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Doppler-free resonantly enhanced two-photon spectroscopy of np and nf Rydberg states
in atomic cesium I
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The fine-structure intervals of selected np (n = 18—83) and nf (n = 14—28) Rydberg states in neu-

tral Cs have been measured by Doppler-free resonantly enhanced two-photon laser spectroscopy

with a thermionic diode detector. One cw dye laser was tuned near resonance with a 6s-Sd electric

quadrupole transition while a second was scanned through the relevant 5d np, nf-transitions. This

is the first Doppler-free study of these series by strictly optical methods. The experimental fine-

structure intervals are in good agreement with splitting formulas derived by other authors from

fine-structure measurements of lower-lying np and nf levels. Our results and the best previous data

have been fitted with several expressions that have been used or suggested for the representation of
fine-structure data. A recently proposed expansion formula including inverse even powers of the ef-

fective quantum number is found to have little practical significance for the description of experi-

mental intervals.

I. INTRODUCTION II. EXPERIMENT

In recent years there has been great interest in the mea-
surement of energies, fine- and hyperfine-structure inter-
vals, and isotope shifts of atomic Rydberg states. Particu-
larly extensive studies have been made for the ns and nd
series of the alkali-metal atoms. ' These series can be ob-
served by Doppler-free nonresonant two-photon absorp-
tion from the ground state at wavelengths readily pro-
duced by cw dye lasers. Although the transition rates for
such two-photon processes are very stnall (of the order of
100 s '), they can be observed to high principal quantum
numbers with excellent signal-to-noise ratio by using a
thermionic diode detector. By contrast, there have been
few investigations of the np, nf, and higher angular
momentum series of the alkali metals by optical methods
because these states are not accessible by equally con-
venient experimental techniques.

In this experiment we have demonstrated the utility of
resonantly enhanced two-photon spectroscopy in com-
bination with the thertnionic diode detector for observing
the np and nf series of atoinic Cs. The detailed theory of
this experimental method has been given by Bjorkholm
and Liao.3 Although two-photon transitions of the type
6s np, nf are forbid-den by electric-dipole selection rules, it
is possible to observe such transitions in Cs because of the
weak electric-quadrupole coupling of the 6s and 5d levels.

By using two lasers of unequal frequencies such that one
of the 5 D levels serves as a nearly resonant intermediate
state, a very large enhancement of the transition rates can
be obtained so that the two-photon transitions can be
readily induced. A similar dipole-quadrupole two-photon
method was used by Liao and Bjorkholm to measure the
4f fine structure in Na. Here we apply the method to
measure fine-structure intervals of Cs np and nf Rydberg
states.
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The experimental arrangement we used to measure the
fine-structure splitting of the np P&/2 3/g and nf F5/2 7/2
states of Cs is shown in Fig. l. A thermionic diode con-
taining Cs vapor served as .both absorption cell and as a
very sensitive detector of atoms excited into Rydberg
states. In its simplest form such a diode consists of a
directly heated cathode filament surrounded by a cylindri-
cal anode. The diode is operated in the space-charge-
limited mode. When an atom is excited into a Rydberg
state, its radiative lifetime is long and there is a high
probability that it will be collisionally ionized. The ion so
produced is trapped in the space charge causing an in-

crease of the diode current which is readily detected. Be-
cause the recombinative lifetime of the ion in the space
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FIG. 1. Experimental apparatus for measuring fine-structure
intervals in a Cs thermionic diode by Doppler-free resonantly
enhanced two-photon spectroscopy.
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lation that it probes is similar to that in an atomic beam
in that it has a uniform though not necessarily zero velo-
city along the laser beam. The second laser interacts with
this velocity selected population only when it is resonant
with the Doppler shifted intermediate-to-final-state tran-
sition frequency.

