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Z2 (target atomic number) dependence of the electronic stopping powers for MeV helium-ion
beams is investigated where the charge-state fractions before emerging from matter play a signifi-
cant role. The electronic stopping powers for a single helium ion in various charge states and a pro-
ton (S q+, q=1 and 2, S +) are calculated on the basis of Lindhard-Winther theory with the

local-electron-density model. The ratio S +/S + shows the Z2 oscillation as well as S„+ and

S +. The relation between the effective charge qdf and the mean charge q is elucidated in some

cases of the incident energy where q,ff )q is valid regardless of Z2 and the q,ff values show the os-
cillatory Z2 dependence with a small amplitude in contrast with a strong Z2 oscillation of q.

I. INTRODUCTION

Since the continuous and intense interest in the
slowing-down and charge-changing phenomena developed
from early investigations of fission fragments, the stop-
ping powers of matter for an energetic ion have received
considerable attention, and the problem of charge-state
distributions of the ions penetrating through matter has
become a historical problem in atomic collisions in solids.
Recently, with the progress of studying fusion plasma as a
source of energy supply, these problems occupy an impor-
tant position in plasma-wall interaction.

So far, a large amount of the experimental data has
been compiled on the stopping-power data' and on the
charge-changing phenomena. Such works enable us to
obtain useful empirical expressions both for predicting the
energy lost by ions through electronic excitation and the
ionization of atoms or free electrons in the target, and for
predicting the charge-state distributions of ions in matter
or emerging from matter. From a theoretical point of
view, some pioneering works on the electronic stop-
ping were presented for a point charge intruder within the
framework of the perturbation approach.

For heavy-ion intruders, the idea of the effective charge
is a useful one to arrange and understand the experimental
data and to predict the stopping powers for the ion with
no experimental data existing if only the stopping power
for a proton in the same material could be obtained. Re-
cently, the electronic stopping powers for a proton and a
helium ion were calculated theorptically to produce the
Z2 oscillation, based on treating the ion as a point charge
with the effective charge obtained from the experimental
data. This shows better agreement with the experimental
data than the previous calculation which assumed the
helium ion to be completely stripped. In addition, the
range of the Z2 oscillation of the stopping power for
0.4—4.0-MeV helium ions was estimated by taking into
account the upper and the lower bounds of the effective
projectile charge. The Z2 oscillation of the stopping
power arises from the variation of the electron density in
the outer shell and therefore, is considered to be charac-
teristic of only the target materials at a given energy of

the ion. The effective charge in the slowing-down phe-
nomena is regarded as independent of Z2 number and de-
pends on Z& (the projectile atomic number) and the ion
velocity. '

On the other hand, recent experiments revealed that the
mean charge for backscattered mega-electron-volt helium
ions shows the oscillatory Zq dependence. The origin of
this effect can be explained theoretically by the fact that
the electron-capture cross section for a He + ion has a
strongly oscillating Z2 dependence while the electron-loss
cross section for a He+ ion shows a monotonical Z2
dependence. ' This is supported by the experimental re-
sults. 9"'2 However, the compilation of the stopping-
power data for mega-electron-volt helium ions indicates
that the effective charge does not depend so strongly on
the target elements. ' The above consideration provokes
the problem of how such a behavior of the mean charge of
helium-ion beams is connected with the effective charge
in the stopping.

Following this motivation, the purpose set up in this
paper is (1) to evaluate the electronic stopping power and
the effective charge for helium-ion beams by taking into
account both the charge-state distribution in matter,
where a partially-stripped ion as well as a completely-
stripped ion has to be treated; and (2) to understand the
relation between the effective charge and the mean charge
with respect to Z2 on the basis of the perturbation theory
and the local-electron-density model. In both the experi-
ments and the theories so far, it is common to assume that
the charge state is already equilibrated the instant the ions
come into matter, and that theories are developed for a
single particle with the equilibrated electron distribution
bound to it. ' The procedure developed here is also in-
dispensable and effective to understand the stopping
power for preequilibrium heavy-ion beams. ' In Sec. II
the basis of the paper is described as the following: the
stopping power for ion beams and the local-density model,
the effective charge, and the screening effect. Results and
discussions are described in Sec. III, and conclusions are
given in Sec. IV. Atomic units are used throughout this
paper.
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II. BASIS OF CALCULATIONS

A. The stopping poorer for ion beams
and the 1oca1-density model

If the particles in every charge state are detected after
emerging from matter, the total energy loss per unit

' length for ion beains, SHi, can be expressed as

1m[1/e(z, u)]= —(m/2)(X /3z a'~ )5(u —a'~ ),
a=z'+(X'/3z')+ —', .

