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As a first application of the Schwinger multichannel theory, we have calculated integral and dif-
ferential cross sections for electron-impact excitation of the transition X'X~+~b'X+ in Hq for
scattering energies from 13 to 30 eV at the two-state level. We find good agreement between our in-

tegral cross sections and the results obtained previously in a two-state close-coupling study. Our
method does not rely on single-center expansions to calculate the body-frame scattering amplitude
and is designed to be applicable to molecules of arbitrary geometry.

I. INTRODUCTION

Accurate cross sections for the electronic excitation of
molecules by low-energy ((30 eV) electron impact are
important for a variety of reasons. Measurements' in this
energy region can often be difficult and time consuming,
and hence theoretical studies of these cross sections for
linear and small polyatomic targets are obviously desir-
able. In particular, the differential cross sections give
considerable insight into the physics of the electron-
molecule interaction as well as providing a sensitive test
of the collision theory being used. This last point is quite
important since a number of theoretical approaches in-
volving varying degrees of approximation are available.
These approaches include plane-wave theories such as the
Born-Ochkur-Rudge approximations, ' the impact-
parameter method, distorted-wave theories, ' and mul-
tichannel theories. Plane-wave theories are lowest-order
theories containing approximations valid at high impact
energies. These theories are computationally easy to ap-
ply, but'recent studies have shown that they lead to
qualitatively and quantitatively incorrect differential cross
sections at low and intermediate electron energies. The
impact-parameter method is a semiclassical approach in
which the projectile electron is treated classically and al-
though this method can provide some improvement over
plane-wave theories, it does not include enough of the col-
lision physics to produce reliable differential cross sec-
tions at low energies. A distorted-wave approach is the
next logical step beyond the plane-wave theories. Recent-
ly, studies using a distorted-wave approximation ' in the
20—100 eV range have shown that this method can
predict differential cross sections in qualitative agreement
with measured values. However, there are serious quanti-
tative disagreements between these distorted-wave cross
sections and available data in several cases. Multichannel
theories of these i.ne1astic collisions have the firmest
theoretical basis, but they are considerably more difficult
to apply. However, at the two-state level of approxima-
tion, close-coupling calculations for selected transitions in
H2 have been carried out by Chung and Lin and by
Weatherford' and for the a'IIs channel in N2 by Holley
et al." Both Chung and Lin and %'eatherford obtained

integral cross sections for the exchange-allowed excitation
I'Xs +b X„+—, but only Weatherford reports differential
cross sections for this channel.

In this paper we report the first results' obtained from
the application of a Schwinger multichannel (SMC) for-
mulation to electronically inelastic electron-molecule col-
lisions. Specifically, we have calculated integral and dif-
ferential cross sections for the X'Xs+ ~b X~+ excitation in
H2 for impact energies from 13 to 30 eV. Some formal
details of our method are discussed in an accompanying
paper. ' An important feature of this formulation is that
it can provide an analytic approximation to the mul-
tichannel scattering amplitude in the plane-wave represen-
tation, thereby obviating the need for single-center expan-
sions. As a consequence of this feature, our method has
been designed to be applicable to molecules of arbitrary
geometry and to include a significant number of open and
closed electronic channels.

In Sec. II we present a brief review of the SMC formu-
lation. The computational details of our study can be
found in Sec. III together with a discussion of our results
and a comparison with other studies. In Sec. IV we sum-
marize our findings and conclusions.

II. THEORY

The details of the SMC formalism have been presented
in a companion paper, ' and hence we will give only a
brief review here. -Our method begins with a projected
Lippman-Schwinger equation

P%'+'= S +G'+'V%'+'
v'N +1

(2.1)

where 4„'+' is the total (N+1)-particle wave function
with plane-wave and outgoing-wave boundary conditions
for the nth channel. The projection operator I' defines
the open-channel space in terms of eigenfunctions of the
target Hamiltonian H&

ND

P= g ~@ (1,2, . . . , N))(N (1,2, . . . , N)
~

(2.2)
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H~I@ )=E I4 ), E E—)0 (2.3) with

where E is the total energy of the (N+1)-particle system.
In Eq. (2.1) S„ is the free-particle solution of the unper-
turbed Hamiltonian Hp ——H~+ Tz+& and is given by

n N+1 (2A)