In our excitation scheme (6s-Sd-np, nf) only the Sd in-
termediate state has hyperfine structure comparable in
size to the fine-structure intervals of interest. By con-
trast, the 6s ground state has a hyperfine-structure inter-
val of 9.2 GHz allowing selective excitation out of the
F=3 or F=4 component, while the np or nf Rydberg
states have negligible hyperfine splitting. When the yel-
low laser is scanned through a Sd np o-r Sd nf tran-sition,
a Doppler-free resonance is observed for each hyperfine
component of the Sd state. The spacing of the observed
components is determined by the unequal Doppler shifts
for the red (f,) and yellow (fz) laser frequencies. For
copropagating laser beams the Doppler shifts add and the
observed spacings are expanded by a factor of (f,+f~ )/f,
from the actual Sd intervals. For counterpropagating
beams the Doppler shifts nearly cancel and the observed
spacings are contracted by the factor (f„f~)/'f„.—Note
that this factor is negative in the case of interest here,
hence our spectra with counterpropagating beams display
the Sd hyperfine components in inverted order. These
characteristics of the experimental method are illustrated
in Figs. 2 and 3. The fine structure of the np and nf lev-

Ss S,/2 [F=4] —= sd D3/2 [F ]= 74P P//2, 3/2
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FIG. 2. Recorded spectrum of the 6s-5d-74p transition with
simultaneous copropagating and counterpropagating beams.
The resonances due to the copropagating beams are identified
with erect arrows and those due to the counterpropagating
beams with inverted arrows. The frequency of the laser scan-
ning the 5d-74p transition increases to the right.

charge is quite long, the diode displays a high internal
amplification.

In the initial stages of this work our thermionic diode
consisted of a stainless-steel hot-pipe bisected axially by a
grid of stainless-steel wire. One half of the pipe contained
a directly heated tungsten filament while the other half
was used as a field-free excitation region shielded by the
wire grid. The signal was taken directly from the wall of
the hot-pipe, which served as the anode. This diode was
operated with no external bias voltage. The pipe was
heated to produce a Cs vapor pressure of approximately 5
mTorr and was filled with 30 mTorr of Ne buffer gas.
All of the nf intervals were measured with this system.

The hot-pipe diode was later replaced with a sealed
glass diode similar to that described by Harvey. This
diode was operated with no buffer gas at Cs vapor pres-
sures of less than 1 mTorr and was externally biased to
suppress residual fields in the excitation region 'and so
minimize Stark effect in the np states with very high n.
For both diode systems the signal was observed across a
10-kQ load resistor and detected by a lock-in amplifier
after being decoupled by a 0.47-pF capacitor. Chopping
frequencies between 10 and 30 Hz were used. Small parts
of the laser beams were sent to a spectrum analyzer and a
0.5-m monochromator for approximate wavelength cali-
bration.

The light beams from two frequency-stabilized cw dye
lasers (linewidths 1—2 MHz) were directed to copropagate
or counterpropagate through the thermionic diode. The
first laser [dye, 4-dicyanomethyiene-2-methyl-6-p-
dimethylaminostyryl-4H-pyran (DCM); power, 90 mW]
was chopped and tuned near resonance with either the
6 Si/3-5 D3/2 or the 6 Si~2-5 D5/2 quadrupole transition
at 14499 or 14596 cm, respectively. Although these
two transitions have oscillator strengths of only
3.28 &C 10 (6s-SD3/2) and 5.65)& 10 (6S-SD5/2), the
Doppler-broadened quadrupole lines can be detected with
the diode. This facilitates tuning to the transitions. The
second laser (dye: Rhodamine 6G) was scanned through
the Sd np and Sd nf r-esonanc-es. A small part of this yel-
low laser beam was sent through a pressure-tight 1-m con-
focal Fabry-Perot interferometer with a free spectral
range of 74.71(4) MHz for relative frequency calibration
of the recorded spectra. To avoid saturation, the yellow
laser power at the Cs diode was attenuated with neutral
density filters to approximately 100 pW for the Sd np and-
10/MW for the 5 d nf transitions. -

Although the production of Doppler-free spectra in
nonresonant two-photon spectroscopy with counterpro-
pagating beams is well known, the mechanism by which
Doppler-free spectra are produced in resonantly enhanced
two-photon spectroscopy may be less apparent. The prin-
ciple of the method can be understood by a simple physi-
cal argument which views the process as a sequential
two-step excitation. The first laser is absorbed by only
those atoms for which the initial-to-intermediate-state
transition frequency is Doppler shifted into resonance
with the laser frequency. As a consequence, the atoms ex-
cited to the intermediate state all have the same velocity
parallel to the laser beam. If the second laser beam propa-
gates parallel or antiparallel to the first, the atomic popu-
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FIG. 3. Recorded spectra of the 6s-Sd-23f transition. The frequency of the second (Rhodamine-6G) laser increases to the right.

