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Ionization collisions between two excited atoms:
Application of the Glauber amplitude in the framework of the impulse approximation
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The cross-section formula of Flannery [Phys. Rev. A 22, 2408 (1980)] in the semiquantal approxi-
mation for the processes referred to in the title is rewritten so as to make it more useful in practice.
The formula is shown to be further simplified by taking an average over the azimuthal quantum
number of a highly excited hydrogenic atom to be ionized. Numerical applications with use of the
61auber amplitude for the electron-atom inelastic scattering are made to the ionization collisions be-
tween two excited hydrogen atoms with simultaneous excitation and deexcitation of one of the
atoms. The results are compared with those obtained by using the Born amplitude, and are analyzed
in terms of the Glazer generalized oscillator. strengths.

I. INTRODUCTION

Ionization collisions (A +8 ~A +B++e) between
highly excited atoms (8) and excited atoms or molecules
(A) have been investigated quite successfully by the im-
pulse approximation. ' In most cases, the e-A scattering
amplitude is approximated by the Born amplitude which
is a function only of the momentum transfer. ' In this
case the cross section formula becomes very feasible for
practical applications. Especially when an average is tak-
en over the azimuthal quantum number of atom 8, the
formula can be reduced to just a single integral over the
momentum transfer. In order to take into account the
higher-order corrections, however, the Born amplitude
should be replaced by a more sophisticated amplitude
which generally depends not only on the momentum
transfer (p) but also on the relative velocity (v) in the e-A
scattering. The Glauber amplitude is one of the examples.
The semiquantal formula proposed by Flannery can be
used in this case. From the practical point of view, how-
ever, this formula is not very convenient, because the in-
tegration of the differential cross section cr,z(p, v) for the
e-A scattering occupies the innermost position in a four-
fold integral, and the calculation of the total cross section
becomes very time consuming.

In this paper we propose an expression which differs
from the semiquantal formula only in the integration or-
der, but is more practically useful. The difference in the
integration order is conceptually trivial, but in practice it
is not. First, computation time is greatly reduced. Second,
if we take an average with respect to the azimuthal quan-
tum number of atom 8, the formula can be easily simpli-
fied to a twofold integral over p and v. Applications of
this formula to the ionization collisions between two ex-
cited hydrogen atoms,

H(n~, l~)+H(ntt, ltt)~H(nq, lz)+H++e, nz &nz
(1.1)

are carried out with use of the Glauber approximation to
the electron-atom scattering amplitude. Here the quanti-
ties n and l denote the principal and azimuthal quantum
numbers, respectively.

In Sec. II we derive the cross-section formula from the
semiquantal T matrix which differs from the impulse T
matrix in that the ejected electron is considered to be free
(plane wave). This approximate description of the ejected
electron is good particularly in the ionization of highly ex-
cited atoms 8 by the collision with neutral particles A.
This is primarily because the charge neutrality of a parti-
cle A reduces the relative importance of the collisions
with small momentum transfer. In Sec. III the ioniza-
tion process (1.1) is investigated in the collision-energy (E)
region from 10 to 10 keV in the center-of-mass system.
Cross sections for (nz 2, n„'——=3, n~ ——3, 10, and 15)
with simultaneous excitation of atom A and for (nz ——3,
nz ——2, n~ ——3, 10, and 15}with simultaneous deexcitation
are calculated for all possible values of azimuthal quan-
tum numbers.

There hav'e been found some new interesting features in
the collision energy dependence of the cross sections (crG}
in comparison with that of the cross sections (o~) ob-
tained with use of the Born amplitude for the electron-
hydrogen atom inelastic scattering. First, in certain com-
binations of l~ and lz with large nz there appears a
shoulder or a second maximum in the curve oo versus E.
Second, a prominent discrepancy in the collision energy
dependence of crG and cr~ appears at low energies in the
case of simultaneous deexcitation with high ntt. That is,
while o.~ generally increases monotonically as the col-
lision energy decreases, 0.6 shows a nonmonotonic energy
dependence. These new phenomena are interpreted in
terms of the Glauber generalized oscillator strengths for
the n~, l~ ~n~, l~ transitions introduced by Chan et al.
and the electron momentum distribution of the highly ex-
cited atom 8.
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II. DERIVATION OF CROSS-SECTION FORMULA where

