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The R-matrix theory of signer is applied to the description of charge exchange. By making use
of the correct coordinates for each arrangement, the boundary conditions are properly satisfied. Un-

physical long-range couplings do not appear, and the use of "electronic traveling factors" is avoided.
The wave functions for different arrangements are nonorthogonal, and are essentially equivalent to
the "intersecting waves" of Delos [Phys. Rev. A 23, 2301 (1981)j. It is shown under appropriate
simplifying assumptions that the R-matrix formalism reduces to the high-energy two-state approxi-
mation of Kramers and Brinkman. The main task of the R-matrix theory is the determination of
the matrix elements of the Hamiltonian between basis functions belonging to different arrange-
ments. This is achieved by methods of functional transfer combined with appropriate simplifica-
tions arising from the smallness of m /M. This leads to the central result that the transformation of
a highly oscillating nuclear radial function from one arrangement to another brings with it a highly
oscillating function of the electronic coordinates of the new arrangement. This causes off-diagonal
elements of the Hamiltonian matrix to decrease rapidly as the energy increases. Consequently the
cross section for charge transfer also decreases with increasing energy.

I. INTRODUCTION

The process whereby an atom A during a collision with
another atom 8 transfers one or more electrons to 8 has
for long presented a problem of fundamental theoretical
importance. More recently this process has also assumed
great technological significance in the performance of nu-
clear fusion devices. The stripping of electrons in
tokamaks from the hydrogen atom fuel by highly charged
ions already present is the chief energy-loss process that
occurs in these devices. The reliable determination of to-
tal cross sections for such encounters over a collision ener-

gy range of, say, 0—5 keV is therefore a vital piece of in-
formation needed for the design of new machines that will
one day produce more power than they consume.

The first calculations of charge-transfer effect were car-
ried out by Oppenheimer' and by Kramers and Brink-
man using essentially the Born approximation —but with
additional simplifications. They employed atomic eigen-
functions as a basis set, these being suitable for high-
energy (i.e., energy above —10 keV) encounters. After an
interval of some 20 years, this work was continued by
Bates and Dalgarno and by Jackson and Schiff, who car-
ried out the first full numerical applications within this
first-order theory.

At collision energies below —1 keV (i.e., at low ener-
gies), it is useful to proceed by expanding the total wave
function in terms of molecular electronic eigenfunctions,
rather than to use eigenfunctions of the individual atoms.
This approach is the basis of the "perturbed stationary
state" (PSS) approximation, first proposed by Mott (see
also Mott and Massey ), and later significantly modified
by Bates and his school. '7 The whole of this early work,
both at high and low energies, has been reviewed with
great lucidity by Bates and McCarroll.

These studies served to point out certain fundamental

inconsistencies in the formulation of the theory, both in
terms of atomic eigenfunctions and in terms of molecular
wave functions. Much effort has since been
expended —largely at low collision energies —in attempts
to remove these difficulties, and this has given rise to a
considerable literature on the subject. Amongst more re-
cent works one should mention those of Crothers and
Hughes, Thorson and Delos, ' Schmalz, Stechel, and
Light, "Crothers and Todd, ' and Delos. ' The most ex-
tensive calculations of charge transfer to date are by Heil,
Butler, and Dalgarno, ' and by Bienstock, Heil, Bottcher,
and Dalgarno' (see also Bienstock, Heil, and Dalgarno' ).
The field has recently been very thoroughly reviewed by
Delos' (see, in addition, Garratt and Truhlar' ).

The physical phenomenon of the transfer of an electron
from one atom to another is brought about by the motion
of the atomic nuclei relative to one another. It is clear
therefore that this cannot be represented by a picture in
which the electronic and nuclear motions are separated,
i.e., in which the nuclei see only the average positions of
the electrons. Thus as shown by Bates and McCarroll
the pss approximation which precisely does attempt such
a separation is not normally viable unless the electronic
eigenfunctions are multiplied by factors expressing the
translational motion of the nuclei.

Closely tied to these considerations is the formal diffi-
culty that the total Hamiltonian for the system is most
conveniently expressed in particle-to-particle coordinates.
However, the proper asymptotic form of the wave func-
tion when atoms A and B separate requires the appear-
ance of a center-of-mass —to—center-of-mass coordinate
connecting A and B. Furthermore, this coordinate is dif-
ferent if the separating species are instead A+ and 8
say, i.e., different coordinates are required for each ar-
rangement. This may be regarded as the source of the dif-
ficulties in the theoretical description of charge transfer.