(a) Trace recorded with copropagating laser beams. (b) Trace recorded with counterpropagating laser beams. Note that for higher

values of n the 5d hyperfine-structure patterns associated with the Fsz2 and F7/2 levels will overlap. (c) Trace recorded with the

first (DCM) laser tuned 1 GHz to the red wing of the 6s-5d transition. This simplifies the spectrum by increasing the intensity of the
F'=6 component with respect to the rest of the intermediate state hyperfine components. See text.

els appears unaltered in the recorded spectra.
All of the intervals reported in this work were measured

using both copropagating and counterpropagating beams.
When 5 D3/2 was used as the intermediate state, it was
generally possible to record both simultaneously as shown
in Fig. 2. In most cases no significant discrepancy that
could be correlated with the propagation direction was ob-
served. This demonstrates that systematic error due to
monotonic drift of the red-laser frequency was small. In
the few cases where a systematic difference was found, the
data were discarded and the interval remeasured. When
counterpropagating beams and the 5 D5&2 intermediate
state were used, the contraction of the hyperfine structure
led to unresolved components in the recorded spectra. To
simplify the spectra it was convenient to tune the red las'er

about 1 GHz into the blue or red wing of the 6s-5 d transi-
tion. Since the Gaussian Doppler profile of each hyper-
fine component falls off rapidly with increasing detuning
from its line center, the nearest hyperfine component was
strongly favored by this procedure and then stood out as a
simple sharp profile [Fig. 3(c)].

All of the two-photon resonances observed in the hot-
pipe diode showed widths (FWHM) of 10 to 15 MHz.
This is substantially greater than would be indicated by
natural line widths alone, but it is consistent with the
self-broadening rates of Weber and Niemax assuming a
Cs number density of 1&(10' /cm . It is likely that sa-
turation broadening of the Sd nf transitions also -contri-
buted significantly to the linewidths. Broadening due to
the Ne buffer gas should be negligible at a Ne pressure of
30 mTorr. The contribution due to the natural width of
the 6s-5d transition is also negligible. In the glass diode
with Cs number densities of less than 2)&10'3/cm3, the
observed widths were typically 6 MHz.

In principle, Stark broadening is an additional possible
contributor to the observed linewidths. Both of our ther-
mionic diodes were equipped with shielding grids separat-
ing the Cs excitation region from the fields associated
with the cathode filament, hence the fields in the excita-
tion region were quite small. We observed no evidence of
Stark effect for any of the nf states. For the np states
with n & 60, asymmetric Stark profiles were evident when
the glass diode was operated without external bias. With
a properly adjusted bias the residual fields could be re-
duced sufficiently that no evidence of Stark effect could
be seen even at n =83.

The accuracy of fine-structure intervals determined by
scanning the yellow-laser frequency, as described above,
depends critically on the stability of the red-laser frequen-

cy and of the 1-m confocal Fabry-Perot. For this reason
the method is best suited to relatively small intervals for
which the scan time can be kept short. This limits mea-
surements in the Cs np series to high principal quantum
numbers. In order to obtain a few accurate P intervals at
lower n for this work, we have determined the 182P, 25 P,
33 P, and 44 P intervals by measuring and differencing
the absolute level values. The technique for measuring
absolute energy levels by using the resonant two-photon
excitation scheme was developed by K.-H. Weber and C.
J. Sansonetti in this laboratory. They are currently mak-
ing extensive measurements of absolute energy levels in
the Cs np and nf series. Details of the experimental
method and results will be published elsewhere.

III. RESULTS AND DISCUSSION

We have determined selected Cs I n P fine-structure in-
tervals in the range n =18 to 83 and n2F intervals for
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TABLE I. Cs I n P fine-structure intervals. TABLE II. Cs I n ~F fine-structure intervals.

