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In the interaction of N spin- T particles, the possible types of dependence of the cross section on

polarization and momentum three-vectors and/or on two-spinor components may be defined with

the use of angular-momentum-coupling trees with j=1 and/or j=T external labels, respectively.

We show, using integrity-basis theory, that all such trees with spin- 2 labels only may be expressed

as sums of products of Kronecker delta functions and 2jm symbols in the spinor component labels;

this is related to Kramers s method of spinor invariants. The integrity-basis method also identifies

the nature of inter-relationships between the spinor invariants. Explicit reductions of angular

momentum trees of degree 2N in spin- T labels are given for N (4. As simple illustrations of the

application of such trees, we discuss the Dirac and Anderson spin Hamiltonians of nonrelativistic

exchange theory in this context and also develop a concise description of the polarization depen-

dence of Mgller scattering in @ED.

I. INTRODUCTION

The quantum theory of angular momentum plays an
important role in the analysis of the polarization depen-
dence of particle reactions in many fields of physics.
When the associated interactions are rotationally invariant

(e.g., eA p/m, tep&A") the Wigner-Eckart theorem for
SO(3) may be applied to their matrix elements. The
geometrical dependence of the total cross section then
reduces to an angular-momentum-coupling tree, i.e., a
product of 3j (or—as they are sometimes called' —3jm)
symbols with internal suffices summed in pairs, whose
external suffices (corresponding to terminal legs of the
corresponding angular-momentum-coupling diagram ) are
contracted, e.g., with polarization vectors and/or spinors
for the participating particles.

For a given number of particles (N, for example)
several trees may be obtained, each with different topolo-

gy and/or different angular momentum (j) labels for the
intermediate states (internal lines). The linearly indepen-
dent trees, contracted with polarization vectors, etc.,
enumerate all possible dependencies of the cross section of
geometrical properties, such as choice of polarization.

In the case of spin-1 particles such as photons interact-
ing with each other or with unpolarized matter (including
rotationally invariant scatterers such as fluids), the
geometrical dependence is specified entirely by the polari-
zation vectors in the nonrelativistic E1 coupling limit and
(because of gauge invariance) even in the relativistic limit
for simple processes such as Thomson or Compton
scattering. The angular-momentum-coupling trees corre-
sponding to such processes then have 2' external spin-1
legs which are contracted against each photon polariza-
tion vector or its conjugate. In a more general problem,
contractions also involve photon wave vectors.

With the use of integrity-basis theory, Minard et al.
proved that such trees may be reduced to the sums of
products of Kronecker delta symbols in the polarization

vector component labels and gave explicit reductions for
N &4. The results have proved their usefulness in a wide

variety of topics. The possible polarization dependencies
of a variety of nonlinear or field-dependent optical pro-
cesses have been analyzed, using the results of Ref. 4, for
circular dichroism and optical activity, s natural Raman
scattering, field-induced Raman scattering, and hyper-
Raman scattering. Similar techniques indicated an error
in the "standard" cross section for Compton scattering
and indeed its correct form.

The integrity-basis formalism defines the number and

type of a minimal set of (rotational) invariants, out of
which all possible invariants must be constructed. In the
analysis of Minard et al. the elements used in the con-
struction are components of a given set of three-vectors;
not surprisingly, the types of invariants are found to cor-
respond to scalar and triple-scalar products. In indicating
the minimum set, the integrity-basis approach reveals the
existence of inter-relationships between invariants, e.g., re-
lations at fifth and eighth order in vector components be-
tween certain combinations of scalar products of vectors.