30 1643 1984 The American Physical Society



JOSEPH GERRATT 30

For unless the boundary conditions for the different
asymptotic states are imposed using the correct center-of-
mass —to—center-of-mass coordinate, all manner of trou-
bles manifest themselves: coupling matrix elements be-
come origin dependent and do not become zero as the in-
teratomic separations increase. In favorable cir-
cumstances where one of the collision partners is much
heavier than the other, these effects can be
minimized —but not eliminated —by placing the origin at
the heavy nucleus (see, e.g., Heil et aI. ' and Bienstock

15, 16)

In order to avoid these difficulties it is necessary to em-
ploy distinct coordinates for each arrangement —including
in each case the relevant center-of-mass —to-center-of-
mass separation —and to develop an expansion of the total
wave function in terms of these same coordinates.

This was first proposed by Delos. ' His "intersecting
waves" theory removes most of the inconsistencies of the
earlier descriptions. Substitution of this form of the wave
function into the Schrodinger equation leads directly to a
set of coupled integro-differential equations for the nu-
clear radial functions: The coupling which actually
causes the charge transfer appears here under an integral
sign. Approximations suitable for low-energy collisions
reduce these equations to a set of ordinary coupled dif-
ferential equations.

The purpose of this present paper is to put forward an
alternative procedure, based upon the %'igner R-matrix
theory. ' R-matrix theory has already been applied with
good success ' ' to the scattering of electrons from atoms
and molecules, and in this paper it is shown that the for-
malism also possesses advantages for the description of
charge transfer. The fundamental characteristic of R-
matrix theory is that the physical system is surrounded by
a surface X which encloses the "strong-interaction" re-
gion. Very general boundary conditions are imposed at X,
and the Schrodinger equation is separately solved subject
to these conditions both within and outside X. The effect
of the boundary conditions is to produce quantized
("particle-in-a-box") solutions within the strong-
interaction region. These are matched to the solutions
outside X by means of the R matrix (see Sec. II), the
matching process yielding the relationship between waves
which are asymptotically incoming and outgoing, and
consequently the S matrix is determined. Charge transfer
corresponds to significant interaction between different
arrangements and can occur only within the strong in-
teraction region. Hence the propagation of the solutions
in the region outside X is more or less trivial: The major
task is the solution of the Schrodinger equation within the
region surrounded by X. The determination of the eigen-
functions ~~ and associated eigenvalues e~ within X
proceeds by expanding the co~ in a suitable basis set of
functions. It is here that the power of the R-matrix for-
malism manifests itself, for we are free to choose any
functions which conform as closely as possible to the
physical situation. In the present case, we select functions
that describe atoms A and B and their motion relative to
one another, using a coordinate system which would en-
able the asymptotic boundary conditions for that arrange-
ment to be properly satisfied. In addition to these, we

select functions which describe the ions 3+ and B, say,
and their relative motion, again using coordinates ap-
propriate to this arrangement. In other words, we use the
same expansion of the wave function as Delos' in terms
of basis functions that are expressed in different coordi-
nates for different arrangements. The fact that the (AB)
set of basis functions is not orthogonal to the (A+B ) set
makes not the slightest complication to the R-matrix for-
malism. The task is a technical —but not a trivial —one of
evaluating the necessary matrix elements of the Hamil-
tonian between basis functions belonging to different ar-
rangements. The resulting "multiarrangement integrals"
are not unlike their counterparts in quantum chemistry-
the multicenter integrals —and indeed are calculated by
similar techniques of functional transfer.

We begin by describing the participating atoms and
ions by means of isolated atomic eigenfunctions. Such a
basis set, which might be termed a "valence-bond" basis,
is obviously suitable for the description of high-energy
collisions in which the colliding partners do not have
enough time to deform significantly.

At lower energies it is necessary to allow for some de-
formation of the atomic-channel functions and this leads
to the use of spin-coupled orbitals. These have precisely
the shape of deformed atomic states, the amount of defor-
mation varying with the separation between the atoms or
ions in a particular arrangement. Spin-coupled wave
functions have been recently used very successfully by
Gerratt and Raimondi in compact descriptions of both
ground and low-lying excited molecular electronic states.

A feature of R-matrix theory which should be em-
phasized is that the energy dependence occurs in an ex-
tremely simple form. The eigenfunctions coi„and associat-
ed eigenvalues ei„are independent of energy and conse-
quently may be reused for many energies, the span
covered being defined by the nature and number of basis
functions used. Thus having determined the R matrix for
an initial energy E, the S matrix and cross sections may
be obtained over a whole range of other energies at very
little extra cost in computation time.

A second important characteristic of the R matrix is
the fact that it is real and symmetric, and this alone en-
sures that the S matrix is unitary and symmetric. This
means that if the R matrix is approximated in some
way —as is inevitably the case in almost all
applications —the fundamental properties of the S matrix
are preserved.

