   |       | 33         | 15733          | 3      | 0.220  | 0 021 | ļ                 |                             | 0 143          | F     | P             | 6     |
| FmL <sub>3</sub> -M <sub>5</sub> N <sub>6</sub> *                          | 15740-15748                       | 15    |            | 10/00          | 3      | 0.220  | 0.021 | ) c               | 0.062                       | 0.145          | '     | r             | 9     |
| FmL <sub>3</sub> -M <sub>5</sub> N <sub>7</sub> *                          | 15754-15772                       | 15    |            |                |        |        |       | c                 | .060                        |                |       |               |       |
| $FmL_1 - M_1M_5$                                                           | 15763-15781                       | ر 16  |            |                |        |        |       | la                | .008                        |                |       |               |       |
| FmL <sub>3</sub> -M <sub>4</sub> 0 <sub>3</sub>                            | 15841                             | 13    | 34         | 15824          | 10     | 0.019  | 0.009 | C                 | .016                        | 0.016          | Ε     | E             | Ρ     |
| FmL <sub>3</sub> -M <sub>5</sub> 0 <sub>1</sub>                            | 15906                             | 16    |            |                |        |        |       | ſ                 | .006 ]                      |                |       |               |       |
| FmL <sub>1</sub> -M <sub>2</sub> M <sub>4</sub>                            | 15929-15973                       | 13    |            |                |        |        |       | C                 | 0.001                       |                |       |               |       |
| FmL 3 - M4 04                                                              | 15962                             | 14 }  | 35         | 15964          | 3      | 0.071  | 0.019 | { 0               | 0.005                       | 0.045          | Ε     | F             | G     |
| FmL <sub>3</sub> -M <sub>4</sub> 0 <sub>5</sub> *                          | 15979                             | 14    |            |                |        |        |       | C                 | 0.033                       |                |       |               |       |
| FmL 3-M502                                                                 | 15988                             | 20 ]  | r          |                |        |        |       | lo                | .005                        |                |       |               |       |
| CfL <sub>2</sub> -M <sub>4</sub> M <sub>4</sub> *<br>FmLM <sub>2</sub> O.* | 16009-16040 <sup>o</sup><br>16105 | 13    | 36a<br>36b | 16036<br>16092 | 10     | 0 296  | 0 039 | ſ                 | 0.030                       | F0 20619       | E     |               | c     |
| BkL <sub>3</sub> -35.59                                                    | 16164 <sup>a</sup>                | 11    |            | 10052          | 10     | 0.250  | 0.033 | ][0               | 0.037]                      | [0.230]5       | Ľ     |               | u     |
| FmL <sub>1</sub> -M <sub>2</sub> M <sub>5</sub>                            | 16201-16210                       | 15    |            |                |        |        |       | C                 | .003                        |                |       |               |       |
| FmL <sub>3</sub> -M <sub>5</sub> 0 <sub>4</sub> *                          | 16223                             | 16    |            |                |        |        |       | 0                 | .043                        |                |       |               |       |
| CfL <sub>3</sub> -N <sub>1</sub> N <sub>1</sub>                            | 16237ª                            | 13    | 36c        | 16208          | 5 ]    |        |       |                   | N                           |                |       |               |       |
| FmL <sub>3</sub> -M <sub>5</sub> 0 <sub>5</sub> *                          | 16240                             | 16    |            |                |        |        |       | C                 | .053                        |                | VP    |               |       |
| CfL2-M4M5*                                                                 | 16263-16283ª                      | 10 J  |            |                |        |        |       | رە                | .108 ]                      |                |       |               |       |
| UTL1-M3M4                                                                  | 16309-16323α                      | 10    | _          |                |        |        |       | ſ                 | NJ                          |                |       |               |       |
| rmL <sub>2</sub> -M <sub>3</sub> M <sub>4</sub> *                          | 16383-16397                       | 12 }  | 37         | 16378          | 5      | 0.212  | 0.029 | { 0               | 1.133                       | 0.133          | E     | Ρ             | E     |
| UTL3-N1N2                                                                  | 16439-16451                       | 13 )  |            |                |        |        |       | l                 | NJ                          |                |       |               |       |
| UTL2-M1N1                                                                  | 164/8-16494ª                      | 10    |            |                |        |        |       | ſ                 | N                           |                |       |               |       |
| UTL2-M5M5                                                                  | 164/5-16515ª                      | 13    | 38         | 16498          | 10     | 0.018  | 0.009 | { 0               | .005 }                      | 0.005          | E     | F             | Ρ     |
| uть <sub>1</sub> -м <sub>3</sub> м <sub>5</sub>                            | 10525-165804                      | 10 )  |            |                |        |        |       | l                 | N J                         |                |       |               |       |
| UTL3-M2N2                                                                  | 100304                            | 21    |            |                |        |        |       |                   | N ]                         |                |       |               |       |
| глі <sub>ї</sub> -м <sub>3</sub> м <sub>3</sub>                            | 10042-100/3                       | 16    |            |                |        |        |       | 0                 | .001                        |                |       |               |       |
| гл. <sub>2</sub> -т <sub>3</sub> м <sub>5</sub>                            | 10030-100/8                       | 14    |            |                |        |        |       | 0                 | .017                        |                |       |               |       |
| <sup>UTL</sup> 2 <sup>-M</sup> 1 <sup>N</sup> 2                            | 167100                            | 13    |            | 1              | -      |        |       | 0                 | .008                        | _              |       |               |       |
| UTL1-42./20                                                                | 16/10"                            |       | U          | 16706          | 1      | 0.151  | 0.027 | {[0               | .123]}                      | [0.151]9       |       |               |       |
| UTL 3-N1N3                                                                 | 16/5/-16779ª                      | ر 10  |            |                |        |        |       | رە                | .002                        |                |       |               |       |

TABLE V. (Continued).

=

| TABLE V. | (Continued). |
|----------|--------------|
| TIDDD .  | (Commuca).   |