Then Eq. (2} is reduced to
~U

S;=(4mN/u }f (dk/k)
~
Zi —p;(2kfz)

~

zL

where

(3)

(4)

S~l ——g P(i;x)S;, g P(i;x) =1,

where P(i;x) and S; denote the fraction of the particles in
the charge state i at the penetration length x and the stop-
ping power for a single partially-stripped ion (including a
fully-stripped one), respectively. The charge-state fraction
P(i,x) is governed by the well-known balance equation in
the charge-changing problem. The measurements of the
energy loss have been usually made under the condition of
the equilibrated charge state. Then P(i;x) should be re-

placed by the equilibrium charge-state value P(i;x = 00).
Here the surface effect is neglected for solid targets.
Equation (1) shows that the stopping power for ion beams
is obtained by averaging the stopping power for a single
particle in all charge states over the charge-state fractions.
This equation can be easily derived theoretically from the
transport equation of particles. It should be noted that
the energy loss accompanied by the charge-changing pro-
cesses is neglected in Eq. (1). If the particles in a particu-
lar charge state are detected, another formula has to be
used instead of Eq. (1).'4 Hereafter the velocity or energy
region is considered where only the so-called electronic
part plays the dominant role in the stopping.

Free-electron gas theory, which was first discussed in
detail by Lindhard and Winther for a point-charge in-

truder and extended for a partially-stripped ion thereaf-
ter, ' allows us to calculate the electronic stopping power
as follows:

S;= f deco f dk (8N/co~u )—

X
~
Z) —p;(k)

~

'1m[1/e(k, co)], (2)

where N, u, co~, and e(k, co) are the number density of free
electrons, the velocity of the projectile, the plasma fre-

quency, and the dielectric function of a material, respec-
tively. Here the spatial electron distribution p;(r) bound
to an ion is assumed to be spherically syrnrnetric so its
Fourier transform p(k} is spherically symmetric. For
helium-ion cases, we take

p;(r)=
~

g(r) ~'N, ,

g( r) = (m.a i )
' exp( r /a i ), —

where 1V, is the number of electrons in the ion. The
analytical expression for e'(k, co) was given in Ref. 5. It is
a well-known fact that the energy loss is contributed both
from the electron-hole pair excitation branch and from

. the plasma (resonance) excitation branch. The stopping
power from the pair excitation branch is estimated by nu-
merical integration over (k —co) or (z —u) space (Ref. 5).
As to the estimation of S; from the plasma branch, the
following expression is adopted:

zL, =[0.5( (u/vf )' —( —', )

—I[(v/vf) —( —', )] —(4X /3)I' )]'
(5)

zU ——CX/3', X =1/(n-uf) .

The upper limit zU should be determined as satisfying the
condition that the sum of the stopping power both from
the pair excitation branch and from the plasma excitation
branch is connected continuously with the high-velocity-
limit formula. This was confirmed within a difference of
a few percents in the case of C-1.0, where Hez+ and
C + ions collide with a carbon target ( r, = 1.66).

As far as the charge-state fractions are concerned, the
balance equation should be solved. However, to include
all of the charge-changing branches into the theory is a
complicated task except for treating a few charge
states' ' since we have to discuss the many-body prob-
lems for targets with many electrons. And since we want
to directly see to what extent the oscillatory q values can
reproduce the Z2 dependence of q,rf values, we overcome
this problem by using the measured charge-state fractions
which can be regarded as being equilibrated whether they
are measured with the backscattering method or the
transmission method.