This work
(MHz)

Literature
(MHz)

Calculated — Calculatedg-
observed observed

(MHz) (MHz)
This work

(MHz)
Literature

(MHz)

Calculated —Calculated'—
observed observed
(MHz) (MHz)

6
7
8
9

10

12
13
14
15
16
17
18 71 208(5)'
19
20
21
23
25 21 744(5)'
26
27
28
32
33 8395(5)'
34
39
42
44
47
50
54
57
61
64
67
71
74
77
80
83

3237(5)'
2611(8)
2135(5)
1668(6)
1403(4)
1127(5)
969(2)
839(2)
698(2)
614(3)
542(2)
480(4)
427(2)

16609 650(40)
5427 700(50)'
2478 530(20)'
1339520(30)'
805 380(30)'

J 521 680(80)'
I521 620(100)
357 130(100)
255 130(100)
188 600(100)
143 270(100)'
111440(100)
88 280(100)d
71 270(100)
58 270(100)
48 240(100)
40 490(100)"
29 172.2(4.0)'
21 744.0(1.0)'
18 963.2(1.0)'
16636.6(1.0)'
14 676.0(1.0)'
9310.4(1.0)'

7593.0(1.0)'
4811.2(2.0)'
3775.6(10.0)'

17.1
—12.9

16.0
—30.8
—43.6
—44.7

15.3
—64.4
—56.3
—83.5
—25.3
—55.7

34.2
—7.9

—32.7
—0.3

—84.5
—1.8
—1.1
—0.3

0.8
1.1
2.9
0.9
2.2
1.1

—5.1

1.7
1.8
3.4
0.9
0.3
3.0
0.9

—0.3
0.1

—1.3
—1.4
—0.6

0.1

7.3
—9.7
—8.6
13.0
7.5

—3.9
56.1

—35.0
—36.0
—69.7
—16.0
—49.5

38.3
—5.3

—31.1
0.5

—84.0
—1.9
—1.5
—0.7

0.3
0.5
2.4
0.4
1.7
0.7

—4.3
1.3
1.6
3.2
0.7
0.1

2.9
0.8

—0.4
0.0

—1.4
—1.5
—0.6

0.1

n =14 and 17 to 28. The results are, presented in Tables I
and II along with the best literature values for fine-
structure splittings in these series. Each reported interval
is the average of 12 to 32 independent measurements. The

'Determined by difference of the absolute P3/2 and P~&z levels
measured by photographic Fabry-Perot interferometry. See
text.
bReference 11.
'Calculated from wavelengths given in Ref. 12.
Reference 13.

'Reference 14.
Calculated from fitted empirical formula. See Table IV.

Differences are from the observed values in this work where
available.
NCalculated from fitted Pendrill formula. See Table IV. Differ-
ences are from the observed values in this work where available.

4
5

6
7
8
9

10
11
12
13
14 —337.5(2.0)
15
16
17 —190.2(2.9)
18 —162.0(1.8)
19 —138.4(2.6)
20 —119.0(1.4)
21 —103.8(2.2)
22 —90.0(2.2)
23 —78.9(1.7)
24 —71.0(2.0)
25 —61.7(2.5)
26 —54.2(1.6)
27 —49.3(2. 1)
28 —43.7(1.6)
29
30

—5438(6)'
—4482(9)'
—3172(6)'
—2209(9)'
—1592( 18)'
—1166(21)'
—873.2(2.0)
—667.2(2.0)'
—522.0(3.0)
—416.0(3.0)
—336.8(1.0)b
—276.3(1.0)b
—229.3(1.0)"
—190.5(2.0)b

—69.58(2.0)'

—40.32(3.0)'
—36.60(4.0)'

1.1
—3.0

4.3
—10.0

6.5
4.4
1.3

—1.9
—1.5
—0.8
—0.1

0.4
0.5

—1.2
—0.1

0.1

0.0
0.8
0.2
0.2
0.2
0.2

—0.5
0.4

—0.2
0.7
0.8

1.6
1.1
3.0

—11.3
5.8
4.2
1.3

—1.8
—1.4
—0.7

0.0
0.4
0.6

—1.2
—0.1

0.0
0.0
0.8
0.2
0.1

0.2
0.2

—0.6
0.3

—0.3
0.7
0.8

'Reference 16.
"Reference 6.
'Reference 14.
Calculated from fitted empirical formula. See Table IV.

Differences are from the observed values in this work where
available.
'Calculated from fitted Chang formula. . See Table IV. Differ-
ences are from the observed values in this work where available.

estimated uncertainty of each measured value is given in
parentheses. This uncertainty includes three times the
standard error of the mean of the individual measure-
ments, a contribution from the uncertainty in the free
spectral range of our confocal Fabry-Perot interferometer,
and a worst case estimate of systematic errors due to
thermal drift of the interferometer and drift of the red-
laser frequency. For all of the Ii intervals and the smaller
P intervals, random scatter dominates the uncertainties.