|                                                   | Predicted E                    | nergy |        | Ex    | perime | ntal   |       | Theoret  | ical Int         | tensity |       | Agreement | t f   |
|---------------------------------------------------|--------------------------------|-------|--------|-------|--------|--------|-------|----------|------------------|---------|-------|-----------|-------|
|                                                   |                                |       | Peak   | Expt. |        | Fynt C |       | Theor.d  | Theor.6          | E Line  | E.    | Int.      | 0     |
| Transition                                        | eVa                            | Unc.b | Desig. | eV    | Unc.   | Int.   | Unc.  | Non-Rel. | Rel.             | Rel.    | Agree | Rel.      | Evid. |
|                                                   |                                |       |        |       |        |        |       |          |                  |         |       |           |       |
| CfL <sub>2</sub> -M <sub>2</sub> N <sub>1</sub>   | 16904-16906 <sup>a</sup>       | 10    |        |       |        |        |       |          | 0.011            | ]       |       |           |       |
| FmL <sub>3</sub> -N <sub>1</sub> N <sub>1</sub>   | 16922                          | 29    |        |       |        |        |       |          | 0                |         |       |           |       |
| CfL <sub>1</sub> -M <sub>4</sub> M <sub>4</sub>   | 16911-16940ª                   | 14    |        |       |        |        |       |          | N                |         |       |           |       |
| CfL <sub>3</sub> -N <sub>2</sub> N <sub>3</sub>   | 16959-16965∝                   | 10    |        |       |        |        |       |          | 0.004            |         |       |           |       |
| FmL <sub>2</sub> -M <sub>4</sub> M <sub>4</sub> * | 17004-17037                    | 16    | 40     | 17031 | 3      | 0.192  | 0.028 |          | 0.130            | 0.169   | E     | G         | G     |
| CfL <sub>2</sub> -M <sub>1</sub> N <sub>3</sub>   | 17011-17015°                   | 10    |        |       |        |        |       |          | 0.001            |         |       |           |       |
| CfL <sub>3</sub> -N <sub>1</sub> N <sub>4</sub>   | 17066-17073 <sup>a</sup>       | 8     |        |       |        |        |       |          | N                |         |       |           |       |
| CfL <sub>2</sub> -M <sub>2</sub> N <sub>2</sub>   | 17092-17109°                   | 13    |        |       |        |        |       |          | 0.023            | J       |       |           |       |
| CfL <sub>3</sub> -N <sub>1</sub> N <sub>5</sub>   | 17125-17134 <sup>a</sup>       | 8 ]   |        |       |        |        |       |          | 0.001            | )       |       |           |       |
| $FmL_3 - N_1N_2$                                  | 17133-17146                    | 20    |        |       |        |        |       |          | 0                |         |       |           |       |
| CfL <sub>1</sub> -M <sub>4</sub> M <sub>5</sub>   | 17165-17185°                   | 11    |        |       |        |        |       |          | 0.002            |         |       |           |       |
| CfL <sub>3</sub> N <sub>2</sub> N <sub>4</sub>    | 17255-17277ª                   | 11    |        |       |        |        |       |          | N                |         |       |           |       |
| CfL <sub>3</sub> -N <sub>3</sub> N <sub>3</sub>   | 17279-17290°                   | 13    |        |       |        |        |       |          | 0.004            |         |       |           |       |
| FmL <sub>2</sub> -M <sub>4</sub> M <sub>5</sub> * | 17284-17304                    | 14 }  | 41     | 17287 | 2      | 0.648  | 0.074 | •        | 0.465            | 0.475   | Ε     | Ρ         | G     |
| FmL <sub>1</sub> -M <sub>3</sub> M <sub>4</sub>   | 17312-17326                    | 13    |        |       |        |        |       |          | 0.001            |         |       |           |       |
| CfL <sub>2</sub> -M <sub>1</sub> N <sub>4</sub>   | 17317-17318ª                   | 8     |        |       |        |        |       |          | 0.002            |         |       |           |       |
| CfL <sub>3</sub> -N <sub>2</sub> N <sub>5</sub>   | 17321-17326ª                   | 11    |        |       |        |        |       |          | c.001            |         |       |           |       |
| $FmL_3 - N_2N_2$                                  | 17334                          | 27    |        |       |        |        |       |          |                  | j       |       |           |       |
| CfL <sub>2</sub> -M <sub>1</sub> N <sub>5</sub>   | 17378-17379ª                   | 8 ]   |        |       |        |        |       |          | ( N )            | )       |       |           |       |
| $CfL_1-M_1N_1$                                    | 17380-17396°                   | 11    |        |       |        |        |       |          | N                |         |       |           |       |
| CfL <sub>1</sub> -M <sub>5</sub> M <sub>5</sub>   | 17378-17 <b>406</b> ∝          |       |        |       |        |        |       |          | 0.001            |         |       |           |       |
| FmL <sub>1</sub> -44.998                          | 17418                          | }     | E      | 17418 | 1      |        |       | -        |                  | }       |       |           |       |
| CfL <sub>2</sub> -M <sub>2</sub> N <sub>3</sub>   | 17429-17431ª                   |       |        |       |        |        |       |          | 0.023            |         |       |           |       |
| $FmL_2-M_1N_1$                                    | 17424-17441                    |       |        |       |        |        |       |          | 0.001            |         |       |           |       |
| $FmL_3 - N_1N_3$                                  | 17493-17516                    |       |        |       |        |        |       |          | 0.010            |         |       |           |       |
| CfL <sub>3</sub> -N <sub>1</sub> N <sub>6</sub>   | 17516-17521ª                   |       |        |       |        |        |       |          | N                |         |       |           |       |
| CfL <sub>3</sub> -N <sub>1</sub> N <sub>7</sub>   | 17535-17539ª                   |       |        |       |        |        |       |          | N                |         |       |           |       |
| FmL <sub>2</sub> -M <sub>5</sub> M <sub>5</sub>   | 17519-17560                    |       |        |       |        |        |       |          | 0.023            |         |       |           |       |
| FmL <sub>1</sub> -M <sub>3</sub> M <sub>5</sub>   | 17551-17607                    |       |        |       |        |        |       |          | 0.001            |         |       |           |       |
| CfL <sub>1</sub> -M <sub>1</sub> N <sub>2</sub>   | 17587-17589ª                   |       |        |       |        |        |       |          | N                |         |       |           |       |
| CfL <sub>3</sub> -N <sub>3</sub> N <sub>4</sub>   | 17589-17595ª                   | J     |        |       |        |        |       |          | 0.004            |         |       |           |       |
| CfL <sub>2</sub> -42.721                          | 17613                          |       |        |       |        |        |       |          |                  |         |       |           |       |
| $FmL_2-M_1N_2*$                                   | 17642-17654                    |       |        |       |        |        |       |          | 0.034            |         |       |           |       |
| CfL <sub>3</sub> -N <sub>3</sub> N <sub>5</sub>   | 17640-17667ª                   |       |        |       |        |        |       |          | 0.004            |         |       |           |       |
| $CfL_3-N_1O_1$                                    | 17656-17663ª                   |       |        |       |        |        |       |          | N                |         |       |           |       |
| FmL3-N2N3*                                        | 17706-17712                    |       |        |       |        |        |       |          | 0.016            |         |       |           |       |
| CfL <sub>3</sub> -N <sub>2</sub> N <sub>6</sub>   | 17711-17719ª                   |       |        |       |        |        |       |          | N                |         |       |           |       |
| CfL <sub>3</sub> -N <sub>2</sub> N <sub>7</sub>   | 17731-17733ª                   |       |        |       |        |        |       |          | N                |         |       |           |       |
| CfL <sub>2</sub> -M <sub>2</sub> N <sub>4</sub>   | 17733-17736ª                   |       |        |       |        |        |       |          | 0.011            |         |       |           |       |
| CfLN,0,                                           | 17739 <b>-</b> 177 <b>4</b> 0ª |       |        |       |        |        |       |          | N                |         |       |           |       |
| CfLM, Nc                                          | 17768-17770ª                   | ٦     |        |       |        |        |       | 1        | ( <sub>N</sub> ) |         |       |           |       |
| <br>CfL,-M, N,                                    | 17786-17788ª                   |       |        |       |        |        |       | 1        | N                |         |       |           |       |
| CfL <sub>2</sub> -M <sub>2</sub> N <sub>5</sub>   | 177 <b>95</b> ª                |       |        |       |        |        |       |          | 0.014            |         |       |           |       |
| CfL,-M,N,                                         | 17806-17808ª                   |       |        |       |        |        |       |          | N                |         |       |           |       |
|                                                   |                                |       |        |       |        |        |       |          |                  |         |       |           |       |

<u>30</u>

|                                                          | Predicted E              |       | Ex     | perimen      | ntal |        | Theore | tical Inte      | ensity          | Agreementf     |       |               |       |
|----------------------------------------------------------|--------------------------|-------|--------|--------------|------|--------|--------|-----------------|-----------------|----------------|-------|---------------|-------|
| -                                                        |                          |       | Peak   | Expt.<br>En. |      | Expt.C |        | Theor.d<br>Int. | Theor.e<br>Int. | Line<br>Groups | En.   | Int.<br>Agree | Qual. |
| Transition                                               | ev. a                    | UNC.P | Desig. | ev.          | unc. | 111.   | Unc.   | Non-Kel.        | Kel.            | Kel.           | Agree | Kel.          | EV10. |
|                                                          |                          |       |        |              |      |        |        | ,               |                 |                |       |               |       |
| FmL <sub>3</sub> -N <sub>1</sub> N <sub>4</sub>          | 17813-17820              |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| CfL <sub>3</sub> -N <sub>1</sub> 0 <sub>3</sub>          | 17835-17836ª             |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| CfL <sub>3</sub> -N <sub>2</sub> 0 <sub>1</sub>          | 17854-178554             |       | 42     | 17854        | 8    | 0.057  | 0.026  | 1               | N               | 0.083          | G     | F             | F     |
|                                                          | 1/866-1/869              | 1/    |        |              |      |        |        |                 | 0.055           |                |       |               |       |
| rmL <sub>3</sub> -N <sub>1</sub> N <sub>5</sub>          | 1/8/8-1/88/              |       |        |              |      |        |        |                 | 0.003           |                |       |               |       |
| CfL_MO                                                   | 179130                   |       |        |              |      |        |        | 1               | N               |                |       |               |       |
| CfL -M N                                                 | 17913_179174             |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| CfLN_0_                                                  | 17929-17935ª             |       |        |              |      |        |        |                 | N               |                |       |               |       |
| FmL, -M. M.                                              | 17933-17966              |       |        |              |      |        |        |                 | N               |                |       |               |       |
| CfLN_0,                                                  | 17949ª                   |       |        |              |      |        |        |                 | N               |                |       |               |       |
| CfL <sub>2</sub> -N <sub>L</sub> N <sub>5</sub>          | 17951-17959ª             |       |        |              |      |        |        |                 | 0.008           |                |       |               |       |
| CfL3-N105                                                | 17963ª                   | J     |        |              |      |        |        | l               | N               |                |       |               |       |
| CfL2-M102                                                | 17990 <sup>α</sup>       | Ì     |        |              |      |        |        | ſ               | 0.003           |                |       |               |       |
| CfL,-M,N.                                                | 17994-18011ª             |       |        |              |      |        |        |                 | N               |                |       |               |       |
| CfLN_N_                                                  | 18003-18018ª             |       |        |              |      |        |        |                 | 0.005           |                |       |               |       |
| s s s<br>FmLa-MaNa                                       | 18010-18014              |       |        |              |      |        |        |                 | 0.004           |                |       |               |       |
| Z 1 3<br>FmL <sub>2</sub> -N <sub>2</sub> N <sub>2</sub> | 18012-18035              |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| CfL_N_0,                                                 | 18029 <sup>a</sup>       | }     |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| CfL <sub>3</sub> -N <sub>3</sub> N <sub>6</sub>          | 18039-18047ª             |       |        |              |      |        |        |                 | N               |                |       |               |       |
| CfL <sub>3</sub> -N <sub>3</sub> N <sub>7</sub>          | 18052-18064ª             |       |        |              |      |        |        |                 | N               |                |       |               |       |
| FmL <sub>3</sub> -N <sub>3</sub> N <sub>3</sub> *        | 18067-18079              | 16 }  | 43     | 18064        | 10   | 0.060  | 0.026  | {               | 0.019           | 0.133          | Ε     | Ρ             | F     |
| FmL <sub>2</sub> -M <sub>2</sub> N <sub>2</sub> *        | 18065-18083              | 18    |        |              |      |        |        | 1               | 0.097           |                |       |               |       |
| FmL <sub>3</sub> -N <sub>2</sub> N <sub>5</sub>          | 18085-18090              |       |        |              |      |        |        |                 | 0.004           |                |       |               |       |
| $CfL_2-M_1O_3$                                           | 18092ª                   | J     |        |              |      |        |        | l               | N J             |                |       |               |       |
| $CfL_2-M_3N_1$                                           | 18127-18131 <sup>a</sup> | J     |        |              |      |        |        | ſ               | 0.001           |                |       |               |       |
| CfL <sub>3</sub> -N <sub>2</sub> 0 <sub>4</sub>          | 18142-18143 <sup>a</sup> |       |        |              |      |        |        |                 | N               |                |       |               |       |
| CfL <sub>3-</sub> N <sub>2</sub> 0 <sub>5</sub>          | 18156 <sup>α</sup>       |       |        |              |      |        |        |                 | N               |                |       |               |       |
| CfL <sub>3</sub> -N <sub>3</sub> 0 <sub>1</sub>          | 18181-18183 <sup>a</sup> |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| CfL <sub>2</sub> -M <sub>2</sub> N <sub>6</sub>          | 18183-18189ª             |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| CTL <sub>2</sub> -M <sub>2</sub> N <sub>7</sub>          | 18202-18204              |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
|                                                          | 18205                    | 15    |        |              |      |        |        |                 | N               |                |       |               |       |
| rmL <sub>1</sub> -m <sub>4</sub> m <sub>5</sub> *        | 18212-18233              | 15    |        |              |      |        |        |                 | 0.009           |                |       |               |       |
| CfL <sub>1</sub> -M <sub>1</sub> N <sub>4</sub>          | 18219-18220 <sup>a</sup> |       |        |              |      |        |        |                 | N               |                |       |               |       |
| CfL <sub>2</sub> -M <sub>1</sub> 0 <sub>5</sub>          | 18220ª                   |       |        |              |      |        |        | [               | N               |                |       |               |       |
| CfL <sub>3</sub> -N <sub>3</sub> 0 <sub>2</sub>          | 182 <b>61ª</b>           |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| CfL <sub>1</sub> -M <sub>1</sub> N <sub>5</sub>          | 18280-18281ª             |       |        |              |      |        |        |                 | N               |                |       |               |       |
| FmL <sub>3</sub> -N <sub>1</sub> N <sub>6</sub>          | 18286-18291              |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| FmL <sub>3</sub> -N <sub>1</sub> N <sub>7</sub>          | 18306-18310              |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| FmL <sub>2</sub> -M <sub>1</sub> N <sub>4</sub>          | 1832/-18328              |       |        |              |      |        |        |                 | 0.008           |                |       |               |       |
|                                                          | 10329*                   |       |        |              |      |        |        |                 | 0.004           |                |       |               |       |
| $CfL_2 = N_3 N_2$                                        | 18332-18332ª             |       |        |              |      |        |        |                 | 0.004<br>N      |                |       |               |       |
| CfLN_N_                                                  | 18333-18350ª             |       |        |              |      |        |        |                 | N               |                |       |               |       |
| FmL44.988                                                | 18347                    | 10    | F      | 18345        | 2    | 16 16  | 1.6    | J               | [15,93]         | - [16 1610     |       |               |       |
| CfLN_0_                                                  | 18350-18359ª             |       |        | 20040        | -    | 10.10  | •••    | }               | 0.002           | [10.10]9       |       |               |       |
| FmL,-M.N.                                                | 18353-18370              |       |        |              |      |        |        |                 | N               |                |       |               |       |
| ттт<br>CfL <sub>3</sub> -N, N.,                          | 18353-18381ª             |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| FmLN_N_*                                                 | 18388-18395              | 16    |        |              |      |        |        |                 | 0.017           |                |       |               |       |
| FmL <sub>2</sub> -M <sub>1</sub> N <sub>5</sub>          | 18394-18395              |       |        |              |      |        |        |                 | 0.001           |                |       |               |       |
| CfL2-M202                                                | 18 <b>406</b> °          |       |        |              |      |        |        |                 | 0.005           |                |       |               |       |
|                                                          |                          |       |        |              |      |        |        |                 | ļ               |                |       |               |       |