As for a proton, there are so far no findings of the os-
cillatory Z2 dependence of the mean charge from the
theoretical and the experimental points of view in the
velocity region considered here. It has been insisted that a
proton cannot have a stable bound state at any velocity in
solids because of the screening effect due to the conduc-
tion electrons. ' Another opinion is that there exists an
example in which the calculation of the neutral fraction of
a proton beam can show good agreement with the data in
the case of a carbon target by using the electron-capture
and electron-loss cross sections in the gaseous phase. '

This may suggest that even in a solid a proton has a
"bound state" whose lifetime is no longer infinite. On the
other hand, in gaseous targets a proton has at least one
stable bound state. However, there is a small percent of
the neutral fraction at u & 3up (vp ls the Bohr velocity) in
the ZI ——1 beam. ' As a result, hydrogen atoms are not
assumed to exist in the calculated results shown later.
The formula (1) is valid in any case whichever material is
used, a solid or a gaseous target.

The local-density mode1s are needed to produce the Z2
dependence of the stopping power for a proton intruder.
In this paper two kinds of local-density models are adopt-
ed to describe the spatial distribution of the target elec-
trons. One is for the neutral free atom (atomic picture)
and the other is for the solid target (solid picture). When
we take the local density p(r), the physical quantities used
here can be introduced through p(r) instead of a constant
electron density such as
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top(r) = [4trp(r)]'~

For neutral atoms, the local density is given by the
Hartree-Pock wave functions expressed in terms of the
linear combination of the atomic orbitals (LCAO). For
solid targets, it is a little bit complicated to describe p(r)
as precisely as possible. Therefore the simple model is
taken, which is appropriate for solids having the well-

defined plasma frequency, such as

of the Zi beam to that of the proton beam. Therefore in
the high-velocity region where any hydrogen atoms can
not be incorporated in the beam during the passage being
considered, p,tt is regarded as unity and as a result Q is
equal to q tt. At the energies considered later (200, 250,
and 400 keV/amu), this situation will be satisfied. At the
lower velocities, if possible, the fact that qeff ls less than
unity plays an important role in estimating the q,ff values,
especially for gaseous targets.

(6)
p(r)=p;„(r) (0&r &R, )

where 4vrRo/3 corresponds to the occupied volume per
atom in a solid and R, denotes the boundary radius be-
tween the outer region and the inner region of an atom.
The constant po denotes the density in. the outer region,
which can give the measured bulk plasma frequency. In
our case, the Hartree-Fock wave functions are used to
determine p,„(r) on the basis of conserving the total elec-
tron density per atom.

B. The effective charge for ion beams

The effective-charge theory presented up to date for a
charged particle is based on the Z~ scaling predicted by
both the Bethe-Bloch and Lindhard-Winther theories in
the lowest perturbation, apart from the higher-order
corrections as in the Z& or Z ~ term. The effective charge
for a heavy-ion beam with the atomic number Zi is de-
fined by the square root of the ratio of the stopping power
for the ion Szt to that for a proton S +, such as

q,tt=(SztIS„+)ZI 1/2

where a proton beam does not include any hydrogen
atoms during its passage. Therefore S + is the theoreti-

cal stopping power for a proton or the stopping power
measured so ideally. Szt is given by Eq. (1). For the
Z& ——l beam

q,tt
——[(/HE'Ho+ pH+SH+ ) /SH+ ]'

C. The screening effect

If the ion with the charge Z, moves at the velocity
v «up (vf is the Fermi velocity), the spherically sym-
metric polarization of the media is induced that screens
the electric potential of the ion. ' '7 This potential in the
Thomas-Fermi model of a degenerated electron gas is ex-
pressed as

V(r) = —Z i exp( k, r) /r—

as a function of the distance from the ion r within the
framework of the random-phase approximation. In the
above, the inverse screening length k, is given by
k, =(12/tr)'~ Ir,', where r, denotes the radius occupied
by one electron in a solid. For the moving ion at the ve-
locity v & uf, the induced polarization of the media be-
comes asymmetric and, moreover, the screened potential
of the ion has the velocity dependence such as