In Sec. II we develop a parallel formalism for the num-

ber and type of spinor invariants, i.e., for invariants built
from the components of two-spinors. In agreement with
the pioneering work of Kramers (see Brinkmans) we find
all spinor invariants to be bilinears in spinor components,
corresponding to scalar and alternating spinor products.
We also find inter-relationships between such products,
commencing at fourth order. This proves that angular-
momentum-coupling trees with j= —,

' external labels may
be reduced to Kronecker delta functions and 2jm sym-
bols, as was previously proved for j=1. The correspond-
ing reductions and inter-relationships are given for
lowest-order trees in Sec. III,

The results are relevant to a wide variety of problems,
as indeed are those for spin-1 trees. In the nonrelativistic
limit, they are relevant to exchange theory. The two
terms in the classical Dirac-Heisenberg-Serber —Van
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Vleck exchange operator' Hi2 ———,
' +2s i s2 correspond

to the two angular-momentum-coupling trees obtainable
from the permutation operator. In relativistic quantum
mechanics the polarization dependence of such processes
as Moiler, Bhahba, or Compton scattering involving po-
larized fermions may be expressed in terms of matrix ele-
ments between two-spinors, using spin- —, tree manipula-
tions as an alternative to Pauli matrix inanipulations for
intermediate steps in the calculation. Such methods of
computing the polarization dependence of such processes
can thus be made much more easily than earlier calcula-
tions suggest and form an alternative to the standard trace
techniques of quantum electrodynamics. These two ex-
amples (exchange and M@ller scattering) are discussed in
more detail in Sec. IV.

II. INTEGRITY-BASIS APPROACH
TO SPINOR INVARIANTS

X"'(~)= (X"'(8)FO(~))
2m=—J sin ( , 8—)FO(a)d8 .

The integration may be performed by using the ortho-
gonality relations between Chebyshev polynomials of type
1 (Ref. 15) or alternatively, as in Minard et al. , by con-
verting to a contour integral in the Argand plane and us-
ing Cauchy's residue theorem. The choice A, =exp —,i 8 for
the complex variable is necessary to render the integrand
meromorphic for the spinor case; however, the limits of
integration must then be extended to (—2ir, 2ir) in order to
close the contour, using the fact that the integrand is an
even function of 8. We have (C being the unit circle)

X (a)=(p) 1 1

4ir& c A, (1—aA, )(k—a)

(2)

Integrity-basis theory" may be used to determine the
degrees of polynomial functions in all spinor components
that may occur in independent invariants. The j =1 re-
sults of Minard et al. (see also Bader and Rodriguez' )
are here extended to j= —,.

Consider first one Pauli spinor g=ug+vil (g=
I
t),

il=
I
t)) and ask what invariants may be constructed

from powers of u and v. The nth-order polynomial

PJ =uJv" 1 (j =0, 1, . . . , n) has a character

Since no powers of a occur, no invariants are possible, as
before.

Still considering one spinor only, let us now consider
the possibility of forming invariants from powers of u, v

and their complex conjugate u, v*, with equal numbers
of u and v combined as of their conjugates. This leads us
to consider the set of polynomials

{QJ'"J J={PJ"(PJ", )*
I ji j2=0 1

X„~(8)=exp[ —,'i 8(2j —n)]

under a rotation 8 about the z axis [since u —+exp( —,
' i8)u,

v —+exp( ,'i8)v] '—H—ence .the character of the set of po-
lynomials {PJ"Ij =0, 1, . . . , n J, is

X„(8)=g X„J(8)=sin[(n+ —,
' )8]/sin( —,'8) .

j=0

This set will have a character

:-2„(8)=[X„(8)]'

with an associated generating function

Ge(A) = g:-2„(8)A"
n=0

=(1+2)/[(1—A)(1+3 —2A cos8)] .

(3)

Parenthetically, we mention that we recognize this result
as the character X'"'(8) of the irreducible representation
j= n of SO(3) under rotation by 8. For example, at n = 1,
[—,

'
—,
'
]+——1, not 0 (0 appears only in the antisymmetric

product). More generally, in plethysm language'
—,
'

{n j = ,' n. In the stan—dard spherical basis,

PJ "/&(2n j)j!!-p„"J.' —Each of these three alterna-
tive statements shows that no invariant may be formed
from u, v.

The integrity-basis method confirms this result as fol-
lows. We define a character generating function:

Fa(a) = g X„(8)a"
n=0

= 1/[1+t2 —2a cos( z 8)] .