\_\_\_\_\_

|                                                 | Predicted E  | Energy | y Experimental |                     |      |        |      | Theore                      | tical Inte                          | ensity                 | Agreement f  |                      |               |
|-------------------------------------------------|--------------|--------|----------------|---------------------|------|--------|------|-----------------------------|-------------------------------------|------------------------|--------------|----------------------|---------------|
| Transition                                      | eV, a        | Unc.b  | Peak<br>Desig  | Expt.<br>En.<br>eV. | Unc. | Expt.C | Unc. | Theor.d<br>Int.<br>Non-Rel. | Theor. <sup>e</sup><br>Int.<br>Rel. | Line<br>Groups<br>Rel. | En.<br>Agree | Int.<br>Agree<br>Rel | Qual.<br>Evid |
| CEL -N N                                        | 18400-184089 | 1      |                |                     |      |        |      |                             |                                     |                        |              |                      |               |
| CFL .N N                                        | 10411 104259 |        |                |                     |      |        |      |                             | 0.002                               |                        |              |                      |               |
| CTL 3-N5N7                                      | 10444 10445  | 14     |                |                     |      |        |      |                             | 0.002                               |                        |              |                      |               |
|                                                 | 18444-18446  | 14     |                |                     |      |        |      |                             | 0.108                               |                        |              |                      |               |
| FmL <sub>3</sub> -N <sub>1</sub> O <sub>1</sub> | 18442-18449  |        |                |                     |      |        |      |                             | N                                   |                        |              |                      |               |
| FmL 3-N3N5*                                     | 18445-184/3  | 19     |                |                     |      |        |      |                             | 0.022                               |                        |              |                      |               |
| FmL <sub>1</sub> -M <sub>5</sub> M <sub>5</sub> | 18448-18489  |        |                |                     |      |        |      |                             | 0.003                               |                        |              |                      |               |
|                                                 | 18469-18472  |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
|                                                 | 10403-10404- |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
|                                                 | 18482-18485  |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
| CEL M 0                                         | 195098       |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
|                                                 | 10512 10514  |        |                |                     |      |        |      |                             | 0.007                               |                        |              |                      |               |
|                                                 | 10512-10514  |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
| $FmL_3 - N_1 O_2$                               | 18529-18530  |        |                |                     |      |        |      |                             | N                                   |                        |              |                      |               |
|                                                 | 18544-18545* |        |                |                     |      |        |      |                             |                                     |                        |              |                      |               |
| UTL3-N402                                       | 18501-18503# |        |                |                     |      |        |      |                             | n I                                 |                        |              |                      |               |
| Emi M N                                         | 19571-19573  |        |                |                     |      |        |      |                             | 0.002                               |                        |              |                      |               |
| CfL_M_0                                         | 186219       | )<br>) |                |                     |      |        |      |                             | (0.002)                             |                        |              |                      |               |
|                                                 | 186239       |        |                |                     |      |        |      |                             | 0.003<br>N                          |                        |              |                      |               |
|                                                 | 186369       |        |                |                     |      |        |      |                             | 0.003                               |                        |              |                      |               |
| CfL _M N                                        | 18635-186389 |        |                |                     |      |        |      |                             | 0.003<br>N                          |                        |              |                      |               |
| Emi -N 0                                        | 18639-18641  |        |                |                     |      |        |      |                             | 0.002                               |                        |              |                      |               |
| $FmL_3 = N_1 O_3$                               | 18650-18651  |        |                |                     |      |        |      |                             | 0.002                               |                        |              |                      |               |
|                                                 | 18642-18666ª |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
| CfL_2 <sup>-11</sup> 3 <sup>11</sup> 3          | 18656-186609 |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
|                                                 | 18670-186729 |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
| CfL _M N                                        | 18688-186909 |        |                |                     |      |        |      |                             | N                                   |                        |              |                      |               |
| Eml -N N                                        | 18693-18706  |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
| CFL -M N                                        | 186079       |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
| CfL -N 0                                        | 18716-187204 |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
|                                                 | 19720 19736  |        | 44.5           | 10720               | 2    |        |      |                             | 0.001                               |                        | 0            |                      | ~             |
| FmL 3 - 12 0 2                                  | 18759        |        | 440            | 10/20               | 3    |        |      |                             |                                     |                        | P            |                      | G             |
| Fml_3 <sup>-11</sup> 1 <sup>0</sup> 4           | 18750-18762  | 16     |                |                     |      |        |      |                             | 0.055                               |                        |              |                      |               |
| CfL_M_N                                         | 18763-18764ª | 15     |                |                     |      |        |      |                             | 0.003                               |                        |              |                      |               |
|                                                 | 18766-187749 |        |                |                     |      |        |      |                             | 0.005                               |                        |              |                      |               |
| 0123-1404                                       | 10/00-10//4  |        |                |                     |      |        |      |                             | , n                                 |                        |              |                      |               |
| Fml _N N *                                      | 18767-18776  | 20     |                |                     |      | 0 160  | 0.03 |                             | 0.037                               | 0 203                  |              | F                    | c             |
| Emi _N.O                                        | 18775        |        |                |                     |      | 0.100  | 0.05 |                             | 0.001                               | 0.205                  |              | •                    | ŭ             |
| CfLN 0                                          | 18784-18787ª |        |                |                     |      |        |      |                             | 0.002                               |                        |              |                      |               |
| CfLN_N_                                         | 18781-187999 |        |                |                     |      |        |      |                             | N                                   |                        |              |                      |               |
|                                                 | 18795-18798  |        | 44b            | 18795               | 3    |        |      |                             | 0.001                               |                        | F            |                      | G             |
| FmL12_1                                         | 18800-18803  |        |                |                     |      |        |      |                             | 0.001                               |                        |              |                      |               |
| CfLN_N_                                         | 18806-18818ª | 1      |                |                     |      |        |      |                             | N                                   |                        |              |                      |               |
| CfL,-M.O.                                       | 18815ª       | 1      |                |                     |      |        |      |                             | N                                   |                        |              |                      |               |
| FmLM_N_                                         | 18819-18822  |        |                |                     |      |        |      |                             | N                                   |                        |              |                      |               |
| CfLN_N_                                         | 18818-18835ª |        |                |                     |      |        |      |                             | N                                   |                        |              |                      |               |
| FmLa-MaNe*                                      | 18827-18828  | 18     |                |                     |      |        |      |                             | 0.062                               |                        |              |                      |               |
| CfLN_0.                                         | 18831-18834ª | 1 -    |                |                     |      |        |      |                             | 0.002                               |                        |              |                      |               |
| s 5-4<br>FmL_s-N_N_*                            | 18825-18841  | 24     |                |                     |      |        |      |                             | 0.027                               |                        |              |                      |               |
| CfLN_0_                                         | 18840-18850° | J .4   |                |                     |      |        |      |                             | N N                                 |                        |              |                      |               |
| FmLN_0_                                         | 18844        |        |                |                     |      |        |      |                             | 0.004                               |                        |              |                      |               |
| FmL_3-N_N_                                      | 18860-18888  |        |                |                     |      |        |      |                             | 0.002                               |                        |              |                      |               |
| FmLa-NaNa                                       | 18875-18888  |        |                |                     |      |        |      |                             | 0.002                               |                        |              |                      |               |
| CfL,-M,0,                                       | 18892ª       |        |                |                     |      |        |      |                             | N                                   |                        |              |                      |               |
| 1 1-2                                           |              |        |                |                     |      |        |      |                             |                                     |                        |              |                      |               |

TABLE V. (Continued).

<sup>a</sup> All energies are with respect to the Fermi level. Values, except for *L-MO* are taken from Larkins together with the interchange of  $L_3$ - $M_5N_2$  and  $L_3$ - $M_4N_3$ . For *L-MO* values see text, Sec. VII. To the experimental energies are added the work function of Al (3.5 eV), see text.