In Sec. II the R-matrix theory for a fairly general rear-
rangement encounter is developed and applied, in Sec. III
to the case of charge transfer in one-electron systems. In
Sec. IV it is shown how the present formalism reduces in
a two-state approximation to essentially the same expres-
sions as those obtained by Oppenheimer' and by Brink-
man and Kramers using the Born approximation. In Sec.
V it is shown how the various integrals arising in the cal-
culation of the matrix elements of the Hamiltonian are
determined by methods of functional transfer. Finally, in
Sec. VI the theory is extended to many-electron systems.
The central result of this paper as brought out in Secs. V
and VI is that the transformation of a highly oscillating
nuclear radial function from one arrangement to another
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brings with it a highly oscillating function of the electron-
ic coordinates of the new arrangement. Since other elec-
tronic functions are smooth, this causes off-diagonal ele-
ments of the Hamiltonian matrix to decrease rapidly to
zero as the energy increases. Consequently the cross sec-
tion for charge transfer should decrease rapidly with in-
creasing energy.

Since, for reasons described above, we make no direct
use of the Born-Oppenheimer separation to determine
molecular electronic eigenfunctions, it is pointless to em-

ploy body-fixed coordinates: Consequently space-fixed
coordinate frames are used throughout. This also makes
the imposition of the asymptotic boundary conditions
easier to impose: We would in any case have to carry out
a transformation from body-fixed to space-fixed frames at
the surface X.

Nevertheless the electronic wave functions and associat-
ed potential-energy curves do play a role in the present
theory, though in a somewhat surprising way: For each
arrangement, AB or A +B, say, the eigenfunctions of the
corresponding potential-energy curves are determined, and
used as basis functions for the nuclear radial motion in
the R-matrix calculation. Similarly the orbitals from the
same valence-bond (VB) or spin-coupled VB calculation
are used to construct the deformed atomic-channel states.

@ac fnA PnscXac ( a )+JM I (JA ~JBC )Ja i a i QA ~ QBC ~ Qa j

(2.2)

In this expression, gn and gn are wave functions for
the internal states of particles A and BC, respectively, the
set of internal coordinates for both particles being denoted
collectively by ia. Function Xa, (Ra) describes the rela-
tive radial motion of A and BC, the coordinate Ra
measuring the distance from the center of mass of A to
the center of mass of BC. The angular coordinates of R
in space-fixed axes are denoted by Q, and those pertain-
ing to A and BC by QA and QBc, respectively. The func-
tion 9'qM [ .

j in (2.2) is an angular function in which
the angular momenta associated with A and with BC, jA
and jz&, are coupled to give a resultant j . This in turn is
coupled with the angular momentum L of relative
motion of A about BC to give an overall resultant J:
+1M I (JA «JBC )JaiLaiQA ~QBC~Qa j

The quantum numbers. I(j„,jBcj);Lj together with the
quantum numbers nA, nBc for the internal states of A and
BC, define a channel index cfor arrangement a:

II. R-MATRIX THEORY
OF REARRANGEMENT COLLISIONS

c—= tnA, nBC(JA~JBC)JaiLa j . (2.4)

A. Channel functions

We consider a collision process in which an atom or ion
A strikes a composite particle (BC) and as a result pro-
duces a new composite particle (AB) and an atom or ion
C:

A +BC~AB+C . (2.1)

Particle B may be either another heavy particle or—as is
relevant to the present situation —an electron. The two
sides of Eq. (2.1) constitute two distinct arrangements
which we label a and P, respectively. There may of
course be a third arrangement AC +B, but for the sake of
clarity this is not included in the discussion. The index y
will be used to denote either arrangement, a or P.

An appropriate partial-wave function for arrangement
a (A+BC) is

4« = 't4A gnBc +JM t (JA ~JBC )Ja «L a i Q A ~ QBC ~ Qa j (2.5)

A similar treatment goes through for arrangement P
( AB +C), the relevant coordinates now being
[ip,Rp, QAB, Qc, Qpj in an obvious notation. A channel
function Pjp, is also similarly defined:

NPc' WnABPnc+JM [ (JAB &JC )JP~LPi QAB & QC~ QP j

the index c' now referring to the set of quantum numbers
on the right-hand side of (2.6).

The radial functions X«(Ra ) [and similarly the

Xp, (Rp)] are subject to the following boundary conditions
(assuming that the potential in a given channel decays
more rapidly than R ' ):

Corresponding to this we define a channel function P«
which is a function of all the coordinates except the
scattering coordinate R:

lim X,(R ) ( oo (for k, &0);
R —+0

X,(R ) —— 6
exp[ i (k«Ra ——, Lan)] —S„ex—p[i(k«R —, La~)] as R ~—oo (2.7a)

5„,
,&2 sin(k, R —,' L m)+aK„—cs(ko. R c—, Lan ) (for ka, —&0); (2.7b)

lim X«(Ra)=0 (for k«(0) .
R ~oo
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The wave vector k« is defined by

Ak, =E —e„—e„ (2.9)
n& n&& ~

where E is the total energy of the system (measured rela-
tive to particles A and BC at rest in their ground states),

and e„are, respectively, the energies of the isolated
A Ngg

systems A and BC in states @„„andP„;E E—„„E„—
is therefore just the collision energy of A and BC Th. e
quantity p is the reduced mass of A and BC, and co
designates the initial channel of the system before col-
lision.