V(r)= —(Zi/r)exp[ k, rF(vl—uf)], (12)

where F is a function of v/vf and F-0.6 if u/uf 2 ~ D.'—
This suggests that with the increase of u, the screening ef-
fect tends to diminish since the conduction electrons can-
not respond to the external charge so rapidly. In our case,
owing to including the screening effect partly as simply as
possible and partly as strongly as possible into the theory,
the static-limit form of the screened potential as shown in
(11) is adopted without regard to the ion velocity con-
sidered later. The expectation value of the energy of an
electron in the ground state, described by the wave func-
tion f(r)=(trai) ' exp( —r/ai), of the ion with Zi, is
given by

and for the Z~ ——2 beam ( E ) =(2a i )
' —(Z, la i )(1+ai k, /2) (13)

q",tt ——[(y„p„.+y„+s„++y„,+s,+ }/s„+]'",

ZI I H='V eff I 9' eff ~ (10)

This means that Q yields the ratio of the effective charge

where Pq and S„(A=H, H+, He, He+, He +} are the
fraction and the stopping power for a particle A, respec-
tively. In the above the case is considered where the
negative-charge components can be neglected.

In order to compare the theoretical results with the ex-
perimental ones, let us consider the quantity Q, which is
defined by the square root of the ratio of the measured
stopping power Szt for the Zi beam to that for Zi ——1

beam S~, such as

Q =(Szt!Si ) =(SztISH+ ) l(Si ISH+ }

TABLE I. Calculated values of a~ for various solids.

Element

4Be
6C
)3Al
i4»
2pCa

3)Ga
49In
5pSn

s

1.885
1.660
2.075
2.008
3.421
2.192
2.411
2.218

al (a.u. )

0.595
0.609
0.586
0.589
0.552
0.581
0.573
0.580

'The number of free electrons per atom [D. Pines, Elementary
Excitations in Solids (Benjamin, New York, 1964)].

From the condition of the energy minimum
B(E)/Ba i

——0, a i can be determined as a function of k,
or r, . The estimated values a] are tabulated in Table I.
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As a result, if the above approach is applied to a He+ ion,
the distribution width of the electron orbital a, gets a
greater value in a solid due to the polarization of the
media than 0.5ao (ao is the Bohr radius) in a vacuum.
This affects the electronic stopping power of the media
through the external charge in the Fourier space

~
Z~ —p;(k)

~
. Consequently, the difference between a

solid and a gaseous target in the stopping power and also
in the effective charge comes from the screening effect
through a& and from the variation of the local electron
density in a target media.

III. RESULTS AND DISCUSSIONS
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First, the stopping power for a 200-keV/amu proton
moving into various Zz materials calculated with the
local-density model in the atomic and solid pictures are
shown in Fig. 1. The stopping power from the plasma
branch presents the oscillatory structure with a small am-
plitude superimposed on the constant value. On the other
hand, the stopping power from the pair excitation branch
has the same oscillatory Zz dependence with a greater
amplitude superimposed on the rnonotonical increase with
respect to Zz. Except that the overall values of the total
stopping power seem to be less than the experimental
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FIG. 1. Z~ dependence of the electronic stopping power S +
for 200-keV/amu protons. Theoretical results denoted by
( ———v ———), ( ———~———) and
( ———O ———) are the stopping powers from the plasma
branch, from the electron-hole pair excitation branch, and the
total stopping powers, respectively, in the atomic picture. The
crosses ()&) denote the total stopping powers in the solid pic-
ture. The other symbols denote the experimental results:
'7 —Ref. 19; QQ —Ref. 20; ~—Ref. 21; 4—Ref. 22; 6—Ref. 23;
k,—Ref. 24.
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FIG. 2. Zp dependence of the electronic stopping power
S + for 200-keV/amu He+ ions. The symbols (4) denote theHe+

total stopping powers in the solid picture. For other symbols,
see Fig. l.

data' especially in the high-Zq region, they can repro-
duce the well-known Zq oscillation. This is due to the
nonmonotonical variation of the valence electron density.
Some examples, i.e., Be, C, Al, Si, Ca, Ga, In, and Sn, of
the calculation in the solid picture show the irnprovernent
of the deviation between the experimental results and
theoretical ones.