<sup>b</sup> Uncertainties in each of the Larkins values are the combined uncertainties of the three binding energies involved in the transition taken from the Porter and Freedman values used by Larkins in footnote a.

-----

#### TABLE V. (Continued).

<sup>c</sup> Refer to Fig. 2. Lines principally Auger are numbered. Lines principally internal conversion are given capital letters. The experimental intensities of the peaks designated in the Fm and Cf spectra, Fig. 2, are given relative to Fm  $L_3$ - $M_4M_5$ .

<sup>d</sup> For cases where some intermediate coupling components are widely separated (> 20 eV), we get an estimate of the relative importance of the different intermediate coupling components from computations by Haynes; see text, Sec. VII. These are nonrelativistic estimates.

<sup>e</sup>Relativistic theoretical line intensities relative to  $L_3$ - $M_4M_5$  were calculated as described in the text of Sec. VII. N means less than 0.001. L-shell primary vacancy distribution was taken from Table II.

<sup>f</sup> This column summarizes qualitatively the agreement in energy and intensity between experiment and theory. The theoretical energy is taken as the energy of the most intense component of the line except where there are two or more nearly equal components, in which case an intensity-weighted average is used in the comparison. The quality of the evidence is dependent primarily on the intensity of the experimental line but also to some extent on its shape. The designations are *E*, excellent; *G*, good; *F*, fair; and *P*, poor. The designations for agreement in energy are *E*, excellent ( $< \frac{1}{2}$  s.d.); *G*, good (< 1 s.d.); *F*, fair (< 2 s.d.); *P*, poor (> 2 s.d.). The agreement in intensity is *E*, excellent (< 1 s.d.); *G*, good (< 2 s.d.); *F*, fair (< 3 s.d.); and *P*, poor (> 3 s.d.).

<sup>g</sup> In some cases there are conversion lines and Auger lines so close together as to be unresolved. Usually in these cases there is no experimental or theoretical information on the intensity of the conversion line. Since the agreement in intensities (relativistic) is generally fairly good, we have used the theoretical intensities of the Auger lines together with the experimental line intensity to obtain an estimate for the intensity of the conversion line. In general, this is the only available experimental evidence on the intensity of the conversion lines.

The tabulated values for the intensities of the  $L_1$ ,  $L_2$ , and  $L_3$  conversion lines of the 34.46- and 35.39-keV transitions in Bk are grossly in error (overestimated) owing to the generally large decay corrections applied to almost all the experimental data based on the 39.3*h* controlling decay of the <sup>254m</sup>Es parent. The <sup>250</sup>Bk transitions are fed instead by 276*d* <sup>254</sup>Es  $\alpha$  decay, so their contributions to the intensities of the line complexes are overcorrected. Applying proper decay corrections to these listed Bk components yields much smaller intensity values, but with such relatively large associated errors as to be of little use.

probably does not hold for the Coster-Kronig $^{25}$  transitions.

One begins with the initial  $L_1:L_2:L_3$  vacancy distribution (Table II). For Pu we first computed the nonrelativistic intensities relative to  $L_3-M_4M_5$  using McGuire's Auger and Coster-Kronig values for Z = 90, i.e., ignoring possible CK variation with Z, together with Scofield's<sup>26</sup> relativistic radiation transition probabilities extrapolated to Z = 94 [by least-squares fit (correlation greater than 0.999) to the fourth root of the transition probabilities from Z = 50 to 92]. Radiative transition probabilities are needed, together with CK and Auger probabilities, to calculate the CK-generated shifts from the initial  $L_i$  vacancy distribution to the distribution needed to calculate the relative Auger emission rates between  $L_i$ -XY bands.

In order to allow for possible changes in Coster-Kronig transition probabilities between Z = 90 and 94, we have also formed a mixed system consisting of McGuire's values for the Auger lines for Z = 90 and the relativistic Coster-Kronig values of Chen *et al.*<sup>8</sup> for Z = 94. Finally, we have made a comparison with the complete Auger relativistic calculations of Chen *et al.*<sup>8</sup> interpolated for Z = 94, using the relativistic radiation calculations of Sco-field extrapolated by least squares to Z = 94.

For fermium the complete set of transition probabilities for Z = 100 of Chen *et al.*<sup>9</sup> were combined with the least-squares extrapolation of Scofield's radiation probabilities to Z = 100. No nonrelativistic comparison was attempted because the closest complete Auger calculations were for Z = 90 (except that the  $L_i$ -MM intermediate coupling intensity calculations of Haynes for Fm are nonrelativistic).

These nonrelativistic calculations by Haynes of the relative intensities of the individual J components of an L-MM j-j transition were used for all four spectra in comparing the experimental and theoretical energies of the incompletely resolved L-MM intermediate coupling multiplets (e.g., lines 3a, 3b, 9, 11, 14, 15, and 30 in Fig. 2 and 1, 9, 11, 12, 13, and 24 in Fig. 1). With differences of up to 60 eV between the components of different J's, it was important to know which components are dominant.

All of the these theoretical values for energy and intensity are shown in Tables IV (Pu), V (Fm), VI (Am), VII (Cf), and XIII ( $L_i$ - $M_4M_5$  for all four) and will be discussed in Sec. VIII. The tables are fully explained by the accompanying footnotes.

### VIII. DETAILED COMPARISON OF THEORY AND EXPERIMENT

#### A. Energy

We have computed the experimental-theoretical (Larkins) energy difference for each measured line of the four spectra and also the uncertainty in this difference [1 standard deviation (s.d.)]. Table VIII shows the number of lines of each spectrum having differences of various numbers of s.d.'s. Clearly Larkins's values agree with the empirical assignments<sup>16,22</sup> and give correct energies within the experimental errors of the binding energies.

The only clearly resolved intermediate coupling multiplet in an L-Auger transition is that of line  $L_3-M_1M_3$  in Fm (lines 3a, 3b in Fig. 2), although some others show evidence of multiplicity in their rounded peaks, e.g.,  $L_3-M_3M_3$  (line 9), whose  ${}^3P_0$  and  ${}^3P_2$  members are split by 26 eV, compared to  $L_2-M_2M_2$  (line 19) with only one member. These Fm structures cannot be attributed to spectator vacancy satellites owing to the low  $L_1$  initial vacancy population [see Fig. 4(c) and Table II]. The energy split in the resolved  $L_3-M_1M_3$  pair closely matches

TABLE VI. LMM Auger lines in <sup>241</sup>Am. S suffix on line label marks spectator vacancy satellite. J values are for the final state(s) in intermediate coupling, whose component intensities were calculated by Haynes nonrelativistically for Z = 100. Energies are with respect to the Fermi level, corrected (3.5 eV) for the work function of Al (see text). Theoretical [Larkins (Ref. 7)] energy uncertainties are those of Porter and Freedman's binding energies used. Intensities are given qualitatively: VS is 1-0.75; S is 0.75-0.50; M is 0.50-0.25; W is 0.25-0.10; VW is 0.10-0.01; VVW is less than 0.01. H (high) and L (low) are qualifiers. Intensity predictions are relativistic. Asterisks (\*) denote substantial disagreement.