For the larger P intervals, which require longer scan
times, the estimated drift rates are the dominant contribu-
tors.

Analytical representations of experimental fine-
structure data have frequently been given by fitting the
constant coefficients in the empirical formula

hf, ——A/(n') +B/(n )~+C/(n ) +
by standard least-squares procedures. This formula suc-
cessfully describes the data in many cases. Aside from its
asymptotic (n*) dependence, however, it has no clear
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TABLE III. Fitted formulas for the np and nf effective
quantum numbers n, n =n*„—a/(n*„) —b/(n „)—c/(n*„),
where n „=n—e„.

n P~g'

3.569 902(1)
0.373 32(20)
0.348(4)
1.274(20)

P~]22 b

3.591 5664(35)
0.363 02(14)
0.3667(17)
1.1320(59)

n F~g

0.033 479(5)
—0.19144(7)
—0.044(20)

3.09(26)

'Based on data from Refs. 11, 13, and'14. The values of n cal-
culated from these coefficients should not be used to calculate
level energies.
Based on experimental levels from Refs. 11, 12, and 13. The

values of n* calculated from these coefficients can be used with
the series limit 31406.4702 cm ' to calculate the energies of the
n Pi/2 levels for n & 6.
'Based on data from Ref. 14 and K. B. S. Eriksson and I.
Wenaker, Phys. Scr. 1, 21 (1970). The values of n* calculated
from these coefficients should not be used to calculate level en-

ergies.

theoretical interpretation. Two alternative formulas have
recently been suggested as better founded in atomic
theory. The first was proposed by Chang who developed
the expression

hf, ——I [(n +l)!/(n —l —I )!]

&&(A +B/n'+C/n4+ ) I ln "+4 (2)

based on a perturbation calculation using hydrogenic wave
functions. This expression has the considerable advantage
of depending only on the principal quantum number and
not on the effective quantum number. The second alter-
native expression

hf, ——2/(n') +B/(n*) +C/(n*) +D/(n') +
(3)

was derived by Pendrill' from the Rydberg-Ritz term
formula which can be justified theoretically and which is
known to represent series of absolute energy levels with
high accuracy.

We have performed a weighted least-squares fit of each
of these formulas to the best n P and n F fine-structure
data. The resulting coefficients are summarized in Tables

III and IV and the residuals of the fitted formulas for
each series are given with the experimental data in Tables
I and II. The results for the individual series are dis-
cussed separately below.

A. n2P intervals

Our experimental fine-structure intervals for the n2P
levels are summarized in Table I along with the most ac-
curate available results for all other n P states including
values from Eriksson et al." ( n =6), Sansonetti'
(n =7—11), Lorenzen and Niemax's (n =11—21), and
Goy et al. ' (n =23—42). The values for n &11 are
based on wavelengths measured in emission sources. The
cited intervals for n =12—21 are differences of the abso-
lute I'3/2 and P~/2 energies as measured by Lorenzen
and Niemax' with a frequency-doubled dye laser in a Cs
thermionic hot-pipe diode. The results of Goy et al. , '4

which are the most precise values that have been reported
for this series, were obtained in an optical-radio frequency
double-resonance experiment. Our work represents the
first Doppler-free observation of this series by optical
inethods and extends the measured fine-structure intervals
to much higher principal quantum numbers than have
previously been observed.

Goy et al. ' have fitted their fine-structure data using
the empirical expression in Eq. (1) with three constants.
Extrapolation with their formula to higher values of n

gives results which are in excellent agreement with our
data. Application of the formula at low n, however, gives
results that disagree with the best data by far more than
their estimated uncertainties. For this reason we attempt-
ed to make a new fit of Eq. (1) to all of the best data.

It was first necessary to determine appropriate values of
n to be used in the fitting. For' the empirical formula it
is customary to use n' for the centers of gravity of the
.fine-structure doublets. Experimental energy levels from
Ref. 11 (n =6) and Ref. 13 (n =7—21) were used to deter-
mine the P centers of gravity for these levels. For n & 21
the P centers of gravity were calculated from the quan-
tum defect formulas of Goy et al. ' and the Cs ionization
energy 31 406.471 0(7) cm ' given by Lorenzen and
Niemax. ' The center-of-gravity values of n' were then
fit to a series formula as shown in Table III, and the re-
sults of this formula were used in fitting the fine-structure
data.