The powers of a (and thus the degree of any polynomial
corresponding to an independent invariant) are. given
through the character orthogonality theorem by the a
dependence of the function [( ) denotes the SO(3)
average]

Replacing Fe(a) by Ge(A) in Eq. (1) gives

X' '(&)=1/(1 —&) . (4)

Indeed, Eq. (3) corresponds to the Kronecker square of
the irreducible representation j = n, - n n =0+ 1

+2+ . . +2n; this also indicates that an invariant
occurs at each n [each power of A occurs once in the ex-
pansion of Eq. (4)). However, the result that only one is
independent requires the integrity-basis analysis.

Since u, v* transform contragrediently to u, v they
transform as v, —u. ' It follows that the alternating prod-
uct of two spinors

( Pl ~ P2)=ii1v2 ii2vl

is an invariant. In terms of angular momentum coupling

The single power of A in the denominator of this expres-
sion indicates that all possible invariants are functions of
a single invariant occurring at n =1. This invariant is
obviously the spinor normalization factor::—Q @+V V (5)
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this corresponds to [figz]ii or [—,
'

—,
'
] =0. The spinors

must differ for the antisymmetric part not to vanish.
Integrity-basis theory may be used to establish Eqs. (5)

and (6) as the only possible independent invariant func-
tions of two-spinor components. The product set of poly-
nomials

Fg(a, b) =Fg(a)Fg(b) (7)

which gives from Eq. (1) an integrity-basis character func-
tion

X' '(a, b)=1/(1 ab) . — (8)

Again the denominator indicates just one independent in-
variant, bilinear in Pi and gz components, i.e., the alter-
nating product. All higher-order polynomials in

u~, v~, u2, v2 which are invariant may be reduced to poly-
nomials in the alternating product.

For three spinors we obtain similarly

X' '(a, b,c)=1/[(1 ab)(1 b—c)(1 c—a)] . —
The three alternating products (it, h gz), (fz h $3),($3 A pi)
thus define all possible invariants in this case.

For four spinors we obtain [with a little help from
REDUcE, the computer algebra program (Anthony C.
Hearn, The Rand Corporation, Santa Monica, CA 90406)]

X' '(a, b, c,d) =(1 abed)/[(1 —ab)(1 bc)(—1——cd)

X(1—ac)(1 bd)(1 —a—d)] . '

Again the denominators indicate that the six possible al-

ternating products among four spinors define all possible
invarianis. The subtractive term in the numerator indi. -

cates that not even these are independent and that the re-

lation linking them is quadrilinear in the coinponents of
the four spinors. This is readily seen to be the relation

(41 ~ A)(43 ~ 4)+( Pl ~ it 3)( f4 ~ Pz)+(42 ~ 43)(41 ~ f4}
=0 . (9)

Now, including the complex conjugate components,
consider two spinors. As before, the generating function
1s

Gg(A, B)=Gg(&)Gg(B),

Xig'(A, B)= 1/[(1 —A )(1—B)(1—AB) ] .

The term A in one denominator corres onds to an invari-
ant bilinear in the first spinor, i.e., Pi/i, and the B
term similarly corresponds to the other spinor. Invariants
such as fPi gz are excluded by the constraint [Eq. (7)) on
the form of the polynomials that equal powers of P and
g' be present. (Relaxing this constraint gives a inuch
more tedious algebraic problem. ) As a result, the denomi-
nator term AB appears apparently as an independent in-
variant; in fact this corresponds simply to

I fPi gz I
. In

a similar if more complicated manner, all the terms in the
expansion of the character function for three spinors

IPJ, (ui vi)PJ' J(—uz vz) I ji=0 1* . ni '

jz ——0, 1, . . . , n n—i, ni —0, 1, . . . , n]

has characters given by the product generating function4

X"'(W,B,C)

1 —A B——C+ (1 A—BC)(AB +BC+CA +ABC)