| 241AM<br>95<br>Line                             | J                                   | Intm.<br>Coup.<br>Comp.<br>(%) | Predictions<br>Larkins<br>(eV) | Exp.<br>Energy<br>(eV) | Expt.<br>Int. | Int.<br>Pred.<br>Rel. | Comments                                                                                                             |
|-------------------------------------------------|-------------------------------------|--------------------------------|--------------------------------|------------------------|---------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|
| L,-M,M,                                         | 0                                   |                                | 6,146±5                        | 6,133±16               | VVW           | VVW                   |                                                                                                                      |
| L <sub>3</sub> -M <sub>1</sub> M <sub>2</sub>   | 1                                   |                                | 6,549±6                        | -                      | 0             | VVW                   |                                                                                                                      |
| L <sub>3</sub> -M <sub>2</sub> M <sub>2</sub>   | 0                                   |                                | 6,929±10                       | -                      | 0             | VVW                   |                                                                                                                      |
| L <sub>3</sub> -M <sub>1</sub> M <sub>3</sub>   | {2<br>1                             | 40<br>60                       | 7,615±6                        | 7,581±15               | w             | W                     | Line + Satellite                                                                                                     |
| L,-M,M,                                         | { <sup>2</sup>                      | 70<br>20                       | 7,973±8                        | 7,954±8                | м             | м                     | Line + Satellite                                                                                                     |
| 5 2 3                                           | (1<br>∫2                            | 40                             | 8,182±6 ]                      | 0 172+24               | WL.           | What                  | 1 day 4 Cat-11/4-                                                                                                    |
| <sup>1</sup> 3 <sup>-m</sup> 1 <sup>m</sup> 4   | 11<br>(1                            | 60                             | 8,195±6 }                      | 8,1/2124               | VW            | vw                    | Line + Satellite                                                                                                     |
| L <sub>3</sub> -M <sub>1</sub> M <sub>5</sub>   | { 2                                 | 40                             | 8,384±6 }                      | 8,342±25               | VW            | VW                    | Line + Satellite                                                                                                     |
| L <sub>3</sub> -M <sub>2</sub> M <sub>4</sub>   | 2,1                                 |                                | 8,503-8,564                    | 8,606±25               | VVW           | VVW                   | Line + Satellite                                                                                                     |
| L3-M2M55                                        | • •                                 |                                | 0 770 0 700                    | 8,094110               | W             | -                     | Sat. of L <sub>3</sub> M <sub>2</sub> M <sub>5</sub>                                                                 |
| 3-"2"5                                          | ( 2                                 | 70                             | 0,770-0,709                    | -                      | Present       | W                     | Masked by L1-32.0                                                                                                    |
| L <sub>3</sub> -M <sub>3</sub> M <sub>3</sub>   | lõ                                  | 30                             | 8,996±10)                      | -                      | -             | м                     | Masked by M <sub>1</sub> -15.2                                                                                       |
| L <sub>3</sub> -M <sub>3</sub> M <sub>4</sub>   | $\begin{cases} 3\\2\\1 \end{cases}$ | 57<br>23<br>20                 | 9,613±8<br>9,630±8             | 9,612±17               | ~M            | м                     | On Side of L <sub>2</sub> -32.6                                                                                      |
| L <sub>3</sub> -M <sub>3</sub> M <sub>5</sub> S |                                     | 20                             | 5,010-0 5                      | 9,768±10               | -             |                       | Satellite of L <sub>3</sub> -M <sub>3</sub> M <sub>5</sub>                                                           |
| L <sub>3</sub> -M <sub>3</sub> M <sub>5</sub>   | { 3<br>1                            | 60<br>30                       | 9,812±8                        | 9,804±9                | м             | м                     |                                                                                                                      |
| La-M.M.S                                        |                                     |                                | 5,755-07                       | 10,167±18              |               | -                     | Satellite of L <sub>2</sub> -M,M,                                                                                    |
| L3-M4M4                                         | 2                                   | 90                             | 10,221±10                      | 10,228±18              | VW            | VW                    |                                                                                                                      |
| L <sub>3</sub> -M <sub>4</sub> M <sub>5</sub> S |                                     |                                |                                | 10,370±2               | -             | -                     | Satellite of $L_3-M_4M_5$                                                                                            |
| L <sub>3</sub> -M <sub>4</sub> M <sub>5</sub>   | { 4<br>3                            | 70<br>20                       | 10,413±8<br>10,433±8           | 10,414±2               | vs            | ٧S                    |                                                                                                                      |
| $L_2 - M_1 M_1$                                 | 0                                   | 100                            | 10,599±5                       | -                      | -             | VVW                   | Masked by L <sub>3</sub> M <sub>5</sub> M <sub>5</sub>                                                               |
| L <sub>3</sub> -M <sub>5</sub> M <sub>5</sub> S | ٢.                                  | 76                             | 10 (14) 10                     | 10,577±5               | -             | -                     | Satellite of L <sub>3</sub> -M <sub>5</sub> M <sub>5</sub>                                                           |
| L <sub>3</sub> -M <sub>5</sub> M <sub>5</sub>   | {2                                  | 20                             | 10,622±10                      | 10,631±10              | S             | S                     |                                                                                                                      |
| $L_2 - M_1 M_2$                                 | 1                                   | 85                             | 10,991±6                       | 10,979±19              | VW            | VW                    |                                                                                                                      |
| L <sub>2</sub> -M <sub>2</sub> M <sub>2</sub>   | 0                                   | 100                            | 11,374±10                      | 11,386±9               | W             | VW                    | *                                                                                                                    |
| L <sub>1</sub> -M <sub>1</sub> M <sub>1</sub>   | 0<br>(1                             | 80                             | 11,444±5                       | 11,459±19              | VW            | VW                    |                                                                                                                      |
| L <sub>1</sub> -M <sub>1</sub> M <sub>2</sub>   | {ô                                  | 20                             | 11,872±6 }                     | 11,843±5               | w             | W                     |                                                                                                                      |
| L <sub>2</sub> -M <sub>1</sub> M <sub>3</sub>   | 2,1                                 |                                | 12,010-12,060                  | -                      | n             | VVW<br>VVW            |                                                                                                                      |
| La-MaMa                                         | {2                                  | 67                             | 12,395±8                       | 12.409±5               | vw            |                       | *                                                                                                                    |
| 2 2 3                                           | 2.1                                 | 33                             | 12,408±8 J                     | _                      | -             | VW                    | Macked hv 1 -M N                                                                                                     |
| -2 -1-4<br>LM, M_                               | 3,2                                 |                                | 12,843-12,826                  | -                      | -             | VVW                   | Masked by $L_2 - M_2 N_1$                                                                                            |
| L,-M,M,                                         | { <sup>2</sup>                      | 45                             | $12,913\pm6$                   | -                      | -             | w                     | SAT, $L_1 - M_1 M_3$<br>Masked by $L_2 - M_2 N_{u,e}$                                                                |
| La-MaM.                                         | 1                                   | 98                             | 12,000±0 J                     | 13.004±10              | VW            | VW                    | * 3 3 4/3                                                                                                            |
| L <sub>2</sub> -M <sub>2</sub> M <sub>5</sub>   | 3,2                                 |                                | 13,220-13,228                  | -                      | -             | VW                    | Mixed with L <sub>3</sub> -M <sub>4</sub> N <sub>3</sub>                                                             |
| L <sub>1</sub> -M <sub>2</sub> M <sub>3</sub>   | 2                                   | 100                            | 13,271±8                       | -                      | ~0            | VVW                   |                                                                                                                      |
| L <sub>2</sub> -M <sub>3</sub> M <sub>3</sub>   | 2,0                                 |                                | 13,462-13,438                  | -                      | ~0            | VVW                   | Interference by<br>L <sub>2</sub> -M <sub>2</sub> N <sub>2</sub> , L <sub>2</sub> -M <sub>2</sub> N <sub>6</sub> SAT |
| L <sub>1</sub> -M <sub>1</sub> M <sub>4</sub>   | 2                                   | 90                             | 13,480±6                       | Present                | -             | W                     | Interference by<br>N <sub>a</sub> -15.2, L <sub>a</sub> -M.M. SAT                                                    |
| L <sub>1</sub> -M <sub>1</sub> M <sub>5</sub>   | 3                                   | 83                             | 13,699±6                       | Present                | ~₩            | W                     | Interference by<br>La-M.N. La-M-M. SAT                                                                               |
| L1-M2M4                                         | 2,1                                 |                                | 13,901-13,859                  | -                      | -             | VVW                   | Masked by $L_3-M_4N_7$ SAT                                                                                           |
| L <sub>2</sub> -M <sub>3</sub> M <sub>4</sub>   | 3                                   | 80                             | 14,055±8                       | -                      | -             | VW                    | Masked by N <sub>3</sub> -15.2                                                                                       |
| L <sub>1</sub> -M <sub>2</sub> M <sub>5</sub>   | 3                                   | 100                            | 14,076±8                       | -                      | -             | VW                    | Masked by L <sub>3</sub> -32.6                                                                                       |
| L <sub>2</sub> -M <sub>3</sub> M <sub>5</sub>   | $\begin{cases} 3 \\ 1 \end{cases}$  | 60<br>40                       | 14,254±8 (<br>14,241±8 }       | 14,262±10              | VW            | VVW                   | *                                                                                                                    |
| L <sub>1</sub> -M <sub>3</sub> M <sub>3</sub>   | 2                                   | 85                             | 14,318±10                      | -                      | ~0            | VVW                   |                                                                                                                      |
| L <sub>2</sub> -M <sub>4</sub> M <sub>4</sub>   | 2                                   | 88                             | 14,663±10                      | 14,659±5               | м             | VW                    | *                                                                                                                    |
| -2-m4 <sup>m</sup> 5                            | 4                                   | 85                             | 14,00018                       | 14,805±3               | м             | w                     | -includes u,-15.2276<br>keV at 14.853 keV,<br>mixed with 0,-15.2276<br>keV at 14.928 keV.                            |
| L <sub>1</sub> -M <sub>3</sub> M4               | 3                                   | 98                             | 14,911±8                       | 14,924±11              | VW            | VVW                   |                                                                                                                      |
| L <sub>2</sub> -M <sub>2</sub> M <sub>2</sub>   | { <b>4</b>                          | 33<br>50                       | 15,076±10                      |                        |               | ۲ww ک                 |                                                                                                                      |
| L <sub>1</sub> -M <sub>2</sub> M <sub>2</sub>   | رد<br>ع                             | 85                             | 15,110±8                       | 15,090±22              | VW            | <sub>vvw</sub> }      |                                                                                                                      |
| L,-M.M.                                         | {²                                  | 40                             | 15,519±10                      | 15,502±11              | VW            | VVW                   | In partial combina-                                                                                                  |
|                                                 | 10<br>•                             | 60<br>90                       | 15,488±10)                     | 15 720+2               | ۲             | м                     | tion with L <sub>2</sub> -M <sub>2</sub> N <sub>1</sub>                                                              |
| - <u>1</u> -m4™5<br>L1-M2M2                     | 4                                   | 99<br>80                       | 15,932±10                      | 15,720±2<br>15,957±16  | M<br>VW       | VW                    | *                                                                                                                    |
| 1 2.2                                           |                                     |                                | ,                              |                        |               |                       |                                                                                                                      |

TABLE VII. LMM Auger lines in <sup>250</sup>Cf. See caption for Table VI.