The interaction potential Vis

V=H~+ ) —Hp

(2.7)

(PV—+ VP) VG—p+'V
2

ik
I

r —r'I
(+)(~ ~t)

As shown by Takatsuka and McKoy, ' ' a complete
equation for 4'„+' is given by

i=~
I
r r—N+i I R..—r„+i I

(2.5)
+ H — (PH+HP) e„'+'= VS„,%+1 2 v'N +1

o

Gp = g I
C &g'+'(rN+i r tv+i)&C'

m=1
(2.6)

where the first term on- the right-hand side (rhs) of Eq.
(2.5) represents the interaction between the incident and
target electrons and the second term represents the in-
teraction between the incident electron and the nuclei.
The outgoing-wave Green's function Gz+', which is de-
fined only in the open-channel space, can be written as

(2.8)

where H=E Hz+i—. This equation contains informa-
tion about the closed electronic channels without defining
the closed-channel Green's function which would necessi-
tate including the target continuum states. ' Based on Eq.
(2.8), a variational functional for the fixed-nuclei scatter-
ing amplitude is

f (k,k„)=—1 (s I
v

I
e'„+')(e'-'

I
v

I s„)

(
2s e'-' (PV+ VP—) VG,'+'V+— H — +' (PH+HP)

2 %+1 2

(2.9)

where the superscript 8 on f indicates that this quantity
is calculated in the body-fixed (molecular) reference
frame. '

In our procedure 4'„+' is expanded in a basis of Slater
determinants which are constructed from an orthogonal
set of molecular orbitals, additional basis functions, and
plane-wave functions, if necessary. These molecular orbi-
tals and additional basis functions are further expanded in
Cartesian Gaussian functions. With this choice of basis
all of the matrix elements appearing in Eq. (2.9), except
for the matrix elements of VG~+'V, can be evaluated
analytically. However, these matrix elements can also be
obtained in closed form' ' if an approximate closure re-
lation is inserted around Gz+', viz. ,

f~(k, k„)=pe (k, k„)YP(k ) .
T, m

Here, I'~ is given by

(2.11)

and extra Gaussians used only for insertion to make up
the

I y) basis. A criterion for the completeness of this in-
sertion basis can be obtained by observing the way .in
which the scattering matrix approaches unitarity.

This formulation allows us to obtain an analytic ap-
proximation to the body-frame fixed-nuclei'5'9 20 scatter-
ing amplitude f for molecules of arbitrary geometry. To
generate the physical differential cross section, one needs
the laboratory-frame' scattering amplitude f . As a first
step to acquiring this quantity we expand f in a partial-
wave series

&+'-'I vG,'+'v
I
e„'+')

FP—(k, k„)=J dk YP(k ) f (k, k„) . (2.12)

x &y'
I G,"'1»(Q-')s, s &~'

I
V

I ~."'&, (2.10)

where (Q)r r ——(y I
y') and Cartesian Gaussian functions

are again chosen for the insertion basis
I y). This inser-

tion basis can be larger than the one used to expand 4'„+'.
The form of the insertion used in Eq. (2.10) does not re-
quire that

I y) be an orthonormal set. Thus, we can in-
clude the SCF orbitals, additional scattering functions,

An X-point Gauss-Legendre quadrature is used to per-
form each of the angular integrations in Eq. (2.12); for
given k~ and k„ this requires that f~(k~, k„) be deter-
mined at the appropriate set of angles. A straightforward
application of the Wigner rotation matrices ' is then used
to obtain f as a partial-wave series expanded in terms of
the laboratory-frame angles k ~, viz. ,

f (k~, k„)= g FP—(k~, k„)YP(k~)D„(O,P,~),
T, m, IT,

(2.13)
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o(~' 0"km kn)=
4 k fdkn lf (k'm kn) I'. (2.14)

Again, Gauss-l. egendre quadratures are used to perform
the angular integrations. Finally, the physical cross sec-
tion is obtained by averaging over the azimuthal angle P'
and performing the appropriate average over initial and
sum over final spin states for the transition of interest.