(1—A) (1—B) (1—C) (1 A—B)(1 B—C)(1—CA)

may be identified as parametrizing such invariants.
All these results indicate that the only possible forms

for independent spinor invariants are the alternating prod-
uct (Pi h Pz) and the scalar product f figz =—u iuz+vivz, '

these two forms may be related by defining the conjugate
spinor

i7=U'g —u'zl, (10)

since then gi h gz ———fPz Pi
A general proof that all rotational invariants formed

from spinors must have these forms is given by Brink-
man, 9 who used Kramers's method of spinor invariants.
The method of integrity bases has shown, however, that
these invariants are not independent. Relations of the
form of Eq. (9) exist and define all dependent invariants

up to the order of complexity of the above examples.
Let us compare this conclusion with that for vectors,

where the possible invariants include triple-scalar prod-
ucts as well as ordinary scalar products. Higher-order
combinations of each (or both) of these invariants may not
be independent. We now use the spinor-vector correspon-
dence ' to relate all these invariants and their inter-
relationships to spinor invariants and their inter-rela-
tionships.

Any spinor g=(u, v) defines a vector

I+m 1 —m

N(g)= m=1, 0, —1.
[(1+m)!(1—m)!]'~

= (u /V 2, uv, v /3/2) .

This is a null vector: N.N—=g N ( —1)' & =().
A more general vector requires two spinors for its defi-

nition:

V( tPi, lPz }= (u i u 3 /'i/ 2~ & ( u i U 3 +U i u z )~ U i U 3 /~2 )

If V is real [i.e., V =(—1)' V" ] we may choose
A=Pi.

The vector invariants, including the triple-scalar prod-
uct, may be reduced to spinor invariants. For example,

V(fi Qz).V'(Q'i, Qz )

6 [2(|(1~ Pl)(42 /~ Pz) (41 /~ itz)(41 /~ 42)] ~

(11)
U(P, P) V(X,X) X W(P, P) =(P AX)(X R g)(P R P) .

The higher-order relations among these invariants then
follow straightforwardly from Eq. (9).

III. ANGULAR-MOMENTUM-COUPLING TREES

A. Summary

As in previous work " we write a 3j (or 3jm) sym-
bol in the form of Fig. 1(a), i.e., three lines meeting at a
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(
Ji

( m) fT12 m3)

J) fYl)

C~
(a) fT1 V,

I
fTl =-

2
I

fTl ="-
2

(b)

(c)

J2fTl 2
~ I I

J) m) J2fTl2

(2)+i) X ~/
j

J2m2 J) fTl)

JfYl . J fYl

J3fY1~
~ I I

J ) fT) ) J 2fYl 2

J 2 fTl2 J )
fTl)

J fTl J tYl

(d)

—fT)I

2
I- fYl
2

=0

u,~42 - = 4'I

2

( 4'i A 4'*) = = C~ )' 04'~

( fT1)
(d)

I

J) fTl) J2fTl2

(e)

2J
n -( I)

J fTl J )Tl

2)
l

J fTl J fYl

(g)

FIG. 1. Basic components of the diagram representation. (a)
Diagram representation of a 3jm symbol. (b) and (c) Unitarity
relations for 3jm symbols. (d) 2jm symbol. (e) Unitarity rela-
tion for a 2J'rn symbol. (f) 2j phase. (g) and (h) Role of the 2j
phase in reversing stubs. (i) Derome-Sharp lemma, relating
complex conjugation to a Zjm transformation.