A. The semiquantal cross section for
A (a)+B(n)-+A (P)+B++e and

e~ ——i'(k —kf )/2p —b„h=e~ e—tt, (2.11)

In this section, the semiquantal cross-section formula of
Flannery is rederived. As was shown by Flannery, ' ' the
semiquantal T matrix is expressed as a product of an
electron-atom A transition matrix t, and a Fourier
transform of the initial wave function g of an atom 8

es fi (—q—
' —q )/2m, (2.12)

the integration over kf in Eq. (2.6) can be carried out to
give

Tf; tp (——k ', k )Q„(q ), (2.1)

where irik and haik
' are the initial and final relative mo-

menta in the e-A scattering, respectively, and Aq (iriq ') is
the initial (final) electron momentum of atom B. Among
k, k ', q, and q

' there holds the following relations:

X f"
deaf dq (Tf;('

X5(e fP(2—q Ir+blr )/2m, ),
k =p~, ( —k;/p+ q/m, ),
k.'=p~, ( —kflp+q '/m, ),

(2.2a)

(2.2b)
where

(2.13)

v=k ' —4=k; —kf, (2.3) kf =k; —2p(@+6)/fP . (2.14)
and

q '= q be, b =—(ms —m, )/ms,

with

(2.4)

1/p= I/m~+1/ms, I/p~, ——I/m&+1/m, . (2.5)

Here m„m~, and ms are masses of the electron and the
atoms A and 8, respectively, and A'k; and fikf are the ini-
tial and final relative momenta in the atom-A —atom-8
system.

The differential cross section is given as follows with
use of the Tf; of Eq. (2.1):

4

Crfg (kf )= fd q dkf kf
~ Tfj ~

5(ei 'Ef )
~I and

cosX =cosf cos8+ sing sin8 sing,

k, k, q
v ='Ii

2
—2 cosX+

p pm~ me

(2.15)

(2.16)

Here Eq. (2.4) was used. In order to proceed further we

assume that t@,( k ', k ) depends on the momentum
transfer p(=fwc) and the relative velocity u between the
electron and the atom A. From Eq. (2.2) the latter is
given by v(=

~
haik/pq,

~

)=
(
—A'k;/p+fiq/m, ~. Intro-

ducing two polar coordinate systems as k; (k;,0,0),
q (q,X,il), p (p, 8,0) and as k; (k;,8,m./2), q (q, g, P),
p (p, 0,0), we obtain the following relations:

where

e; =(haik;) /2p e~+(Rq) /2m—

(2.6) A'k;
cos8= (2.1'7)

p 2p p
The last equation (2.17) is obtained from Eqs. (2.3) and
(2.14). Employing the latter coordinate system, we get
dq=d( —cosg)dP. Then from Eqs. (2.15) and (2.16), we
have

ef =(Rkf) /2p op+(fiq') /2m—

with

(2.8)
dg=d(cosX)/~D,

where

(2.18)

1/m =1/m, +1/(ms —m, ), (2.9)

where the 5 function represents the energy conservation of
the total system before and after collision, and e and eti
denote the ionization potentials of the initial and final
states of atom A, respectively. It should be noted that the
energy of the bound electron of atom B is taken to be
(irtq) /2m, not —e„ in Eqs. (2.7) and (2.8). This is because
in the impulse approximation the electron is treated as if
it were free. The binding of this electron is properly taken
into account by the wave function g„. With the aid of the
identity with respect to 5 functions,

5(&;—&f ) = f de 5(&g —e)5(& es ), —(2.10)

This can be rewritten as

(2.19)

dg=2[(v+ —u )(u —v )] '~ d(uz)

with

(2.20)

2

U
2

k& k& q cosXmin

, —2 X' +, , (2.21)
p p m cos+max m

D =(sing sin8 cosP)

=1—cos 8—cos P+2cos8cos@cosX —cos X .



1674 TOSHIZO SHIRAI, YOHTA NAKAI, AND HIROKI NAKAMURA

and

cos~min

cos+max

=cos8cosg+[(1 —cos 8)(1—cos 1()]'~

(2.22)

In Eq. (2.20) the factor "2" appears, because cosX varies
between cosX,„and cosX;„ twice when P varies from 0
to 2n. at fixed 8 and hatt.