III. PROCEDURE AND RESULTS

As a first application of our formulation we have ob-
tained the differential and integral cross sections for exci-
tation of the b X~+ state of Hz by 13—30 eV electrons.
This excitation is a very convenient example for our
present purpose since it is one of the very few molecular
systems that have been studied by close-coupling tech-
niques. ' As in these close-coupling studies we include
only two open channels and completely neglect any closed
channels. Moreover, these cross sections have also been
studied by plane-wave theories ' and distorted-wave
methods. "

Our calculations are performed within the framework
of the fixed-nuclei and Franck-Condon approxima-
tions. ' ' * The rotational levels are treated as degen-

where D is the rotation matrix whose argument consists
of the Euler angles relating the two reference frames. The
random orientation of the target is accounted for by ex-

plicitly averaging over the angles k„. If the laboratory-
frame angles k' are denoted by (O', P'), the differential
cross section can be written as

crate and the physical cross sections are obtained by
averaging the fixed-nuclei results over all molecular orin-
tations. A single electronic transition matrix elemen1is
calculated with outgoing electron energy determinedly
the vertical transition energy from the v=O ground sate
to the final vibrational level with the largest Fran~k-
Condon factor. The value of the threshold energy detr-
mined this way is taken to be 10.5 eV. Unless othemse
stated, atomic units are used throughout.

For the ground state we used a self-consistent-fild
(SCF) wave function obtained with a (5s2z)'Cartessn
Gaussian basis at an internuclear distance of 1.4003,o.
This basis has been used previously and for convenieice
is shown in Table I. The SCF energy was =1.13254
a.u. For the b X+( los lo „)state we make the frozen-c~re
approximation and determine the 1cr„orbit al by diagoril-
izing the Vz' i potential of the core in the SCF bais.
The vertical excitation energy for the b X+ state in tus
basis set is 9.97 eV from the v=O vibrational level. Tiis
entire set of V& i eigenfunctions, i.e., improved virtual

orbitals (IVO), is available for use in expanding he
(N+1)-particle wave function. The Gaussian basis its
used as additional scattering functions and in the insertion
basis are also shown in Table I. For this exchange excia-
tion expansion of the scattering functions solely in
discrete basis functions should be adequate.

In the body frame all calculated results include the .'s,
X„, II&, and II„symmetries of the (N+1) particle fu&c-

tions %~ '. Of the available scattering basis, no more thn
17 (10) spatial functions were used to construct the detr-
minants included in the expansion of 4'-' for X(II) syn-
metries. For the X symmetries, the scattering set consits

SCFb

TABLE I. Basis sets for these calculations. '
2y+ c

g, g Extra insertion'

lmn
000
000
000
000
000
001
001

48.447 9
7.283 46
1.651 39
0.462447
0.145 885
1.5
0.5

A =(0,0, +0.70014)
l m n

100
100
100
100
100

A =(0,0,0)
lmn a
0 0 0 1.0
000 02
0 0 0 0.1

0 0 1 1.0
0 0 1 0.2

1.08
0.54
0.18
0.06
0.02

l m n

000
000
001
100
100
100

. 1 00

l m n

000
000
000
000
001
001
001
001
001

0.086
3.142
3.0
0.3118
0.1039
0.0346
0.0115

2.0
0.5
0.05
0.01
2.0
0.5
0.1

0.05
0.01

n —a~ r —A ~2'Cartesian Gaussian functions defined by &gmn =&gmn(+ ' ~x) (p ~y) (~ ~z)
Basis set used for the X'Xg+( log ) ground and b 2+(lug lo„) excited states of H2.

'Additional functions used to expand the scattering functions for Xg+„symmetries.
SSIDc ss c hut. for the g». yvmtuetries

'Extra set of functions used in the insertion around VG&+ ' V [see Eq. (2.10)].
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TABLE II. Differential cross sections for excitation of the b X„+ state (10 ' cm ).