FIG. 3. (a) Spinor components. (b) Spinor conjugates. (c)
Scalar and alternating spinor products. {d) An elementary rela-
tion.

city we omit external labels on all figures from Fig. 1(e)
onwards where possible; corresponding external legs on
each side of an equation are understood to have identical
labels. ] Since integer and half-integer representations of
SO(3) are orthogonal and symplectic, respectively, ' we
have the result of Fig. 1(f) and thus [using Fig. 1(e)] those
of Figs. 1(g) and 1(h). Complex conjugation amounts to a
2jm transformation, " as in Fig. 1(i). We use a spherical
[SO(3)&SO(2)] basis for j= —,', in which

J2

Pl ) Nl2

and a Cartesian basis [SO(3)D D~] for j=1, in which
r

node. The lines are labeled by j and m labels; the rota-
tional invariance of the diagram reflects the cyclic permu-
tation symmetry of the 3jm symbol. The unitarity rela-
tions

1 1
=5 p,

(14)

Ji J2 J Ji J2 J
(2j+1) ~] ~2~ m$ m2m

=5,5, 5 ~ 5
J)J ) J2J2 m)m ) m2m2

(12)
r

Ji J2 J Ji J2 J

1 1 1

o'Pr
1=

~6 &aPr

B. Spinor components

All 2jm symbols are real. Open and filled bars denote
symmetrizers and antisymmetrizers, respectively, as in
Fig. 2.'

m m m
m&, m2

m
&

pyg2 pyg' JJ mm Components of spinors are given the diagram represen-
tation of Fig. 3(a). The conjugate of Eq. (10) is given [us-

take the diagram forms of Figs. 1(b) and 1(c), respectively.
Omitted labels in any diagram are automatically summed.

The special case j3——m3 ——0 defines a 2jm symbol

Jj. J2 J2 0
(13)

I

with the diagram form of Fig. 1(d). From Eq. (12) we
have the 2jm unitarity condition of Fig. 1(e). [For simpli-

(b)

(c)

))++~ =o

(e)

y ~ ~

(a)

(b)

~ M ~
y ~ ~

~ I ~

FIG. 2 (a) and (b) Symmetrizers and antisymmetrizers,

respectively.

(g)

FIG. 4. (a)—(d) Four different forms of the interrelationship
between alternating products of spinors given in Eq. (9). (e)
Vanishing antisymmetrizer for j=

2 . (f) j= 1 analog of (c). (g)

j= 1 analog of (e).
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F. = ~(tl) = ~(~) F.

OOO

F,

=,~(8)=,g(&/I X)

=,~ (~r. ) F. . .
Jl J2J3

FIG. 7. A relation between trees with mixed (J' = z and 1) la-

bels.

00000

0 I I I I

F
I IOOI

F
IIOI I

2I I I I

~)&& x }~1~7™+~+)

2 ~~I
A A

l2

4&3 } f i

= ~ '8) ~,"r'( A,
'

+ +
32+3 443

( ~k~1 t eklm+m+5klI (15)

between Pauli matrices. Similarly, the reduction of the
tree Ft in Fig. 5 is equivalent to the relation

k k
rrmm onn' '5mn'5m'n 5mm'5nn'

C. Coupling trees
C

We find explicit reductions of angular-momentum-
coupling trees with j= —, labels, as with the j=1 trees,

by iterating the results of Sec. IIIB. The results are given
in Fig. 5. Ring or box diagrams are considered in Fig. 6
for both j=—,

' and j= 1 labels (the latter not having been

published before). One may also consider mixed trees, i.e.,
trees with both j= —,

' and j=1 labels. For example, the
relation of Fig. 7 is equivalent [from Fig. 8(b) and Eq.
(14)] to the relation

FIG. 5. Reduction of lowest-order

momentum-coupling trees; j:—(2j + 1)'
spin- 2 angular-

IV. EXAMPLES OF APPLICATIONS

ing Fig. 1(d)] by Fig. 3(b). The scalar and alternating
products [Eqs. (5) and (6)) thus have the form of Fig. 3(c).
Note that in the definition of the alternating product the
antisymmetry is associated with that of the 2jm symbol

[Fig. 1(h)]. Corresponding to this antisymmetry, we have

Fig. 3(d).
The quadratic relation [Eq. (9)] between alternating

products can be given various diagram forms, e.g., Figs.
4(a)—4(d); these are inter-related by the use of Fig. 1(e),
1(h), etc. Combining Figs. 2(a) and 4(c) we have Fig. 4(e).
This is a special case of a result given, for example, by
Penrose An antisymmetrizer over 2(j+1) labels of spin

j vanishes. For j= 1, the analog of (j = —,) Fig. 4(e) is Fig.
4(f) (we use double lines to denote j=1 labels}, while the
analog of Fig. 4(c) is Fig. 4(g).