If the highly excited state of atom 8 can be assumed to

be hydrogenic, namely if

4.i (q)=f.i(q»i (8 0»
we can easily take an average of the cross section with
respect to the magnetic quantum number m. Using the
addition theorem with respect to the spherical harmonics
Fim(8, $), we have

I Tfi I'= If«(q) I'Irp (p» I'.

The differential cross section can thus be given as

4
/ U

2

of, (kf)= iM~ f deaf qI f„i(q) I
dq f du 2

I ip (p, u)
I [(u+ u—)(u u—)]4~p mm

(2.24)

where and

and

cosg=. (m, /iriq)(e/p pl2M) .— (2.26)

qo(p, e) =(m, /kq)
I
~/p —p/2M

I
~= (2 25)

b

~min= '

flak;
e (p) = — — p —b, for 0 &p &

I p;„ I

P P
with e„&—5

The upper and lower limits of the integration over e are
determined from the relation

en for
I pmin I &p &

I pmax I

(2.30)

rIk, —kf I &p&e(k, +k/),
where

kf ——[k; —2p(e+ 4)/fP]'/

(2.27)

(2.28) =8k;+A'[k; —2p(e„+ b, )/A ]'~2 .
dmin

(2.31)

The equations (2.27) and (2.28) yield

haik.e,„=e+(p)= — + p —&
2p p

(2.29) Integrating the differential cross section (2.24) over kf,
we obtain the final expression for the total cross section as

0'fI = ops I f=2K oy& f K
k;kf

p
haik;

Q
2

f dp f

deaf

q I f„i(q) I
dq f du o'iig(p, u)[(u+ u)(v v—)]-

He

(2.32)

where

0 for e„ & —b,

B. Rearrangement of integration order

Po= '

p;„otherwise

and oui (p, u) is the differential cross section for inelastic
scattering of an electron by an atom A and is defined as

-4

(2.33)

Equation (2.32) is essentially equal to the semiquantal for-
mula, Eq. (4.50) of Flannery. i '

From the computational point of view, this formula
may not be very convenient, because the integration of the
differential cross section cry (p, v) occupies the innermost
position in the fourfold integral. If we can change the or-
der of the integrals and put the integrals over p and u in
the outermost positions, then the cross section formula
will be practically more useful. To this end we introduce
the variables u ( =fiq/m) and u;( =A'k;/p). Substituting
Eqs. (2.17) and (2.26) into Eq. (2.21), we obtain
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y+-(x) =x +2+2[8 (x —xo)]'/, (2.34) fg
uo(p, e)= qo(p, e)= lu(p, e)

I
.

m
'

m
(2.35)

where

+ 2
y —=V+, X=

2

u xo = [uo(p e)]

A =u; —2U(p, e)u (p,e),
8=U; [u—(p, e)]

U(p, e) =p/2p+(e+&)/p,
u (p, e) =e/p —p/2M,

x —(y) =y+28 —3+2[8(y —y )]'/2 . (2.36)

Since y is independent of e, we can easily change the or-
der of the integrals with respect to U and e. Finally, we
obtain

Since 8 is always positive within the integral domains of
p and e, y (x) is shown to take a minimum value
y =xo+A —8 [=(p/2p~, +b/p) ] at x =xo+B.
Now in order to change the order of the integrals we have
to solve Eq. (2.34) with respect to x. The inverse function
of Eq. (2.34) is given by

~fi= 2 2
Vi pAe

'3

p V O~p~V 6 Q ~I Q Q Q+ —Q Q —Q (2.37)

where

and

U =p/21 ~.+«p

'2

with

I U +C+2[B(uz v)]'/ I—

(2.38)

(2.39)

The integral over u in Eq. (2.37) is proportional to

I= X X X2 —X X —Xi
Z)

Putting x =a+py with a=(x2+x, )/2 and p=(x2—x|)/2, we can. rewrite I as

(2.43)

I= y u+ y 1 —y = u+ cosy y.
(2.44)

C=28 —A =u; —2U(p, e)U~ . (2.40)

This is the desired expression for the total cross section.
Since the integrals over p and v are usua11y the most
cumbersome, this formula gives the best feasibility.
Another advantage of this formula is that this can be easi-
ly reduced to a twofold integral if we take an average over
the azimuthal quantum number l. This is proved in the
next section.