Equations (2.7)—together with the parallel relations for
arrangement P—define the partial S~ and X~ matrices
which are related by

Since H+I.I, is now Hermitian, the operator H+LI, —E
may be inverted to give

4'=(H +Lb E—) 'Lb+ .

From this equation we project out the radial component
of 'p at X for a particular channel:

(4« I
'P&» =(lac

I
(H+Lb E) Lb+&»

= g(P'., ~(H+I., E)—'~y'„. )

y, c'

X(P,', ~Lb+&

1 8= 2 R ',y'2 ~
IRy(4'y' I

q'& I
2p& 8& M&

S~=(I+trC')(I —tee') . (2.10) —by, (P'„~ % &, . (2.14)

B. Derivation of the R matrix

Aeeording to the Wigner theory (see, e.g. , Lane and
Thomas, Breit, and Gerratt and Wilson b), the in-

teracting ABC system is surrounded by a hypersurface X
defined by channel radii R =d and Rti=dti. The radii
are chosen large enough so that on X we have for the
channel functions

(0y. I dy' )=Sr&yy &- . (2.11)

The integral is evaluated either in the coordinates pertain-

ing to Pjy'c with Ry fixed at.dy, or in Py coordinates (i

different from those of Py, ) with Ry fixed at dy.
It turns out that, due to unwanted surface terms, the

Hamiltonian operator when restricted to the region within
X is no longer Hermitian. This deficiency is overcome by
adding to H an operator I.~ due to Bloch and given by

(H +Lb —ei)coi =0 .

This equation is equivalent to the solution of

(H —ei )coi ——0

subject to the boundary conditions

(2.16)

This equation defines the R matrix as

R,;y, =(P,
/
(H+Lb —E) '

(july,

) . (2.15)

In (2.14) it can be seen that the R matrix yields the rela-
tionship between the radial components and their deriva-
tives at the surface X. Once determined, this relationship
is all that is required to continue the propagation of 4 in
the outer region from X to the asymptotic limit.

In order to obtain the R matrix in more tractable form,
it is necessary to solve the eigenvalue equation

Lb gg ~ y,', )
——5(R, —d, )

Jyc "2Iy I R y(4y. I ~i,& I hy. (0y. I
~~—

& (2.17)

1 8 J JX Ry by, (Py, ~

.—
y y

(2.12)

(H +Lb E)=Lb%' . (2.13)

In this expression, the sums are over all partial waves and
all channels in all arrangements. The quantities 8&, d&,
and p& are, respective1y, the relevant nuclear radial coor-
dinate, channel radius, and reduced mass for arrangement
y. The round brackets

~ Py, ) and (Py, ~

denote eventual
integration over all coordinates except Rz. The angular
bra or ket brackets will be reserved for complete integra-
tion over all coordinates. The Bloch operator contains the
arbitrary real parameters bz, whose role will become clear
shortly. This operator is clearly a surface operator as can
be seen by the presence of the 5 function, whose purpose
is to cancel out the surface contributions when radial in-
tegrations are restricted to 0 (E.& &d&.

The Schrodinger equation to be solved within X may
therefore be written as

for all arrangements y and channels c. From this it can
be see that the parameters by, of the Bloch operator play
the role of fixed logarithmic derivatives of the radial com-
ponents of coi at the boundary surface.

Having solved (2.16), we may represent the inverse
(H +Lb E) as—

(H+I.,—E)-'=y ~ '
e~ —E

and so

R«;yc'= g
e~ —E (2.18)

[In the nuclear physics literature it is common to define

g«& =(fp/2', )'~ (p, ~
coi &» and the R matrix as

g„g~,~~, i /(pi E). Equation (2.14) then—becomes a
relationship between gy, (fP/2py)' (Pyc ~

9'&»y but-—
unthout the factor (A' /2py) on the right-hand side. ] Thus
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a, a

2pz R2 BR& r BR&

A'I".
y+ ', +Hy+~

2pyRy

(2.20}

in whi'ch the Hz is the Hamiltonian for the internal
motions of the two relevant isolated particles in that ar-
rangement. The form of H is the same for all arrange-
ments. Substituting (2.19) and (2.20) into the Schrodinger
equation (H —E)4=0, multiplying through by (P, I

and
integrating, we obtain the following set of coupled dif-
ferential equations:

T

2

2
a

L~(L~+ 1)

a

V, , (R )U p p, (R )
c' (+c)

having solved (2.16), the R matrix is constructed using
(2.18). This is then used in (2.14) to continue the solution
of the Schrodinger equation in the outer region. This is
accomplished as follows. Outside X we may write the
partial-wave function in the form of an expansion in
channel functions:

eJ...=+ '
U'„...., (R, )y'„, (2.19)

y, c

in which (y c ) designates the state of the system before
collision. It should be recalled from (2.11) that the Pz,
constitute an orthonormal set in this region. When

Rz ——dz it is clear that Rz 'U, , (Rz) is just the radial
y c;yc

component -(P&, 1%')d . The Hamiltonian is given by
y

Center of ma

of (4+e

FIG. 1. Coordinate system for A+B+. Arrangement a.

where A and B are both one-electron atoms. We define
arrangement 0; when the electron is associated with nu-
cleus A, and arrangement P when the electron is associat-
ed with B. The coordinate systems corresponding to the
two arrangements are shown in Figs. I and 2, respectively.
The Hamiltonian in space-fixed coordinates, with the
center of mass of the whole system separated out, is given
in a coordinates by

where

g2

2mA ""
2pA

(3.2')

mMA
mA ——

m +MA
(3.3)

the reduced mass of the electron for arrangement a, m be-
ing the mass of the isolated electron and Mz that of nu-
cleus A;

in which

(d &R & ~) (2.21)
Mg(m +My )

M, +M„+m
(3.4)

(2.22) is the reduced mass of 8+ and (A +e). The potential p'

is given by

It is important to note that these equations only involve
channels within a given arrangement. This is a direct
consequence of our choice of a channel radius d such

- that the orthogonality conditions (2.11) hold, and the fact
that

(O'
I
I'

l 4'r') =0
for y&a outside X. Equations (2.21) thus represent no
more than elastic and inelastic scattering within a given
arrangement, and can be integrated from R =d to the
asymptotic region using standard procedures such as the
Gordon algorithm or the R-matrix propagator
method.

eV=
4m'

2

4~op

ZA

—ZA

ZA Z8+

Zg +
R~ —~r~

I I
R~+y~ r~ I

(3.5}

III. R-MATRIX THEORY OF CHARGE
TRANSFER: ONE-ELECTRON SYSTEMS

In this section we apply the foregoing theory to the pro-
cess

ter of mass
(e+e)

A +B+—+A++B, (3.1) FIG. 2. Coordinate system for A ++B. Arrangement P.
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in the ( r~, R~ ) coordinates pertinent to this arrangement.
In this last equation,

(k~e14a, )=0,

I
I'I Ika )=0

(3.10)

P7la= l—
MA +m

(3.6)

so that

yg ——m/(Mg+m). (3.7)

Similar definitions go through for arrangement P.
We begin by utilizing as channel functions the eigen-

functions of the isolated atoms: Pz» ( r z ) and
(ra). This we shall terin a "valence-bond basis"

and is obviously suitable for high-energy collisions. Later
in this paper we extend the energy range of the theory by
employing more general atomic functions which are al-
lowed to deform during collisions.

The central task is to select a basis set in terms of
which the R-matrix eigenfunctions cubi, Eq. (2.16), may be
expanded, to calculate the resulting matrix elements of the
Hamiltonian, form the secular equation in the basis, and
determine the corresponding eigenvalues and eigenfunc-
tions.

For this purpose we choose the following set of basis
functions:

for all c and c', where these stand for the quantum nuin-
bers (nlL~) and (n'l'La), respectively. The integrations
are carried out, either' in ( r z, Rq ) coordinates with

R~ ——dq, or in (ra, Ra) coordinates with Ra ——da. The
interaction potential Vl for arrangement a is given by

r

2

~r=
4~op

ZAZB
(3.11)+

I R~+)'~r~
I

with a similar definition for arrangement P. [The practi-
cal evaluation of integrals such as those in (3.10) within X
is described in Sec. V.]