1H,~=, +2s, s2. (17)

This expansion is fundamental to the formulation of ex-

change and superexchange interactions in rnultielectronic
systems. '

Dirac' has already discussed the rotational invariance
of the operator 9'iz. This invariance underlies the follow-

ing expansion of this operator in coupling trees.
Consider the matrix elements of 9'iz between states

ljimlj2m2& (Ji=j2= 2}:

&jimi jam 2 I
+ i21 jim ijam

A. Exchange theory: the Dirac-Heisenberg-Serber-
Van Vleck coupling

As shown by Dirac, ' for example, the permutation
operator Hi& for the labels of two spin- —,

' particles may

be expanded in terms of spin operators st, sz acting on
these particles:

(-,'}
FO 0 I

2 2

0- I-
2 2

(}FI

F,(',}„
F(~}

OI I I

0 I2 I

III I

(I} i&i, zi (I}
4

—.~( X )
'

(2 +)() (i+i+i;i, '- 4)
2~3

I

=-'() ( )

=.'~(X, )
s~s

+ 3C)

=5,5,(5,5, }.
m&m2 m2m& j&j2 j&j &

(0)

I

S

= —,'(:) ~~

&im ls
M

li'~ = = . ~~, ,=P ~ I'm'

(b)

FIG. 6. Reduction of some lowest-order box diagrams with

j=
2 or j = 1 labels. The latter are denoted by a double line.

FIG. 8. (a) Expansion of a permutation operator in terms of
coupling trees, and its simplification. (b) Relation between a ma-

trix element of a spin operator and a 3jm vertex, used in (a).
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=2s ) S2—
2 (18)

This corresponds to the Anderson spin operator, i.e., to
the shift of singlet rather than triplet pair levels. The
simple diagram form of Eq. (18) given in the first term on
the right side of Fig. 4(d) shows that the matrix elements
of the Anderson operator may be factorized into two
terms, each depending on just one of the two relevant par-
ticle states (bra or ket):

The right side may be expanded using Eq. (12), as in Fig.
8(a); matrix elements of the spin operator may be reduced
via the Wigner-Eck art theorem to a multiple of a
Clebsch-Gordan symbol, as in Fig. 8(b). The two terms in
Eq. (17) then correspond precisely to the two diagrams on
the right side of Fig. 8(a).

The relation of Eq. (9) results in a variety of forms for
I'i (Fig. &) and so for Hi2, as in the different results of
Figs. 4(a)—4(d). In particular, the left side of Fig. 4(d) can
be identified as H i2 and the last term on the right side as
the unit operator, so that the remaining diagram in Fig.
4(d) can be identified with the operator

@12 + 12

2 2

U3p UJ U4/pU2+ U4p U] U3$
S

(20)

section of the relevant spin and momentum three-vectors.
Also, it is standard practice to eliminate spinors from the
answer by introducing the polarization (four- or three-)
vectors of the fermions. In fact it is often feasible to write
a more compact expression for the amplitude and also for
the cross section using two-spinors to parametrize the po-
larization states; we shall show this as an illustration of a
relativistic application of spin- —, trees below. This may
have some intrinsic interest in view of the recent interest
in the analysis of relativistic effects in Compton scattering
from bound polarized electrons and in view of recent
discoveries of the value of two-spinors and Pauli ma-
trices in some elegant solutions to problems in relativistic
quantum mechanics; we note the occurrence of Pauli ma-
trices as fundamental components of the angular-
momentum-coupling diagrams in the relativistic wave-
equation theory of Biritz. 7

We consider then the case of Mqlller scattering. The in-
variant amplitude corresponding to the Feynman dia.-
grams of Fig. 9(a) is

( —,
'

m i, —,
'

m 2 I
(2 s i s 2

—
z )

I z iri i

(19)

where p;=(E;,p;) is the four-momentum of particle i,
s =(pi —p4), t =(p, —pi)', and U; is the (Dirac, four-)
spinor for particle i. We write this in terms of two-
spinors P and Pauli matrices o, using

Factorizability can have important consequences in ex-
change theory; ' one such property of the Anderson
operator has already been noted and used. However, the
factorization of Eq. (19) seems not to have been noted be-
fore and could have a similar practical interest.