Figure 2 shows the calculated stopping power for a
He+ ion with the local-density models. The contribution
of the plasma branch is not so different from that for a
proton at the same velocity, as is clear in comparison with
Fig. 1. This is because only the small momentum transfer
can be allowed to excite a "plasrnon. " In a small-k region

~
Z& —p;(k)

~

is nearly equal to (ZI —1) where a He+
ion behaves as a proton. There exists, however, the clear
difference in the contribution from the pair excitation
branch. The period of the oscillation and the structure of
the total stopping power for a He+ ion seems to be as a
proton except for the magnitude of the values. A major
portion of the stopping power arises from the pair excita-
tion branch at this energy. These features are common to
the cases of 200-, 250-, and 400-keV/amu energies, while
the amplitude of the Zz oscillation is enhanced with the
decrease of the incident ion energy.

In Fig. 3 the calculated ratio of the total stopping
power for a He+ ion, S +, to that for a proton, S +, are
shown at 200, 250, and 400 keV/amu. The existence of
the Zz oscillation can be notified here, where SH + ISH+
is enhanced with the increase of the energy and the oscil-
lation amplitude tends to decrease with Zz. In the atomic
picture the maximum ratios are given at the closed-shell-
configuration materials. On the other hand, in the solid
picture the calculated ratio gives the larger values than in
the atomic picture at any energies considered. The fact
that SH +/SH+ is greater than unity without respect to
Zq is the reason why the effective charge presents a ten-
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dency to depend on Zz more weakly than the mean
charge, as is seen later.

By using the charge-state fractions of the emerging ions
with the calculated S + and S,+ ( =2 S + ) values, the

Zz dependence of the stopping power for a l-MeV
helium-ion beam is shown in Fig. 4. Though there exists
at most about 20% deviation, the overall feature of the
calculated values is consistent with the experimental
values. ' This deviation is mainly due to the underes-
timation of the theoretical S + values (and consequently

FIG. 3. Theoretical ratio S +/S + with respect to Z~ at

200, 250, and 400 keV/amu in the atomic picture and in the
solid picture.
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SH &+), especially at greater Zq than 40. This trend has

already appeared in Ref. 8, where the calculated stopping
power for l-MeV helium ion became lower than the ex-
perimental data in spite of taking the upper-bound charge
Z~ ——2. To improve this situation, a simple prescription is
proposed where the empirical S + value is substituted for
the theoretical one at each Zz number with preserving the
theoretical ratio SH +/S +. This implies that the better

agreement with the experimental S + data a theory gives,
the better it can be fitted to the experimental data of the
stopping power for helium-ion beams.

In Figs. 5(a)—5(c), the theoretical results of the effective
charge q,~f' are shown with the experimental data obtained
by the square root of the ratio of the measured stopping
power for helium-ion beams to that for a proton beams at
200, 250, and 400 keV/amu. It is assumed that a proton
is bare during its passage in obtaining the experimental

ff Since there are more than two data combinations,
several points at the same materials are plotted. It should
be mentioned that in the lowest figure (400-keV/amu
case), q ff is calculated by using the mean charge q mea-
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FIG. 4. Z~ dependence of the electronic stoppping power SH,
for 250-keV/amu helium-ion beams. The calculated results in
the atomic picture and in the solid picture are denoted by (0)
and (A), respectively. The experimental results are in the refer-
ences: 4, Ref. 7; and 0, Ref. 25. The crosses (X) denote the
calculated SH, values with the use of both the empirical values
for S + (in Ref. 7) and the theoretical values for S +/S + in

the atomic picture. The charge-state fractions for 250-keV/amu
helium-ion beams are cited in Refs. 9, 11, and 12.
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FIG. 5. (a)—(c) Zp dependence of the effective charge q,ff for
200, 250, and 400 keV/amu helium-ion beams. Theoretical re-
sults are denoted by ( ———o ———) in the atomic picture
and (Q) in the solid picture. Experimental plots (~) are ob-
tained by taking the square root of the ratio of the measured
stopping power for a helium-ion beam (Refs. 7 and 25) to that
for a proton beam (Refs. 19—24) at the same energies. The
mean charge q for 200-, 250-, and 400-keV/amu helium-ion
beams are indicated in the following: )&, Ref. 9; ~, Ref. 11;and
k„, Ref. 12. The symbols ( +) indicate the substitution of the ex-
perimental q values at 375 keV/amu for those at 400 keV/amu.
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q,tt = (pH +SH + /SH+ +2 pH 2+ )
'

&(P„,++2'P„,~+)' '&q . (14)

The Z2 dependence of S +/S + in contrast with that of
q weakens strongly the Z2 dependence of q,ff. This situa-
tion recommends that one assume q,ff is constant without
regard to Z2.