| Cf<br>Line                                                                                     | J                                                              | Intm.<br>Coup.<br>Comp.<br>(%) | Predictions<br>Larkins<br>(eV)      | Expt.<br>Energy<br>(eV) | Expt.<br>Int. | Int.<br>Pred.<br>Rel. | Comments                                                                                                              |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|-------------------------------------|-------------------------|---------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------|
| L3-M1M1                                                                                        | 0                                                              |                                | 6,280±13                            | -                       | 0             | VVW                   |                                                                                                                       |
| L3-M1M2                                                                                        | 1                                                              |                                | 6,713±10                            | -                       | 0             | VVW                   |                                                                                                                       |
| L <sub>3</sub> -M <sub>2</sub> M <sub>2</sub>                                                  | 0                                                              |                                | 7,122±12                            | -                       | 0             | VVW                   |                                                                                                                       |
| L <sub>3</sub> -M <sub>1</sub> M <sub>3</sub>                                                  | $\Big\{ \begin{smallmatrix} 2\\1 \end{smallmatrix}$            | 40<br>60                       | 7,969±12<br>7,919±12                | 7,921±6                 | W             | W                     |                                                                                                                       |
| L <sub>3</sub> -M <sub>2</sub> M <sub>3</sub>                                                  | $\Big\{ \begin{smallmatrix} 2\\1 \end{smallmatrix} \Big.$      | 70<br>30                       | 8,353±11<br>8,366±11                | 8,353±8                 | м             | м                     |                                                                                                                       |
| L <sub>3</sub> -M <sub>1</sub> M <sub>4</sub>                                                  | 2,1                                                            |                                | 8,559-8,576                         |                         | D             | VW                    | Poor statistics                                                                                                       |
| L <sub>3</sub> -M <sub>1</sub> M <sub>5</sub>                                                  | $\left\{ \begin{matrix} 3 \\ 2 \end{matrix} \right.$           | 60<br>40                       | 8,810±10<br>8,792±10}               | 8,785±17                | VW            | Viri                  | Line + Satellite                                                                                                      |
| L 3 - M2 M4                                                                                    | 2,1                                                            |                                | 8,966-9,009                         | -                       | -             | VW                    | On Tail of Conv. Line                                                                                                 |
| L <sub>3</sub> -M <sub>2</sub> M <sub>5</sub>                                                  | 3,2                                                            |                                | 9,214-9,223                         |                         |               | VW                    | Coincident with<br>L <sub>2</sub> -34,322                                                                             |
| L <sub>3</sub> -M <sub>3</sub> M <sub>3</sub>                                                  | $\Big\{ \begin{smallmatrix} 2 \\ 0 \\ \end{smallmatrix} \Big.$ | 70<br>30                       | 9,589±17<br>9,563±17                | 9,589±9                 | м             | м                     |                                                                                                                       |
| L <sub>3</sub> -M <sub>3</sub> M <sub>4</sub> S                                                |                                                                |                                |                                     | 10,139±19               |               |                       |                                                                                                                       |
| L <sub>3</sub> -M <sub>3</sub> M <sub>4</sub>                                                  | $\begin{cases} 3\\2\\1 \end{cases}$                            | 57<br>23<br>20                 | 10,206±12<br>10,220±12<br>10,207±12 | 10,210±4                | м             | м                     |                                                                                                                       |
| L <sub>3</sub> -M <sub>3</sub> M <sub>5</sub> S                                                |                                                                |                                |                                     | 10,385±18               |               |                       |                                                                                                                       |
| L <sub>3</sub> -M <sub>3</sub> M <sub>5</sub>                                                  | $\left\{ \begin{array}{c} 3 \\ 1 \end{array} \right.$          | 60<br>30                       | 10,436±12<br>10,422±12              | 10,444±4                | нм            | LS                    |                                                                                                                       |
| L <sub>3</sub> -M <sub>4</sub> M <sub>4</sub> S                                                |                                                                |                                |                                     | 10,783±18               |               |                       |                                                                                                                       |
| L <sub>3</sub> -M <sub>4</sub> M <sub>4</sub>                                                  | 2                                                              | 90                             | 10,839±13                           | 10,823±18               | VW            | ٧W                    |                                                                                                                       |
| L <sub>3</sub> -M <sub>4</sub> M <sub>5</sub>                                                  | $\begin{cases} 4\\3 \end{cases}$                               | 70<br>20                       | 11,062±10 {<br>11,082±10 }          | 11,065±9                | VS            | VS                    | St and ar d                                                                                                           |
| L <sub>3</sub> -M <sub>5</sub> M <sub>5</sub>                                                  | { 2                                                            | 20                             | 11,308±13                           | 11,325±5                | S             | S                     |                                                                                                                       |
| L <sub>2</sub> -M <sub>1</sub> M <sub>1</sub>                                                  | 0                                                              |                                | 11,482±13                           | -                       | 0             | VVW                   |                                                                                                                       |
| L <sub>2</sub> -M <sub>1</sub> M <sub>2</sub>                                                  | 1                                                              | 85                             | 11,914±9                            | 11,898±20               | W             | W                     |                                                                                                                       |
| L <sub>2</sub> -M <sub>2</sub> M <sub>2</sub>                                                  | 0                                                              | 100                            | 12,323±11                           | 12,309±20               | VW            | Wi.                   | *                                                                                                                     |
| L <sub>1</sub> -M <sub>1</sub> M <sub>2</sub>                                                  | $\left\{ \begin{array}{c} 0\\ 1\\ 0\end{array} \right.$        | 80<br>20                       | 12,816±9<br>12,843±9 }              | 12,811±10               | vw            | VW                    |                                                                                                                       |
| L <sub>2</sub> -M <sub>1</sub> M <sub>3</sub>                                                  | 2,1                                                            |                                | 13,170-13,123                       |                         | 0             | VVW                   |                                                                                                                       |
| $L_1 - M_2 M_2$                                                                                | 0                                                              | 100                            | 13,225±11                           | 13,249±20               | VW            | VVW                   | *Doubtful Line As-<br>signment LM_0_S ?                                                                               |
| L <sub>2</sub> -M <sub>2</sub> M <sub>3</sub>                                                  | $\left\{ \begin{array}{c} 2\\ 1 \end{array} \right.$           | 67<br>33                       | 13,554±11<br>13,567±11              | 13,543±10               | W             | W                     | ······································                                                                                |
| L <sub>2</sub> -M <sub>1</sub> M <sub>4</sub>                                                  | 2,1                                                            |                                | 13,760-13,777                       | -                       | -             | VW                    | Masked by L <sub>3</sub> -M <sub>3</sub> N <sub>4</sub> ,5                                                            |
| ?                                                                                              |                                                                |                                |                                     | 13,861±10               |               | VW                    | Unidentified Peak                                                                                                     |
| L <sub>2</sub> -M <sub>1</sub> M <sub>5</sub>                                                  | 3,2                                                            |                                | 14,01113,993                        | -                       | -             | VVW                   | On Side of $L_1 - M_1M_3$                                                                                             |
| L <sub>1</sub> -M <sub>1</sub> M <sub>3</sub>                                                  | ${2 \\ 1}$                                                     | 45<br>55                       | $14,072\pm11$<br>14,022±11          | 14,051±31               | VW            | W                     | * A Real Difference                                                                                                   |
| L <sub>2</sub> -M <sub>2</sub> M <sub>4</sub>                                                  | 1                                                              | <b>9</b> 8                     | 14,157±9                            | 14,155±20               | HVW           | LW                    | On Tail of L <sub>3</sub> -34,325                                                                                     |
| L <sub>2</sub> -M <sub>2</sub> M <sub>5</sub>                                                  | 3,2                                                            |                                | 14,415-14,427                       | -                       | -             | W                     | Under L <sub>3</sub> -34,325                                                                                          |
| L <sub>1</sub> -M <sub>2</sub> M <sub>3</sub>                                                  | 2                                                              | 100                            | 14,456±11                           | -                       | -             | VW                    | Under L <sub>3</sub> -34,325                                                                                          |
| L 1 ""1"4                                                                                      | 2,1                                                            |                                | 14,002-14,770                       | -                       | -             | **                    | L <sub>3</sub> -M <sub>5</sub> N <sub>4</sub>                                                                         |
| L <sub>1</sub> -M <sub>1</sub> M <sub>5</sub>                                                  | 3                                                              | 83                             | 14,913±10                           | 14,918±5                | VW            | VW                    | March 1 1 1 1 1 1                                                                                                     |
| L <sub>1</sub> -M <sub>2</sub> M <sub>4</sub><br>L <sub>1</sub> -M <sub>2</sub> M <sub>5</sub> | 3                                                              | 100                            | 15,069±9<br>15,317±9                | -                       | -             | VW                    | Masked by L <sub>3</sub> -M <sub>5</sub> N <sub>6</sub> ,7<br>Masked by L <sub>3</sub> -M <sub>4</sub> O <sub>5</sub> |
| L <sub>2</sub> -M <sub>3</sub> M4                                                              | 3                                                              | 80                             | 15,407±11                           | 15,389±22               | vw            | VW                    | and L <sub>2</sub> -m <sub>3</sub> m <sub>4</sub>                                                                     |
| L <sub>2</sub> -M <sub>3</sub> M <sub>5</sub>                                                  | $\begin{cases} 3\\1 \end{cases}$                               | 60<br>40                       | 15,637±11<br>15,623±11              | 15,619±32               | VW            | VW                    |                                                                                                                       |
| L <sub>1</sub> -M <sub>3</sub> -M <sub>3</sub>                                                 | 2                                                              | 95                             | 15,692±17                           |                         | -             | VW                    | On Tail of L <sub>1</sub> -41,740                                                                                     |
| L <sub>2</sub> -M <sub>4</sub> M <sub>4</sub>                                                  | 2                                                              | 88                             | 16,040±13                           | 16,037±22               | VW            | VW                    |                                                                                                                       |
| L <sub>2</sub> -M <sub>4</sub> M <sub>5</sub><br>L <sub>1</sub> -M <sub>3</sub> M <sub>6</sub> | $\left\{ \begin{array}{c} 4\\ 3\\ 3\end{array} \right.$        | 85<br>10<br>99                 | 16,263±10<br>16,283<br>16,309±11    | 16,258±6<br>16,281±6    | м             | м                     |                                                                                                                       |
| L <sub>2</sub> -M <sub>E</sub> M <sub>E</sub>                                                  | 4                                                              | 35                             | 16,515±13                           | י<br>16,539±22 ן        | VW            | vw                    |                                                                                                                       |
| L <sub>1</sub> -M <sub>2</sub> M <sub>E</sub>                                                  | 3                                                              | 86                             | 16,539                              | }                       |               | VVW                   |                                                                                                                       |
| L,-M.M.                                                                                        | 2.0                                                            |                                | 16,942-16,911                       | -                       | -             | VVW                   | Masked by LM.N.                                                                                                       |
| -1 ''4''4<br>LM.M                                                                              | 4                                                              | 99                             | 17.165±10                           | 17.172+23               | -             |                       | 2"2"1                                                                                                                 |
| -1 - M. M.                                                                                     | 4                                                              | 80                             | 17,417±13                           | 17,410±23               | vw            | VW                    |                                                                                                                       |
|                                                                                                |                                                                |                                |                                     |                         |               |                       |                                                                                                                       |

Larkins's predictions (Table V). The relative intensity ratio of its components,  $I({}^{3}P_{1}):I({}^{3}P_{2})=1.24\pm0.21$ , is in fair agreement with the nonrelativistic calculation of Haynes, 1.55 (Sec. VII).

Only seven isolated *L-MO* lines (energies not predicted by Larkins) were observed in Pu and Fm combined.