X(1+x)(1—x)'+ [C„+I 1(x)j, (2.41)

where u„=(2e„/m)', x =(u —u„)/(u +u„), and
C„"(x)denotes the Gegenbauer polynomial. Using the for-
mula derived by Pock and May, '

n —1 8Q„ng (»+I) If'~(u) I'=
1=0 (u +u„)

C. Cross section averaged over azimuthal quantum number I

If we assume a highly excited atom to be hydrogenic,
the velocity distribution of atom 8 is given by

I f.i«) I

'= 2 '+' n(l!) (n —l —1)!
~u„' (n + l)!

and

D=(u++u„)(u +u„)

x2 ——(u+ —u„)/(u++u„) .
I

If we take an average with respect to l, we obtain

n —1

I„= g (21+ 1 )I„I
n I 0

Z2
dX 1 —X X2 —X X —Ximu„v D

I dy(1 —a —Pcosy)n.u„D
This integral is easily evaluated to give

I„=(1—u)[2(1 a) +3P ]/u„D—'i

Then the integral over u in Eq. (2.37) is expressed as

I fn~(» I

'
Inl = dx: 1/2v D "& (1—x)[(xz —x)(x —x|)j

with

(2.45)

(2.46)

(2.47)

(2.48)

we can easily obtain

1 n —1

, g (2l+1) Ill(u) I'=
n 3 (1—x)

7TQ~
(2.42)

where

=PQ/u„D i

P =D(1—a)=u„(u+ +u +2u„)

(2.49)

(2.50)



1676 TOSHIZO SHIRAI, YOHTA NAKAI, AND HIROKI NAKAMURA 30

and

Q:—D [2(1—a) +3P ]=2P +3[u„(u+ —u )]

(2.51)

S„=f deI„=p f dtI„

4 m

m . 'i (at +bt+c)
(2.52)

In order to carry out the integration of I„over e we
have to know the dependence of P, Q, and D on e. Equa-
tion (2.39) shows that P depends linearly on e via u(p, e)
and that Q and D are quadratic functions of e. Then the
integration over e is expressed as

I

where u„=(m/m, )u„, t2 i
——v (p e2 i), and the coefficients

a -c and dj's are determined from Eqs. (2.46), (2.50), and
(2.51). This integral can be easily evaluated analytically. "
The final expression for the averaged total cross section is
as follows:

crf (a,n~P)= i i u„ f™xpdp f, du o@(pu)[F(ut,„)—F„(u,t;„)],
Vg Pg "m

where

t tJ
F„(v,t) = g d J[j], J[j ]=f dt

(at'+bt +c)'"
t,„=v; [e,„=e+(p)],

—u; [e;„=e (p)]

v(p, e„) (e;„=e„)

a=4u, b = —4yv, c=yi —4u;(u~ —u ),
do ——y[y +6u;(u —u )), dt ———6u [y +2u;(v —v )],
d2 —— 6y(u —3u~ )—, d3 ——4u~(3u —5v~ ),

(2.53)

(2.54)

with

~2/=V +V) +Q~

III. RESULTS AND DISCUSSION

Applications of the cross-section formulas (2.37) and
(2.53) to the ionization collisions (1.1) with simultaneous
excitation (n~ 2~nq————3) and with simultaneous deexci-
tation (n~ 3~n~ ——2) have be—e—n carried out with the use
of the Glauber approximation to the electron-atom
scattering amplitude.

For the convenience of later discussion, it is instructive
to compare the Glauber and Born generalized oscillator
strengths (GDS) for all possible transitions from nz ——2 to
n~ =3. These are shown in Fig. 1. As was found by
Chan et al. , the number of extrema and their positions
of the Glauber GOS vary with the energy of the incident
particle, and the values at the minima are not equal to
zero in contrast to the Born approximation.