In order to ensure good convergence for the R-matrix
eigenfunctions, the fz and fq basis functions should ap-
proximate as closely as possible the actual eigenfunctions
in the given energy range. For this purpose we consider
the electronic potential-energy curves determined by the
atomic orbitals Pz»~(r„) and Pa„r~ (ra) occurring in
(3.9), W~»(R~) and 8'~„i(Ra), respectively, and deter-
mine the corresponding eigenfunctions in the interval
(O, dz ) or (0, da ) in the appropriate range of energies. The
distinction between the internuclear distance R and
nucleus —to—center-of-mass distances Rq and Ra can be
dropped for this purpose. Thus the fz's and fq's are
determined as eigenfunctions of the following equations:

(n, /, Lg,pg, rg, Rg )

(nlL„)=
R f,„"(R~)4~»1.„(r~ Q~ ~~)

and

gg (n', l',La, qa, ra, Ra)

(3.8)
~L:(L:+1)

2 + Wg»(R)— +Lg —ep
2p dR 2pR

(nIL~)
)&fq„" (R)=0 (0&R &dg) (3.12)

with a parallel definition for the fq's. The radial Bloch
operator is given by

1=
R fq,

' «a)0a'iv. ,«a»a ~a) .

—1
(n'I'L~ )

The functions Rz fz
" (Rz ) and Ra fq (Ra) are

nuclear radial basis functions. The channel functions
Pz. . . and Pa. . . are given by

P~»L„(r„,Q&,co& ) =Rz»(rz )9'zM I (L&,l)J;Qz, coq I,
/

d
La —— 5(R —dg ) b-

2p dR

dR
(nlL~ )A 0
A

and serves to impose the boundary condition

(3.13)

(3.14)

0'Bn'I'L&( ra Qa, boa ) =Ra„r(ra )O'JM I (La, I')J;Qa, cuba j

(3.9)

Here the R~»(rz) and Ra„i(ra) are the radial parts of
the relevant atomic orbitals, the angular parts of which
are coupled together with the angular parts of the nuclear
factors by the functions S'&~I .

J to form the overall
resultant J: (L~, l)J in the one case, (La, l')J in the other
The two channel radii for the R matrix, dz and da, are
taken large enough so that for RA )dA or RB &dB, the
channel functions are orthogonal and noninteracting,

(nlL~ ) ( n'I'L&+ )
upon the radial eigenfunctions. The fz„" and fq
basis functions may thus be regarded as suitably "distort-
ed waves" for the R-matrix calculation.

The presence of the centrifugal term
R L„'(L„'+1)/2pR in (3.12) should be noted. The in-
clusion of a term of this type is essential if the distorted-
wave basis functions are to display the correct behavior,
particularly at large values of the angular momentum Lz.
However, the solution of (3.12) for every value of Lz
would be too time consuming, so instead the parameter
L~ is used where this is fixed at some suitable value. In
actual practice one sets Lz ——J, for it can be argued that
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since for a given channel, L„may assume all values be-

tween
I
J I—

I
and J+I, the most commonly occurring

value of L~ is J.
Equation (3.12} is itself solved by expanding the fz's in

a set of "primitive sine functions":

(nEL&) (nlL&+) . Rf~„"(R~)= g C~„"sin (m+ —,'')m.

m =mo

(3.15)

This choice of sine functions corresponds to setting b =0
in (3.14}—i.e., to imposing a zero derivative on the eigen-
functions of (3.12) at R~ ——dz. This particular set has
been used very successfully in R-matrix calculations of
atom-molecule scattering. [An alternative set of prim-
itive sine functions with an arbitrary (nonzero) value for
the derivative at R~ ——d~ is ( bd~ /2m' )sin(2mR& /
dz ).] The sine functions form an orthonormal set in the
interval (O, d~}. The minimum value of m, mo, is chosen
so that the resulting eigenfunctions all possess the
minimum number of nodes to cover the required energy
range. Thus for a reduced mass p equivalent to the mass
of a proton confined within a channel radius dz ——10
bohr=5. 3 A, mo-1100 at 1 keV, and -200 such sine
functions would span another 1 keV of energy. The situa-
tion is illustrated in Fig. 3.

The R-matrix eigenfunctions for each partial wave J
are expanded in the basis set (3.8):

&0' l~l@™& &0' I@™&

between the basis functions (3.8). When p and o. both
refer to the same arrangement this task is more or less
trivial. Consequently the central issue is the determina-
tion of such matrix elements between different
arrangements —and this is the subject of Sec. V.

The R matrix is given by expression (2.18), the quanti-
ties (P~, I

co~&d occurring in it now being given simply by

(nlL~ ) 1 (nEL~ )

(4.„+„I
~, &

= g c,~,
" f,„"(d„) (3.18)

complication. The remaining task is the determination of
the C~")„' and C~"i' coefficients and the associated eigen-

values e~. This is achieved by substituting (3.16) into the
Schrodinger equation (2.16), multiplying through by one
of the basis functions, and integrating. This yields a secu-
lar equation of the form

Q &C~ I
(Jr+Lb eA}

I
gp~&Cpg ——0, (317)

P

in which the indices p and cr stand for the set ( n, l,L~,pz )
or (n', l', L~,q~). It is therefore necessary to calculate the
matrix elements