TABLE IV. Fitted formulas for the n P and n F fine-structure intervals. All coefficients are given
in MHz.

Empirical'
n P

Pendrill Empirical'
n F

Chang'

B
C
D

2.14054(5)x 10'
—4.198(22)X 10

2.468(30)x10'
2.05(11)x10'

2.14010(6)x10'
—1.285(8) x 10
—4.542(30) x 10

2.8692(70) X 10

—9.752(7) X 10
1.128(5)X 10

—2.00(6)x 10'

—9.784(8) x10'
—3.08(7) X 10

1.02(9) X 10

'hf, ——A /(n*) +B/(n ) +C/(n*) +D/(n*) . Use center-of-gravity n* from Table III.
bf, ——A/{n ) +B/(n*) +C/(n*) +D/(n*) +E/(n*) . Reference 10. Use P~/2n* from Table III.

'hf, = f[(n+l)!/(n —l —I)!](2+B/n2+C/n4)I/n2'+4 Reference 9. .
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We found that Eq. (1) with three constants was not ade-
quate to describe the experimental P intervals at low n.
Addition of a fourth constant [i.e., a term with I/(n*) ]
was required to fit the data for n =6—9. With this addi-
tional term a good representation was obtained for the en-
tire series. The fitted constants are given in Table IV.

We have also tested the two alternative formulas, Eqs.
(2) and (3), to assess their usefulness for representing the
experimental data. We could not fit the P fine-structure
data using the formula of Chang regardless of how many
terms of the expansion were used. This result was expect-
ed since Chang states that his derivation is not applicable
to strongly penetrating series. Fitting the formula of Pen-
drill' produced more interesting results.

Although it is not stated in Pendrill's paper, a careful
examination of his derivation indicates that his expres-
sions for the coefficients in the fine-structure formula are
valid if the intervals are fitted as a function of the effec-
tive quantum number for the lower of the doublet levels.
We have determined the necessary effective quantum
numbers by fitting the modified Ritz formula to the Pi~2
levels of Refs. 11 (n =6), 12 (n =7,8), and 13 (n & 8).
The coefficients given in Table III accurately reproduce
all of the experimental data for n &6. The Ritz formula
published by Lorenzen and Niemax' for this series was
not used because it does not represent the experimental
levels well for n =7 and 8.

We first determined that no satisfactory fit to the zP in-
tervals was possible without the inclusion of the third,
fifth, and seventh powers of I/(n*) regardless of what
.even powers were included. Taking all terms in the Pen-
drill formula up to the seventh power produced a formula
that represented the data well, but the calculated coeffi-
cient of the sixth power had an uncertainty greater than
its value. By omitting the sixth power a formula which
described the data equally well and in which all coeffi-
cients were well defined was obtained. The coefficients
for this expression are given in Table IV.

One of the attractive features of Pendrill's derivation is
that it relates the expansion coefficients of Eq. (3) to the
coefficients of the Rydberg-Ritz term formula. Based on
the Ritz coefficients of Goy et al. ,

' Pendrill has made
predictions for the coefficients of Eq. (3) which can be
compared directly to our experimental values. ' The
predicted value A =2.138(4)X10 MHz is in agreement
with the fitted value 2.14010(6)X 10 MHz. This is not
surprising since A alone determines the fine-structure in-
tervals in the limit of high n. In this limit Pendrill s ex-
pression for A is readily apparent. The predicted value
B= —1.042(4) X 10 MHz is 20% smaller than the fitted
value —1.285(8) X 10 MHz, and the predicted value
C= —2(3)X10 MHz differs substantially from the ex-
perimental value —4.542(30) X 10 MHz although there is
agreement within the large uncertainty of the prediction.