H(2, 1~ )+H(3, l~ )—+H(3, l~ )+H+ +e, (3.1)

in order to look into the lz dependence of the cross sec-

A. Ionization collisions with simultaneous excitation
1

First, we have calculated the cross sections for the ioni-
zation processes

tions. However, the lz dependence has not been well dis-
cerned. So we have averaged the cross sections with
respect to lz. Figure 2 shows the results as a function of
the center-of-mass collision energy (E). It should be not-
ed that the Born results oz are enlarged by a factor 10 .
In the high-energy region above 500 keV both cross sec-
tions (era and crti) become identical and decrease in pro-
portion to 1/E. This 1/E dependence of the cross section
at high energies was discussed in the earlier paper. ' ' As
the collision energy decreases, o.

G becomes smaller than
oui, and the maximal values are about one-third of those
of o.s. It is interesting to note that the shoulder appearing
in the o~ curve in the case of the 2s ~3p transition disap-
pears in the corresponding o.G curve and vice versa in the
case of the Zp~3s transition. In order to interpret this
phenomenon, we examine the positions of extrema of the
Glauber and Born GOS, and the effective integral
domains of p and u in Eq. (2.37).

Atomic units will be used hereafter, unless otherwise in-
dicated explicitly. Since the electron-velocity distribution
function f (u) takes a maximum at u=l/n~ and rapidly
decreases in the order of u at u &1/nil, oy; becomes
small when u ~1!nti. We find from Eq. (2.39) that
u [=—(m!m, )u ] takes a minimum value

~

u —u;
~

at
e = —p /2@+ (u u; /u)p —b, . Therefore the integral
over u becomes significant only when u; is larger than u

since in this case u can be zero. In order for this condi-
tion to be realized, e~ at u =v; [e (v =v;)=p /2M]
should also lie in the integration range of e(em;„,em, „).
These conditions yield the following relations:
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Born and Glauber generalized oscillator strengths as a function of the square of momentum transf r k, fo
z =, z ) +H(nz ——3,I&). The symbol g is equal to v (a.u. ), where v is the incident electron velocity.

p~ for E&E,
p for E, &E&Ed (3.2)

2

e„+b /2M'„keV,
Awe

n&Ec ——12.5
M

(3.4)

where

p +=pq, [u—/+(u/ 2A/pz—, )' ], ps (2M'„)'——, (3.3)

the»m GOS has a deep dip for the 2s 3p transition
while the Glauber GOS for g=1.5 (E =5.56 keV) has a
peak there and vice versa for the 2p~3s transition. Thus
we can

interpret

the appearance and disappearance of
shoulders in the cross section cu~es in Fig. 2 in te~s of
the st~ctures of the generalized oscillator strengths at
p =pa

Figure 3 shows the cross sections o.G and o.~ for the
ionization processes:

and H(2, l„)+H(15) H(3, l„')+H++e . (3.6)

E~ =12.5(2b, /p~, ) keV . (3 5)

We see from Eq. (3.2) that the cross section decreases rap-
idly when the collision energy becomes smaller than E~
(=1.74 keV), because the minimum value of u becomes
greater than 1/n//. Since in the case of the processes (3.1)

E, is estimated to be 1.76 keV which is roughly equal to
E~, the lower limit of the p-integration range can be ap-
proximated as ps (=—,'), which is independent of u;. As
is shown in Fig. 1, on the other hand, at k(=p)-v 5/6

p+ &p &pz for E&14.4 keV, (3.7)

p+ &p&p for 14.4 keV&E &1.74 keV. (3.g)

In this figure we notice that there appear second maxima
at E=2-10 keV in the oG curves for the 2s~3s,
2s ~3p, and 2p ~3p transitions. In this case the effective
integral domain of p is given as follows:

I
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FIG. 4. Comparison between the Born and Glauber approxi-
mations for H(n~ ——2)+H(n~) —+H(n& ——3)+H++e with
n~ ——3, 10, and 15. E is the collision energy in the center-of-
mass system.