J (nEL„)
4~ « IL~ p~'r~ R~}

+ g g C& z gz (n', l', Lz, qz', r&,R&), (3.16)
n', E', L~ q~

. W(R) ),
B p A

RANGE OF COLLISION
ENERGIES

(R)
A+B

(P ARRANGEMENT)

A+B
(a ARRANGEMENT)

FIG. 3. Illustration of radial basis functions.

the expansion including basis functions from both ar-
rangements. The two sets of terms in (3.16) are of course
nonorthogonal, but this feature is essential for fast conver-
gence of the series and causes no particular additional

and similarly for ($&„IL I
co~&. The rate of convergence

of the sum over I,—which is now finite —in (2.18) is cru-
cial for the reliability of the theory. In earlier applica-
tions it has been found that this summation usually does
not in fact converge well, and that it is necessary to add to
(2.18) a correction due to Buttle. ' While this correction
frequently improves matters considerably 6 the essential
reason for the slow convergence of the A, summation in
the R matrix is due to the imposition of the boundary
condition (3.14): Since the number of basis functions is
finite, any linear combination of them will also satisfy the
same condition at d~ or d~, i.e., possess zero derivative.
The true wave function almost certainly does not have a
zero derivative at these points, and hence the R matrix
converges slowly.

This problem is overcome as follows. The radial
eigenfunctions of Eq. (3.12) are determined in an interval
(O, dz+5~), where 5~ —10 ' —10 A. These functions
are then utilized in the correct range (0,d„), but now pos-
sess arbitrary derivatives at the boundary and are conse-
quently very slightly nonorthogonal. This small injection
of nonorthogonality into the radial basis functions has
been found immediately to lead to rapid convergence of
the R matrix, and a Buttle correction is no longer neces-
sary. The calculations now remain stable in all regions:
both far from and close to resonances. The extent of'the
nonorthogonality thus introduced is strictly controllable:
If 5& is set equal to zero, the basis set becomes orthogonal
once more.

The final form of the R matrix is displayed in Fig. 4,
where it is divided into four blocks which might be
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Channel functions belonging to

arrangement A

R,

Channel functions belonging

to arrangement B

U o,o.„,(dA)

~J
y, c" 2I y

Elastic 5 inelastic

scattering within a

given arrangement

Rpp

Charge transfer

Charge transfer

FIG. 4. Form of the 8-matrix for charge transfer.

'p o,o=g R
U o,o.A, (RA)QA, (rA, OA, ~A)J 1 J J

c

+g U o p, (R&)PRc (rR, Qz, coR) (3.19)
c

in which y is the initial arrangement (a or P), and c
stands for the initial channel quantum numbers pertaining
to that arrangement. Substituting this expression into the
basic R-matrix relation (2.14) and taking into account the
orthogonality relations (3.10), we obtain

termed (aa), (aP), (Pa), and (PP). The (aa) and (PP)
blocks give rise to elastic and inelastic scattering within a
given arrangement, while the (ap) and (pa) blocks are re-
sponsible for charge transfer.

In the region outside X the partial-. wave function may
be written as an expansion in channel functions in the

OH11

X U b—U
y c;yc" yc U p p

and siinilarly for U p p R, (dR) ~ This equation relates all

the radial amplitudes U in all arrangements to their
derivatives at X. These relationships can be used to ini-
tiate the integration of the coupled differential equations
satisfied by the U 's:

d LA(LA+1) —Vg(Ac;Ac)+kA, U p, p „,(RA)
dRA RA y c;Ac

VI(Ac;Ac")U p p „„(RA)
c" (+c)

(d„&R„&po ) (3.21)

with a parallel set for the U, p, . The potential matrix
y c;Bc"

elements are defined as

VI(Ac;Ac")= (pA I VI I pA "}
—21 A

(3.22)

[cf. Eq. (3.11)], and similarly for arrangement p. Thus
the solutions in the outer region involve functions belong-
ing to one arrangement or the other. Charge transfer or
the transmission of flux from one arrangement to
another "an only occur within X and is then transported
to the asymptotic region by means of Eqs. (3.20) and the
solutions of (3.21).

The absolute amplitudes of these solutions are not
determined by the R-matrix relations (3.20), but are fixed
by the boundary conditions imposed:

(R ) (
' kAc A AP'

g g —S i(kAcRA Ln/A2))—
yc'Ac A ~ f &/& ,OA cOc Ac; ypc 0

2lkAc
(3.23a)

The wave vector kA, is defined by the relation

fi kA, =E—&A„l
2@A

where eAnl is the energy of the isolated atom A. The final cross section is given by

ao J+1
o' o o o = (2J+1)r n l ~Anl k2 (21 11) X

Anl + J=G L&=
I
J—l

I Lo
I
J lo~

rpA nolo;nl AnlLA ronoloLo I.5 5 —S

J 1

k1/2i&2 [sin(kA RA —
2 LA&)+RA p pcos(kA, RA —, LA@)] as RA ——+oo .(for kA, )0) .c 2 Acyc

Ac

(3.23b)

(3.24)

(3.25)

in which the full designation of arrangements and chan-
nels has been used.