Three of these were within 1 s.d. and three were between 1 and 2 s.d. of the energy predicted by the  $\Delta Z = 1$  method of Sec. VII, justifying the approximation for  $E_{LXY}$  where X and Y differ by at least two shells.

#### **B.** Intensity

It is instructive to begin with Pu in order to evaluate nonrelativistic predictions versus relativistic predictions. Table IX shows the results of a statistical comparison based on the results shown in Table IV.

Table IX clearly shows that the agreement with the relativistic theory is superior to either of the others. However, even the relativistic theory falls short of a satisfactory agreement. There is, even for medium or greater quality of line, an excess of three lines with a deviation of greater than 3 s.d. together with a substantial deficit of lines within 1 s.d.

Is the situation similar with Fm? Table X shows the relativistic results for Fm tabulated from the data in Table V. Clearly the agreement is unsatisfactory for Fm, particularly for the stronger lines. For Am and Cf, Tables VI and VII, due to the qualitative nature of the experimental intensity determinations, it is more difficult to draw conclusions. However, six lines in Am and three lines in Cf, each out of 31 total lines, show differences likely to be several standard deviations. Thus none of the four spectra, with the possible exception of Cf, show satisfactory intensity agreement with relativistic theory.

What is the nature of the disagreements? Is theory high or low on the average? Is the agreement perhaps good within a band but not good between bands? Can other generalizations be made which might enable theorists to localize the problem?

First, we looked at the high-low questions. The results, again taken from Tables IV and V for Pu and Fm, are shown in Table XI. With the exception of  $L_3$ -MM for Pu and the weak lines for Fm, the theoretical predictions are low. However, the  $L_3$ -MM for Fm is not very low since 12 out of 17 lines are within 1 s.d. Therefore, we can consider the  $L_3$ -MM band to be well predicted by theory.

In order to examine whether  $L_2$ -MX and  $L_3$ -XY bands were perhaps internally consistent, we have normalized each to its strongest line. The procedure does not seem to help, with one important exception. For  $L_2$ - $M_jM_{4,5}$  the normalization to  $L_2$ - $M_4M_5$  seems to help for both Pu amd Fm, as shown in Table XII. Hence, it seems that one difficulty with the theory is that the whole  $L_2$ - $M_jM_{4,5}$ subband is depressed. The same result can be seen qualitatively for Am (Table VI), where both  $L_2$ - $M_3M_5$  and  $L_2$ - $M_4M_5$  have a substantially lower theoretical than experimental intensity.

Finally, to make the theoretical-experimental difference as sharp as possible, we have accurately measured the intensities of  $L_3$ - $M_4M_5$  and  $L_2$ - $M_4M_5$  for both Am and Cf and also  $L_1$ - $M_4M_5$  for Am. The experimental ratios, together with the same measurements for Pu and Fm from Tables IV and V, are shown in Table XIII.

In calculating the theoretical intensities, we attempted to take into account, in reasonable approximation, the likelihood that the  $L_3$ - $M_{4,5}M_{4,5}$  transition probabilities

|                                | $\leq 1 \text{ s.d.}^{a}$ | 1-2 s.d. | 2-3 s.d. | > 3 s.d. |
|--------------------------------|---------------------------|----------|----------|----------|
| Plutonium all lines            | 44(39)                    | 12(16)   | 1(3)     | 1(0)     |
| Medium or greater <sup>b</sup> | 27(23)                    | 8(10)    | 0(2)     | 0(0)     |
| Americium all lines            | 20(16)                    | 3(6)     | 0(1)     | 0        |
| Californium all lines          | 24(17)                    | 0(7)     | 1(1)     | 0        |
| Fermium all lines              | 36(34)                    | 15(16)   | 1(3)     | 1(0)     |
| Medium or greater <sup>b</sup> | 21(19)                    | 5(8)     | 1(1)     | 1(0)     |
|                                |                           |          |          |          |

TABLE VIII. L-Auger energies (experimental vs theoretical). Parentheses indicate Gaussian statistical expectation.

<sup>a</sup>Standard deviation.

<sup>b</sup>Quality of evidence, Tables IV-VII.

are reduced when an  $M_4$  or  $M_5$  spectator vacancy exists, owing to the reduced number of electrons available for the transition. We make the assumption that the transition probability is proportional to this number and derive some support for this idea by noting that for Am, it leads to an insignificant change in the calculated relative probabilities for  $L_3$  radiative versus Auger transitions when spectator vacancies exist. The assumption leads to reduction factors for the  $L_3M_4M_5$  intensity as follows: Pu, 0.967; Am, 0.940; Cf, 0.954; Fm, 0.976. As other  $L_3$  lines involving  $M_4$  or  $M_5$  vacancies would also be affected, we have calculated the corrections for all these Pu and Fm lines as given in Tables IV and V. All of our calculations used the transition probabilities for Am (Refs. 8 and 26) adjusting only for the different initial vacancy populations, Table II. Note that, although  $L_2$ - $M_{4,5}M_{4,5}$  do have spectator vacancy satellites, insufficient energy is available in the preceding  $L_1$ - $L_2X$  Coster-Kronig transitions to eject  $M_4$ or  $M_5$  electrons: The spectator vacancies produced are N shell or higher.

Two additional effects should be mentioned. (1) In this part of the Periodic Table  $L_1$ - $L_3M_3$  Coster-Kronig transitions are also possible,<sup>25</sup> giving rise to  $M_3$  spectator vacancies. However, the rate is  $\frac{1}{6}$  to  $\frac{1}{7}$  of that of the  $L_1$ - $L_3M_4$  and  $L_1$ - $L_3M_5$ , respectively, and was neglected. (2) The  $M_4$  and  $M_5$  vacancies are sometimes filled by

Auger processes before the  $L_3$  vacancy is filled. In fact, the  $L_3$ -level width is about double that of the  $M_{4,5}$ widths<sup>15</sup> so that the  $M_{4,5}$  levels are filled first about onethird of the time, so that a correction factor of  $\frac{2}{3}$  is necessary. This phenomenon was experimentally observed by Frilley *et al.*<sup>27</sup> in the x-ray spectrum of <sup>210</sup>Pb $\rightarrow$ <sup>210</sup>Bi where the  $L_1:L_2:L_3$  vacancies are in the ratio 90:9:1. The x-ray  $L_{\alpha}$  satellite line (due to  $M_{4,5}$  vacancies) should be much stronger than the diagram  $L_{\alpha 1}$  line because over 60% of the  $L_3$  vacancies are accompanied by  $M_{4,5}$  spectators. In fact, however, the lines are of about equal intensity because some of the  $M_{4,5}$  spectator vacancies are filled before the x ray is emitted.

The comparison of the  $I_{L_2 \cdot M_4 M_5}/I_{L_3 \cdot M_4 M_5}$  experimental versus theoretical ratios for Pu, Am, Cf, and Fm and the  $I_{L_1 \cdot M_4 M_5}/I_{L_3 \cdot M_4 M_5}$  ratios for Am are shown in Table XIII. The average  $I_{L_2 M_4 M_5}/I_{L_3 M_4 M_5}$  experimental to theoretical ratio is  $1.27 \pm 0.07$ . Since two of the four elements are within 1 s.d. of this figure, and the other two differ by less than 1.5 s.d., we feel the results of the four elements are consistent with each other and the experimental-theoretical difference is substantial and significant. The same may also be true for  $L_1 \cdot M_4 M_5$ , though we have only one case.

TABLE IX. Intensity comparisons (experiment vs theory) for Pu. Parentheses indicate theoretical expectations.

|                                | $\leq 1$ s.d. | 1-2 s.d. | 2-3 s.d. | > 3 s.d. |
|--------------------------------|---------------|----------|----------|----------|
| Nonrelativistic                |               |          |          |          |
| All lines                      | 31(44)        | 20(18)   | 7(3)     | 7(0)     |
| Medium or greater <sup>a</sup> | 12(33)        | 8(9)     | 7(2)     | 7(0)     |
| Mixed                          |               |          |          |          |
| All lines                      | 29(44)        | 22(18)   | 7(3)     | 7(0)     |
| Medium or greater <sup>a</sup> | 11(23)        | 10(9)    | 6(2)     | 7(0)     |
| Relativistic <sup>b</sup>      |               |          |          |          |
| All lines                      | 40(42)        | 18(17)   | 1(3)     | 3(0)     |
| Medium or greater <sup>a</sup> | 16(22)        | 13(8)    | 0(2)     | 3(0)     |

<sup>a</sup>Quality of evidence, column 18, Table IV.

<sup>b</sup>Relativistic has three fewer lines because three lines were used to determine conversion intensities of the 18.429 keV transition. The intensity contribution of these conversion lines was negligible in the three corresponding nonrelativistic and mixed-case comparisons.

|                   | < 1 s.d. | 1-2 s.d. | 2-3 s.d. | > 3 s.d. |
|-------------------|----------|----------|----------|----------|
| All lines         | 21(30)   | 14(11)   | 8(3)     | 1(0)     |
| Medium or greater | 7(16)    | 11(6)    | 4(1)     | 1(0)     |

TABLE X. Intensity comparisons for Fm.

TABLE XI. Are theoretical intensity values high or low? Fractional values arise from the resolution of line complexes, in which different assigned fractions of the total intensity may be low, high, or close to the theoretical values.

|              | E    | Excellent to go | ood <sup>a</sup> | F    | air, poor, very | poor <sup>a</sup> |
|--------------|------|-----------------|------------------|------|-----------------|-------------------|
|              | High | Low             | Close            | High | Low             | Close             |
| Pu $L_3$ -MM | 4    | 3               | 0                | 5    | 1               | 1                 |
| Pu $L_2$ -MX | 2    | 10.4            | 0                | 0.6  | 7               | 0                 |
| Pu $L_3$ -XY | 1    | 9.3             | 0.7              | 0.4  | 6.9             | 2                 |
| Pu $L_1$ -MM | 0    | 1.5             | 0.3              | 1    | 5.1             | 0                 |
| $Fm L_3-MM$  | 2    | 5               | 0                | 5    | 3               | 2                 |
| $Fm L_2-MX$  | 2    | 5.2             | 0                | 4    | 2               | 0                 |
| $Fm L_3-XY$  | 1    | 6.8             | 0                | 3    | 3               | 0                 |

<sup>a</sup>Quality of evidence, Tables IV and V. The equivalents for the notation used in Table IV are the following: VS is excellent, S is good, M is fair, W is poor, VW is very poor.