Scattering
angle (deg)

0
10
20
30
40
50
60
70
80
90

, 100
110
120
130
140
150
160
170
180

13

3.48
3.41
3.22
2.91
2.50
2.05
1.59
1.20
0.946
0.879
1.02
1.37
1.87
2.46
3.07
3.61
4.03
4.30
4.39

15

4.41
4.33
4.10
3.70
3.16
2.53
1.88
1.32
0.958
0.896
1.18
1.79
2.65
3.63
4.60
5.44
6.09
6.48
6.61

Impact energy (eV)
20

4.19
4.18
4.11
3.92
3.57
3.03
2.34
1.60
0.977
0.602
0.571
0.896
1.51
2.28
3.06
3.74
4.24
4.54
4.64

25

273
2.77
2.86
2.90
2.81
2.50
2.01
1.42
0.860
0.465
0.319-
0.437
0.767
1.22
1.69
2.10
2.40
2.59
2.65

30

1.90
1.95
2.05
2.11
2.05
1.82
1.44
0.997
0.594
0.322
0.230
0.300
0.482
0.711
0.930
1.10
1.22
1.29
1.31

of a mixture of IVO's and additional functions chosen to
improve the flexibility of the basis. However, since there
are no m. orbitals in the IVO set, the scattering basis for
the II symmetries is made up entirely of additional
scattering functions. As discussed in Sec. II, the insertion
basis used to calculate the matrix elements of VGz+'V is
larger than the SCF and scattering basis sets. The extra
Gaussian functions used in the insertion basis and shown
in Table I significantly improved the unitarity of the
scattering matrix compared with the results obtained
when only the SCF and scattering basis functions are
used.

We used an 8-point Gauss-Legendre quadrature for the
integration over 8 in Eqs. (2.12) and (2.14) along with a
6-point quadrature for each "hemisphere" of the integra-
tion over P. For a given k and k„, this requires a 96 by
96 matrix of values for f (k, k„), many of which need

not actually be computed since they are related by symme-
try to other matrix elements. Also, for the scattering en-
ergies considered here, we restrict the partial-wave expan-
sion of the inelastic scattering amplitude in Eq. (2.11) to
values of l & 3.

Table II gives the inelastic differential cross sections for
several incident energies. The b X„+ state is dissociative
and hence all its vibrational states lie in the continuum.
All our cross sections are those for the complete band sys-
tem, i.e., summed over all final vibrational levels. At the
lower incident energies in these studies this assumption is
not quite correct since the sum of Franck-Condon factors
for the "open" vibrational levels is still only about 0.9.
However, for the present purposes it is convenient to re-
port essentially the fixed-nuclei cross sections for

cn
(A
C)
CC

CC

K
LU
lK
UJ
tL
4

0
60 120 180

60 120

SCATTERING RNGLE (deg)

180

SCATTERING ANGLE (dcg)

FIG. 1. Differential cross section (DCS) for excitation of the
b X+ state at 13 eV.

FIG. 2. DCS for excitation of the b3X+ state at 15 eV:
present results with ~-scattering functions on the center (
results with m-scattering functions on the nuclei (———); dis-
torted wave (DW) results of Ref. 7 (—-—-).
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(A

lD
(k

IJ

0
120

SCATTERING ANGLE (deg)

180

c4~

;o 6
C)

CD

UJ 4(A
/

V)
fA
C3

L)

2 f
I—

IJJ
CC

IJ
IJ

O 0
60 120

SCATTERING ANGLE (deg)

180

FIG. 3. DCS for excitation of the b X„+ state at 20 eV:
present results ( ); DW results of Ref. 7 (———).

FIG. 5. DCS for excitation of the b'X+ state at 30 eV:
present results ( ); DW results of Ref. 7 (———).

R = 1.4003ao and we hence do so.
These differential cross sections are also shown in Figs.

1—5. The substantial backward peaking of these
exchange-type excitation cross sections at the lower in-
cident energies is very evident. In Figs. 2—5, we also
show the differential cross sections at 15, 20, 25, and 30
eV obtained by Fliflet and McKoy using a distorted-wave
theory. At incident energies of 20, 25, and 30 eV the
distorted-wave cross sections are in reasonable qualitative
agreement with those of the present two-state calculations.
This agreement is clearly better for scattering angles
below 120. However, Fig. 2 shows that for 15 eV the
distorted-wave differential cross sections are in very poor
agreement with the present results. This disagreement be-
tween the distorted-wave approximation and a two-state
calculation at lower incident energies is not surprising. In
Fig. 4 we also compare our differential cross sections with
those of Weatherford's two-state calculation at 25 eV. In
addition to their generally larger values the present cross
sections do not fall off as rapidly in the forward direction
as those of Weatherford.