The local-density model in the solid picture improves
the stopping power values considerably in the high-Z2 re-
gion. Nevertheless, this picture does not increase the
magnitude of the effective charge so much. The differ-
ence in q,gf' between two pictures tends to decrease with
the increase of the ion velocity. Consequently, the screen-
ing effect does not change the calculated qetf so drastical-
ly from the results in the atomic picture. Finally it is
marked that if the neutral-charge component in the
Z& ——1 beam is included into calculation, the effective
charge of the helium-ion beams becomes a little bit greater
than the presented results. Actually a few percent of the
detected beams are neutral even in the solid targets. For
example, hydrogen atoms occupy 4.6%, 1.6%, and 0.5%
at 198, 298, and 397, keV/arnu, respectively. If these
fractions exist in matter, they should be included. It is
added here that the neutral-charge component of helium,
He, can be neglected at the considered energies.

IV. CONCLUSIONS

The paper treated the problem of how the stopping
power and the charge states of ion beams in matter could

sured at 375 keV/amu for C, Si, Ar, Cu, Kr, Zr, and Mo
targets. However, since there is, at most, a 2% difference
in q between 375 and at 400 keV/amu, only a 1% differ-
ence in q f~ can be actually yielded. The results in Fig. 5
indicate two remarkable features. One is that the calcu-
lated q,ff values are greater than q values at any Z2 num-
ber, and the other is that the Zz oscillation of q, tt has a
smaller amplitude than that of q. These points are con-
sistent with the experimental results. The first feature

q,tt &q is reasonably understood as follows: for He2+

ions, S,+ ——2 S +. Moreover, the relation of the charge
distribution of the bound electron in a He + ion in the
Fourier space such as

~
Z$ —p;(k) ['& ~Zt —p;(0)

~

(=1)
enables us to show S + &S + as shown in Fig. 3.
Therefore we can easily see the following:

be reconciled for mega-electron-volt helium-ion beams.
The charge-state fractions in matter play an important
role in determining the stopping power. To include the
Z2 oscillation of the mean charge into the stopping did
not change the phase of a well-known Z2 oscillation in
the stopping power for helium-ion beams appreciably. In
contrast with a strong Z2 oscillation in the mean charge,
the effective charge did not show so strongly the oscillato-
ry Z~ dependence, where the amplitude of the oscillation
in q,~~ is smaller than in q and the calculated q,~f' values
are always greater than q values for the same target re-
gardless of Z2. They are in good agreement with the ex-
perimental results. This is due to the behavior of
SH +/SH+ with respect to Z2. This Zz dependence tends
to wipe out the Zz dependence of q. If we do not take
into account the size of a partially-stripped ion the effec-
tive charge exactly corresponds to the mean charge re-
gardless of Z2 because of S +/S + ——1. The screening

effect in the solid picture yields greater stopping-power
values mainly in high-Z2 region that in the atomic pic-
ture. This is partly due to a strong screening condition.
Nevertheless this does not affect the magnitude of q ff
very much and consequently does not change the Z2
dependence of qett drastically. The exit-surface effect will
be important in the case of the lower-energy particles
emerging from solids. In our case this is not taken into
account. With the increase of the ion velocity the interac-
tion time between the ion and the exit surface will de-
crease and hydrogen atoms cannot be incorporated in the
beam. As a result, to include the hydrogen component
and the exit-surface effect in q,g in the considered veloci-
ty range here will amount to a few percent increase at
most. The problem that needs further consideration is
how to apply the solid picture to such solids that have too
complicated profiles of the energy loss to define the plas-
ma frequency well. To describe the local-electron density
for such solids as precisely as possible and, if possible, in a
simple form, is a task for the future. If we make an effort
to understand not only the target dependence of the stop-
ping power but also that of the effective charge, we have
to start with Eq. (1).
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