FIG. 6. The same as in Fig. 5 for H(n~ ——3,l~)+H(n~ ——15)
—+H(nz ——2, lq )+H++e.

description. In this limiting case Eqs. (3.10) and (3.11) are
rewritten as

3

(

10 I I I I I IIll I I I I I I II) I I I I I I tk

&g)+ H (3)
s &s &s&

where

+
P -Po+Pae Ur'

(3.12)

(3.13)
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10 p~s pl

p—--:d-s ——:d-p

10
0 2

I I I I IIIl I I I I I II ll I I I I I IIll

10 10 10

E (keV)

I I I IIIIIl I I I IIIII
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FIG. 5. Ionization cross sections for H(n~ ——3, lq )+H(n~ ——3)
~H(n~ ——2, l& )+H +e. F. is the collision energy in the
center-of-mass system. The curves marked as "Born" and
"Glauber" are obtained with use of the Born and Glauber ap-
proximations to e+H scattering amplitude, respectively.

with po ——( —2@~,h)'~. Therefore the width of the in-
tegration range [p,p ] is in proportion to u;. Since v~
in Eq. (2.38) is always zero at p =pa, we can roughly esti-
mate the integral over v by putting u =0 in Eq. (2.37).
Then the energy dependence of the cross section can again
be shown to be 1 j&E in the low-energy limit. There ac-
tually appears the 1/V E dependence at E &0. 1 keV in
Fig. 5 and at E &0.01 keV in Fig. 6.

In the intermediate-energy region, the effective integral
domain of p is given as

p+ &p &pz for E &0.02 keV (3.14)

p+ &p &p for E & 12.7 keV . (3.15)

in the case of nz ——3. It should be noted that at a given v;
p+ given by Eq. (3.11) is large compared with p+ of Eq.
(3.3). In other words the effective integral domain of p is
wide and weakly dependent on u; in this case. This fact
explains the behavior of o G in Fig. 5. Namely, the differ-
ences in the structures of GOS do not show up conspicu-
ously in the energy dependence of the cross sections. Un-
like in Fig. 5, in Fig. 6 o6. show wavy structures in the en-
ergy region from 0.5 to 5 keV. In the case of nz ——15, the
effective integral domain of p is given as
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dence can be ascribed to the fact that the differential cross
section in the Glauber approximation decreases steeply in
power of v ( & 1) in the region of p+ &p &p

IV. SUMMARY AND CONCLUSION
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FIG. 7. Comparison between the Born and Glauber approxi-
mations for H(nq =3)+H(ne)~H(nz ——2)+H++e with ns
=3, IO, and 15. E is the co11ision energy in the center-of-mass
system.

Since p increases as the collision energy decreases and
the effective integral domain of p becomes narrower, the
wavy behavior can be ascribed to the structures of the
Glauber GOS. It is also interesting to note that o~ for
the 3p~2s transition has a minimum at E-0.04 keV be-
cause of a deep dip of the Born GOS at p —v 5/6.

In order to see the n~ dependence of the cross sections
an average over lz and a summation over lz are carried
out. Figure 7 shows the results for ns —3, 10, and 15. A
wavy structure seen in Fig 6disap. pears In the. case of
large n~, o.

G takes a maximum at E=10 keV, while 0.~
increases monotonically as the collision energy decreases.

Here, we describe qualitatively the energy dependence
of the cross section in the low-energy limit by taking into
account the spread of electron-velocity distribution. In
the energy region where v; «1/ng, the relative velocity
(u) between the electron and the atom A is roughly equal
to the velocity (1/nz) of the bound electron of the atom 8
and is independent of v;. Therefore, qualitatively the
same discussion holds as before where the Born approxi-
mation was employed for the e-A scattering amplitude, "
and the energy dependence of the cross section is generally
given as 1/~E, though the absolute value of the cross
section (or the proportionality constant) depends on the
approximation employed for the two-body scattering am-
plitude. The 1/v E dependence holds from the higher
collision energy in the case of small n~ than in the case of
large nz. At large nz the cross section decreases as the
collision energy decreases from 10 to 0.05 keV. Since v is
nearly equal to v; in this energy region, this energy depen-

Within the framework of the impulse approximation,
we have derived the expressions (2.37) and (2.53) of practi-
cal use for calculating the cross sections for the ionization
of highly excited atoms by collision with excited atoms or
molecules. These formulas with use of the Glauber ap-
proximation for the electron-atom scattering were applied
to the ionization collisions between two excited hydrogen
atoms with simultaneous excitation and deexcitation of
one of the atoms. The results were compared with those
obtained by using the Born approximation. The agree-
ment between them is very good at high collision energies
E & —100 keV. At lower energies there appears a
discrepancy. In the case of simultaneous excitation the
peak values of the Glauber cross sections are roughly
one-third of the corresponding Born cross sections. In the
case of simultaneous deexcitation with large ns the
disagreement between the two results is unexpectedly
large. This disagreement can be attributed to the differ-
ence in the structures of the Glauber and the Born gen-
eralized oscillator strengths. The Glauber cross sections
show an interesting nonmonotonic energy dependence.