TABLE XII. Number of lines showing agreement of experimental to theoretical intensities<sup>a</sup> on normalization of  $L_2$ - $M_jM_{4,5}$  to  $L_2$ - $M_4M_5$ .

|    | Unnormalized    | Normalized      |
|----|-----------------|-----------------|
|    | $E \ G \ F \ P$ | $E \ G \ F \ P$ |
| Pu | 0 0 2 1         | 1 1 1 0         |
| Fm | 0 1 0 2         | 1 2 0 0         |

<sup>a</sup>See footnote f, Table V, for notation on agreement in intensity.

| Element | $L_i - M_4 M_5$ ratio | Experimental        | Relativistic | E/T             |
|---------|-----------------------|---------------------|--------------|-----------------|
| Pu      | 2-45/3-45             | 0.341±0.03          | 0.301        | 1.13±0.1        |
| Am      | 2-45/3-45             | $0.33 \pm 0.05^{a}$ | 0.218        | $1.54 \pm 0.2$  |
| Cf      | 2-45/3-45             | $0.369 \pm 0.04$    | 0.300        | $1.23 \pm 0.13$ |
| Fm      | 2-45/3-45             | $0.637 \pm 0.074$   | 0.476        | $1.34 \pm 0.16$ |
|         |                       |                     | Average      | $1.27 \pm 0.07$ |
| Am      | 1-45/3-45             | $0.290 \pm 0.03$    | 0.179        | $1.62 \pm 0.16$ |

TABLE XIII. Quantitative comparison of  $L_i$ - $M_4M_5$ .

<sup>a</sup>Experimental intensity of the  $L_2$ - $M_4M_5$  for Am includes the intensity of the  $O_1$  line of the 15.2276keV transition,<sup>2</sup> which we calculate to be 0.104, relative to  $L_3$ - $M_4M_5$ . Hence, to get the experimental intensity of  $L_2$ - $M_4M_5$  for Am, the  $O_1$  intensity was subtracted.

| TABLE XIV.                 | Internal | conversion | of | the | 18.429-keV | transi- |
|----------------------------|----------|------------|----|-----|------------|---------|
| tion in <sup>239</sup> Pu. |          |            |    |     |            |         |

| Shell            | Line <sup>a</sup> | Expt.             | Intensity <sup>b</sup> |                     |  |  |  |
|------------------|-------------------|-------------------|------------------------|---------------------|--|--|--|
|                  |                   |                   | Theor. $M 1^{\circ}$   | Theor. $E2^{\circ}$ |  |  |  |
| $\overline{M_1}$ | 23 <i>F</i>       | 1.00              | 1.00                   | 1.00                |  |  |  |
| $M_2$            | 25                | $0.32 \pm 0.23$   | 0.133                  | 33                  |  |  |  |
| $M_3$            | 33 <i>b</i>       | $0 \pm 0.23$      | 0.01                   | 33                  |  |  |  |
| $N_1$            | 50 <i>b</i>       | $0.72 \pm 0.23$   | 0.33                   | 0.33                |  |  |  |
| $N_2$            | 51                | $< 0.03 \pm 0.23$ | 0.04                   | 10                  |  |  |  |

<sup>a</sup>Figure 1.

<sup>b</sup>Relative to  $M_1$  shell.

<sup>c</sup>Reference 28.

#### IX. SUMMARY OF L-AUGER RESULTS

Overall, our experimental results on L-Auger intensities in transuranic elements do not agree with relativistic theory except within the  $L_3$ -MM band. In general, the theoretical results are too low for all other bands relative to  $L_3$ -M<sub>4</sub>M<sub>5</sub>. In particular, the  $I_{L_2M_4M_5}/I_{L_3M_4M_5}$  ratio predictions are low by  $(27\pm7)\%$ . With respect to Auger energies, our experimental results are in satisfactory agreement with Larkins's intermediate coupling splittings and Haynes's nonrelativistic evaluations of relative intermediate coupling component intensities.

#### X. NEW NUCLEAR INFORMATION

The resolution of the *L*-Auger regions of the Pu and Fm spectra yielded a small amount of new nuclear data. Table XIV compares the observed relative *M*- and *N*-shell internal conversion coefficients for the 18.429-keV transition in the  $^{239}$ Am (e.c.)  $^{239}$ Pu decay to theoretical *M*1 and

- \*Present address: 625 Harrington Street, Holland, MI 49423.
- <sup>1</sup>F. T. Porter et al., Phys. Rev. C 5, 1738 (1972).
- <sup>2</sup>F. T. Porter et al., Phys. Rev. C 10, 803 (1974).
- <sup>3</sup>M. S. Freedman et al., Phys. Rev. C 15, 760 (1977).
- <sup>4</sup>F. T. Porter and M. S. Freedman, Phys. Rev. Lett. 27, 293 (1971).
- <sup>5</sup>E. J. McGuire, Sandia Laboratories Research Report No. SC-RR-710075 (1971) (unpublished).
- <sup>6</sup>S. N. E. Ibari, W. N. Asaad, and E. J. McGuire, Phys. Rev. A 5, 1043 (1972).
- <sup>7</sup>F. P. Larkins, At. Data Nucl. Data Tables **20**, 311 (1977); **23**, 587(E) (1979).
- <sup>8</sup>M. H. Chen, B. Crasemann, and H. Mark, At. Data Nucl. Data Tables 24 13 (1979).
- <sup>9</sup>M. H. Chen, B. Crasemann, and H. Mark (private communication).
- <sup>10</sup>M. S. Freedman et al., Nucl. Instrum. Methods 8, 225 (1960).
- <sup>11</sup>F. T. Porter, M. S. Freedman, F. Wagner, Jr., and I. S. Sherman, Nucl. Instrum. Methods **39**, 35 (1966).
- <sup>12</sup>F. T. Porter and M. S. Freedman, J. Phys. Chem. Ref. Data 7, 1267 (1978).
- <sup>13</sup>M. S. Freedman, F. T. Porter, and J. B. Mann, Phys. Rev. Lett. 28, 711 (1972).
- <sup>14</sup>M. S. Freedman and F. T. Porter, Phys. Rev. A 6, 659 (1972).
- <sup>15</sup>O. Keski-Rahkonen and M. O. Krause, At. Data Nucl. Data Tables 14, 139 (1974); M. O. Krause and J. H. Oliver, J. Phys. Chem. Ref. Data 8, 329 (1979).
- <sup>16</sup>S. K. Haynes, M. Velinsky, and L. J. Velinsky, Nucl. Phys.

*E* 2 values.<sup>28</sup> Only an upper limit of 3% per <sup>239</sup>Am decay was given<sup>1</sup> for the intensity of this transition from the  $\frac{7}{2}^+$ , 75.702-keV level to the  $\frac{5}{2}^+$ , 57.273-keV level of the  $\frac{1}{2}^+$  [631] ground-state band in <sup>239</sup>Pu. The subshell ratios are consistent with *M*1 multipolarity ( $\leq 1\%$  *E*2), although the *M*<sub>1</sub>:*N*<sub>1</sub> ratio is about 1.5 s.d. away from the theoretical ratio. A complete analysis of the 57 internal conversion lines in <sup>254</sup>Fm will be given elsewhere.

### ACKNOWLEDGMENTS

We thank Dr. M. H. Chen for the special calculations for Cf and Fm, and Professor Asaad and Professor Larkins for their communications. Preliminary reports of this work were given in the following: in Ref. 17, a general presentation; in Bull. Am. Phys. Soc. 23, 578 (1978), two abstracts on L-MM spectra; and at the X-ray and Atomic Inner Shell Physics—1982 Conference, Eugene, Oregon, 1982 (unpublished), on the complete spectra of Pu and Fm.

A90, 573 (1967).

- <sup>17</sup>M. S. Freedman and F. T. Porter, in Proceedings of the International Conference on Inner Shell Ionization Phenomena and Future Applications, Oak Ridge, Tenn., 1972, edited by R. W. Fink *et al.* [U.S. AEC 1, 680 (1972), Conf. No. 720404].
- <sup>18</sup>D. A. Shirley, Phys. Rev. A 9, 1549 (1974).
- <sup>19</sup>(a) M. H. Chen *et al.*, Phys. Rev. A **19**, 2253 (1979); (b) M. O. Krause, J. Phys. Chem. Ref. Data **8**, 307 (1979).
- <sup>20</sup>H. Slätis and M. Rockbarger, Ark. Fys. **40**, 49 (1969).
- <sup>21</sup>I. Bergstrom and R. D. Hill, Ark. Fys. 8, 21 (1954).
- <sup>22</sup>S. K. Haynes, in Proceedings of the International Conference on Inner Shell Ionization Phenomena and Future Applications, Oak Ridge, Tenn., 1972, edited by R. W. Fink *et al.* [U. S. AEC 1, 561 (1972), Conf. No. 720404].
- <sup>23</sup>E. J. McGuire (private communication).
- <sup>24</sup>W. N. Asaad, Nucl. Phys. 44, 415 (1963); also, private communication for p initial vacancy, pd final vacancies, J = 0. The equation is  $(1/100)[5D(0)+5D(2)-E(1)-9E(3)]^2$ .
- <sup>25</sup>In Refs. 8 and 9,  $L_1$ - $L_3M_3$  only becomes energetically possible at Z = 92, and  $L_1$ - $L_3M_4$  and  $L_1$ - $L_3M_5$  and some other transitions vary by (5–10)% between Z = 90 and 100.
- <sup>26</sup>J. H. Scofield, Phys. Rev. 179, 9 (1969).
- <sup>27</sup>M. Frilley, B. G. Gokhale, and M. Valdares, C. R. Acad. Sci. 332, 50 (1951); 332, 157 (1951).
- <sup>28</sup>R. S. Hager and E. C. Seltzer, Nucl. Data Tables A 4, 1 (1968); O. Dragoun, H. C. Pauli, and F. Schmutzler, *ibid.* 6, 235 (1969).