On the basis of the above comparisons the predictions
of Pendrill are qualitatively confirmed. In particular, the
(n*) term which is not included in the empirical formu-
la does play an important role in representing the experi-
mental data. This term is less important, however, if the
fine-structure intervals are fitted with respect to the effec-
tive quantum number for the doublet center of gravity. It

is possible to derive Pendrill's formula to conform to this
convention. ' If this is done, the expression for the A
coefficient is unchanged, but the expression for the 8
coefficient is multiplied by a factor of —1/(2j +2), where

j is the smaller of the doublet J values. For a P series the
effect of fitting with respect to the center-of-gravity effec-
tive quantum number is to reduce the magnitude of the
(n*) dependence by a factor of 3. With this reduction,
and the low accuracy of fine-structure data at low n, it is
not surprising that the empirical expansion in odd powers
only has been sufficient to represent most experimental
data.

For the case of the precise data of Goy et a/. ' for the
Cs P series in the vicinity of n =30, Pendrill has suggest-
ed that the (n ) term should contribute much more to
the fine-structure interval than the (n*) term. ' In fact,
Goy et al. fitted their fine-structure data as a function of
the average quantum defect for the doublet. By using the
procedure of Pendrill's derivation it is easy to show that if
the average quantum defect is chosen as the independent
variable the coefficient of the (n ) term vanishes.

B. n ~F Intervals

In Table II the present data for the fine-structure split-
ting of the n F levels are listed together with the data of
Sansonetti and Andrew' (n =4—9), Fredriksson et al.
( n =10—17), and Goy et al. ' (n =24,29,30). Our results
confirm that these intervals are inverted and show an
asymptotic I/(n*) dependence which indicates that they
will remain inverted for all higher n. As in the case of
the n P series, the formula given by Goy et al. accurately
predicts our new data but does not give good results for
low n. We have made a new fit with Eq. (1) including all
of the best data and using values of n* from the expan-
sion in Table III. The coefficients are given in Table IV.
The resulting formula is in exact agreement with that
given by Sansonetti and Andrew from fitting the data for
the n =4—17 levels only.

We have also fit the formulas of Pendrill' and Chang
to the n F fine-structure data. In fitting the Pendrill for-
mula the coefficients of all terms with inverse even
powers of n* are ill defined ( &90% uncertainty), hence
the Pendrill formula has no advantage over the empirical
formula for this series. The formula of Chang with three
terms gives a representation of the data that is as satisfac-
tory as the empirical formula. The coefficients for this
formula are also given in Table IV. The Chang formula is
more convenient than the empirical formula because it re-
quires only the principal quantum number and not the ef-
fective quantum number. Success with these data, howev-
er, is not a good test of the validity of the formula. The
quantum defects for this series are small enough that a
simple expansion in odd inverse powers of n can represent
the data within their experimental uncertainties.

IV. CONCLUSIONS

We have used Doppler-free resonantly enhanced two-.
photon spectroscopy to measure the fine-structure inter-
vals of np and nf Rydberg states in Cs. Our highly sensi-
tive thermionic diode detector made it possible for us to



30 DOPPLER-FREE RESONANTLY ENHANCED TWO-PHOTON. . . 1811

use the 51 levels, which are only weakly electric-
quadrupole coupled to the ground state, as resonant inter-
mediate states. This technique makes it possible to study
states of odd parity and to induce b, l =1 or 3 transitions
to high Rydberg states with two optical photons. The re-
sulting spectra show excellent signai-to-noi. se ratio and
can be obtained at very low Cs number density. Our mea-
sured fine-structure intervals, which for the n 2P series ex-
tend the range of experimental values to n =83, are in
good agreement with extrapolations from previous mea-
surements at lower n.

We have investigated the application of three formulas
which have been used to represent fine-structure intervals
to all of the best data for the Cs n P and n F intervals.
Both series can be described satisfactorily by the empirical
expansion in odd inverse powers of n' The . n F data is
also represented well by the formula of Chang which is
derived by a perturbation treatment with hydrogenic wave
functions. The formula of Pendrill, ' which is derived
from the extended Ritz formula and includes inverse even
powers of the effective quantum number, is supported by
the data for the n P series. We find, however, that the
importance of the even powers in the expansion depends
critically on which effective quantum numbers are used as
the independent variable. If n* for one of the individual

series is used the inclusion of even powers is quite impor-
tant. If the center-of-gravity effective quantum number is
used the dependence is reduced, and if the average effec-
tive quantum number is used the dependence on (n*)
vanishes. Although the formula of Pendrill is confirtqed
in a formal sense, it has no practical advantage over the
empirical formula in representing experimental intervals
at the current level of accuracy.
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