Unfortunately, however, it is not easy to give a quanti-
tative validity criterion for the utilization of the Glauber
approximation. The Glauber approximation is known to
work well at u & 1(—:uIt') in the case of 1s~nl transition
in the electron-hydrogen atom scattering. ' If we recall
the Masseys criterion, the critical velocity uo is con-
sidered to be proportional to the interaction range times
the transition energy b, (6=—,

' for the 1s~nl transition).
Thus in the case of the transition ( n —+n') between excited
states we have

u & vo ~2UI% n k~n'=2n

with b,„„=(1/n —1/n' )/2, if we simply assume that
the interaction range is proportional to n . If we notice
v=u; in the case of high nz, we obtain E &IM(vo") /2 as a
crude criterion. This gives E & 3.9 keV for the transition
nz 2~nq ——3, for ——instance. When ns ( & nq ) is small,
this criterion would be expected to be more relaxed be-
cause of the spread of the electron-velocity distribution.
Thus it would probably be all right to say that the
Glauber results obtained in this paper are more accurate
than the Born results at collision energies higher than
several keV's. However, we cannot give any assessment
conclusively at this moment about the accuracy of the
Glauber results at lower energies. Further studies are re-
quired to answer this question.

The formulas (2.37) and (2.53) are also applicable to the
ionization of highly excited atoms by collision with rota-
tionally excited molecules. ' So far calculations have been
made only with use of the Born approximation for the
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electron-molecule rotationally inelastic scattering. Since
the analytic expression for the Glauber amplitude for the
electron-polar molecule scattering is available, ' it would

'be worthwhile to calculate the Glauber cross sections to
investigate the validity of the Born approximation.

ACKNOWLEDGMENTS

One of the authors (T.S.) would like to express his
thanks to Dr. K. Harada and Dr. S. Igarasi for their en-
couragement during this work.

M. Matsuzawa, Electronic and Atomic Collisions, edited by N.
Oda and K. Takayanagi (North-Holland, Amsterdam, 1979),
p. 493.

~(a) M. R. Flannery, Can. J. Phys. 50, 61 (1972); (b) T. Shirai, H.
Nakamura, K. Iguchi, and Y. Nakai, J. Phys. B 11, 1039
(1978); (c) M. R. Flannery and K. J. McCann, Phys. Rev. A
19, 2206 (1979).

{a) H. Nakamura, T. Shirai, and Y. Nakai, Phys. Rev. A 17,
1892 (1978); (b) T. Shirai, Y. Nakai, and H. Nakamura, ibid.
19, 542 (1979); (c) T. Shirai, H. Nakamura, and Y. Nakai,
ibid. 19, 2225 {1979).

+(a) M. R. Flannery, Ann. Phys. (N.Y.) 79, 480 (1973); (b) Phys.
Rev. A 22, 2408 (1980}.

5N. Toshima, J. Phys. Soc. Jpn. 43, 610 {1977).

6J. H. .Harberger, R. E. Johnson, and J. W. Boring, J. Phys. B 6,
1040 (1973).

~F. T. Chan, C. H. Chang, M. Lieber, and Y.-K. Kim, Phys.
Rev. A 17, 1869 (1978).

B.Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).
V. Fock, Z. Phys. 98, 145 (1935).
OR. M. May, Phys. Rev. 136, A669 (1964).

t~l. S. Crradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products (Academic, New York, 1965), p. 82.
H. Tai, R. H. Bassel, E. Gerjuoy, and V. Franco, Phys. Rev.
A 1, 1819 (1970).

~30. Ashihara, I. Shimamura, and K. Takayanagi, J. Phys. Soc.
Jpn. 38, 1732 (1975).