In multielectronic atoms it is of course a standard tech-
nique to use angular-momentum-coupling diagrams for an
analysis of parentage, spin-orbit coupling effects, etc. The
forms of exchange Hamiltonians under such recoupling
and projection onto a ground manifold are of considerable
practical interest. Angular momentum tree reductions
such as those given in Sec. III may be expected to assist in
the formulation of these Hamiltonians.

Us ——
Fg

0 'pi
F.

0

where E; =E; +m, and in the Weyl representation

W=(I, o ), o"=(I,—a ),

(21)

(22)

B. Relativistic particle scattering

The standard technique for computing cross sections in
quantum electrodynamics is that of tracing products of y
matrices and polarization projection operators. Variations
of this technique are possible, although not well explored.
For example, it is possible to calculate the amplitudes in
terms of momentum and polarization vectors by trace
techniques, which may subsequently be avoided in com-
putirig the cross section; this is particularly useful when
computing general polarization dependences. Traces of
products of y matrices in fact correspond to angular-
momentum-coupling diagrams. ' This suggests that in-
creased use of relatively humble angular-momentum-
coupling techniques could simplify the evaluation of cross
sections in quantum electrodynamics.

However, the situation is not as straightforward as for
the scattering of massless vector particles. The require-
ments of gauge invariance cannot be invoked (as in Sted-
man and Pooke ) to simplify the dependence of the cross

(c)

FICx. 9. (a) Feynman diagrams for M@ller scattering. (b)
Angular-momentum-coupling structure of the second term in
Eq. (23}. (c} Reduction of (b) using angular-momentum-
coupling-tree analysis.
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X=($3/i)($4o p4o' p2$2)

+(A+c9i)(44~Ã p4~'Ã pzA) .

This can be reduced to the form

2($3o' pzg2)(/go p4$i) .

(23)

Substituting Eqs. (21) and (22) into Eq. (20) gives a series
of terms, each of which may be simplified using our ear-
lier results. As an illustration of this, one combination of
terms occurring in this expansion is

This is because the second term in Eq. (23) has the struc-
ture of Fig. 9(b), which reduces, using F, (Fig. 5), to the
form of Fig. 9(c), the first term in which cancels the first
term in Eq. (23). These manipulations are equivalent to
employing algebraic identities on the Pauli matrices [Eqs.
(15) and (16)]; since the whole problem is based on a
(Feynman) diagram technique, it is helpful to see the role
of (angular momentum) diagram manipulations in simpli-
fying the answer in this way. In proceeding on these lines
we find that the amplitude for Manlier scattering for parti-
cles of general polarization may be written in the form

e 1—+—
j (F i F2F3F4 )

' [(4l )( 32)—(31)(42)]+(Fi F2F3F4)
' (P4i P32 P42P3—l ) ]

pm 2 s t

2 (FFFF )~~z

2m

1 1 g 1 g 1 1
P23P41+ F F P32P14 + F F P24P13+ F F P42P13t F2F4 3 1 S 3 2 4 1

(24)

where (ij)=fP;*PI, p,j——fP;'o p;PJ. ,

I'gg= I' 6'Pi LT PJ' J'

=(tj)(p;.p, ) —f p';(o. p; X p; )p, .

This expression for the polarization dependence of Mglller

scattering is novel and is much more compact than the ex-
pression given by Sarkar for the final cross section (in
terms of scalar products in all relevant four-vectors).
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