In computing these results we found that contributions

from the II symmetry have considerable effect on the
overall shape and magnitude of the differential cross sec-
tions. Thus in order to test the sensitivity of the scatter-
ing results to our choice of basis functions for the II sym-
metry (see Table I), we performed an additional set of cal-
culations using different II basis functions located on the
molecular center. Differential cross sections correspond-
ing to a scattering energy of 15 eV are shown in Fig. 2 for
the two sets of calculations. These results are in reason-
able agreement with each other and, in fact, the agreement
at higher energies (not shown) is even better.

Our corresponding integral cross sections for excitation
of the b X~+ state are given in Table III along with Born-
Rudge results, the distorted-wave values of Fliflet and
McKoy, and the close-coupling results of Chung and
I.in. These cross sections are also shown in Fig. 6 where
we see that the close-coupling cross sections of Chung and
Lin are in good agreement with the present results. The
close-coupling results of Weatherford'0 (not shown) differ
somewhat from those of Chung and I.in; they are smaller

TABLE III. Integral cross sections for excitation of the b X„+

state(10 ' cm ).

c4~o 6
C)

C3

I—

QJ 4

2
I—

IJJ
CC
IJJ
IJ .
IJ

o 0-

60 120

SCATTERING ANGLE (deg)

180

Impact
energy (eV)

11.0
12.0
13.0
14.0
15.0
16.0
17.5
18.0
20.0
22.0
25.0
30.0

DW'

3.50
6.25
7.85

8.30
8.03

6.81
5.78
4.53
3.16
1.95

BRb

4.47
4.41
4.18
3.88
3.41

2.69

1.70
1.10

CC'

2.19
2.56
2.80
2.84
2.81

2.53

1.82
1.26

SMCd

2.46

3.25
3.28

2.69

1.85
1.23

FIG. 4. DCS for excitation of the b X„+ state at 25 eV:
present results (—-—-); DW results of Ref. 7 ( ); close-
coupling (CC) results estimated from Fig. 6 of Ref. 10 (———).

'Distorted wave results of Ref. 7.
Born-Rudge results of Ref. 9.

'Two-state close-coupling results of Ref. 9.
Present results.
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N

c 0
I

12

8-~ +

CZ
LC

UJ
I—

0
12 20

ELECTRQN IMPACT ENERGY (eV)

36

and peak at about 3 eV lower in energy than those of
Chung and Lin. The distorted-wave theory clearly
overestimates the integral cross section by about a factor
of 2, although the shapes of the corresponding differential
cross sections are in reasonable agreement with the SMC
results. The Born-Rudge cross sections are somewhat
larger and peak at lower energy than those of the other
methods. We do not show a comparison with the mea-
surements of Corrigan since these data contain signifi-
cant contributions from channels not included in the
present study, and hence, these experimental cross sections
are larger than the two-state SMC or close-coupling re-
sults for exciting only the b X~+ state.

FIG. 6. Integral cross section for excitation of the b X+
state: present results ( ); CC results of Ref. 9 (———);
Born-Rudge results of Ref. 9 (—- —-); DW results of Ref. 7 (———).

IV. CONCLUSIONS

In this paper we have reported the first application of a
Schwinger multichannel formulation to low-energy
electron-impact excitation of the b X„+ state of H2. For
consistency in comparing with other theoretical results,
our cross sections were calculated at the two-state level
and closed-channel effects were not included. No reliable
experimental data are available for these cross sections.
However, our integral cross sections agree quite well with
the close-coupling results of Chung and Lin. Although
Chung and Lin do not report differential cross sections, a
comparison at 20, 25, and 30 eV shows qualitative agree-
ment between our differential cross sections and the
distorted-wave values of Fliflet and McKoy.

With the SMC formulation, our procedure allows us to
compute an analytical approximation to the multichannel
fixed-nuclei scattering amplitude without resorting to
single-center expansions. As a result, our method is well
suited for applications to molecules of arbitrary geometry
and for inclusion of a substantial number of open and
closed channels. The method can be applied straightfor-
wardly to study low-energy electron collisions with a
variety of small polyatomic targets. Calculations for e-N2
and e-CH4 scattering are underway.
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