In the keV energy range, —10 partial waves are re-
quired in (3.25) to attain convergence. However, the vari-
ation of the cross section with J is smooth and it is un-

I

necessary to calculate every term. For J& 100, it is suffi-
cient to calculate every 100th contribution, say, and to in-
terpolate in between. ' '

However, it should be pointed out that for high J, the
diagonal elements of the matrix in (3.17) dominate. The



30 R-MATRIX THEORY OF CHARGE TRANSFER, 1651

eigenvalues ek and eigenvectors cok can therefore be ob-

tained by means of first-, second-, etc., order perturbation
theory. Complete diagonalization of H +Lb becomes un-

necessary. Several alternative schemes are possible, of
which one is pursued in Sec. IV. This topic will be taken

up in more detail in subsequent publications.
Equations (3.21) involve only a single arrangement and

consequently include few coupled channels. They there-
fore remain reasonably tractable at all J.

IV. CONNECTION WITH OTHER WORK:
THE TWO-STATE APPROXIMATION

AT HIGH ENERGIES

The purpose of the present section is to show how the
R-matrix formalism for charge transfer reduces to a form
which is essentially that obtained by Oppenheimer' and by
Brinkman and Kramers. This derivation serves also to
highlight the essential mechanism by which charge
transfer occurs.

We begin by assuming that the channel radii da and d~
are sufficiently large so that the interaction potential VI is
zero outside X in both arrangements. The partial-wave
function in the outer region is now that corresponding to
a free wave and is given —except for an amplitude
factor —by

and take into account just a single channel within each ar-
rangement a and P, i.e., we consider just the channels as-
sociated with the isa or lsp states on each H atom. The
R and S matrices now reduce to 2&(2 matrices, labeled
simply by the arrangement, a or P. Equation (4.2) may be
evaluated explicitly to give

S = (I~+. lp+1 )Ik k ~)/g 1 i(k~d~+kpa~) (4.4)

where D is the determinant of the matrix (I—RL ):

D =(1—R~~L~)(1 Rpp—Lp) Rp—L Lp . (4.5)

4,a (t'1 (rA )XA,A(+J( )

and

kpB (t »s(rB )XpB( B )

which we expand in partial-wave form as follows:

(I )

ka Pl (ra ) yX)JA (Ra )Pl (cos8a )
I

The element S p of S is thus directly proportional to
R p, and consequently we may concentrate attention upon
this latter quantity.

The R-matrix basis functions are of the form

l
U „= !I -5 —5 „—0 -Scyc2y&yQyco&ycy&yoga)

in which Iy, ~ is an incoming wave
—i(k, .R —I m/2)

Oyc is a similar outgoing wave

(4.1) (lp)
g„p =f„(r~)QXk~ (R~)P( (cos8p),

Ip

(4.6)

where 8a is the angle between R„and the space-fixed Z
axis, and similarly for Rp and Hp.

For each pair of partial waves

i(k -R —I m/2)
Oyc '=@ye 8

and S „&) 0 is an element of the S matrix. Substituting
(4.1) into the R-matrix relationship (3.20) we obtain for
the S matrix

(I ) (I )

gka Pi,„(ra )Xka (Ra——)P~ (cos8a ),

(Ip) (Ip)
g&g =P» (rz)X&p (R)i)P(p(cos8p),

(4.7)

S=O-'(I —RL)-'(I —RL, )I . (4.2)

In this expression 0 and I are diagonal matrices com-
posed, respectively, of the outgoing and incoming waves
Oyc and Iyc L( is given by

I =0'0 1 —B,

Rac;yc' =

where the prime on 0 indicates differentiation with
respect to the scattering coordinate Ry taken at the chan-
nel radius Ry=dy, and 8 is a diagonal matrix formed
from the Bloch parameters by, . The R matrix is here
given by [see parenthetical note following Eq. (2.18)]

(4.. I ~k&a. &~k I 0y;&a„
(4.3)

e~ —E

it is necessary to form the Hamiltonian matrix

(I ) (Ip)
(V~p4(. ;„(p=&ha III

I Cpa & (4.8)

(I )

1

Ra dRa dRa2 Rg
l~(l +1) +VI( ls~', 1sz )

Rg

(& ) (I )—eaa Xka (Ra )=0
J

(4.9)

within X, and to diagonalize it in order to obtain the
eigenfunctions and associated eigenvalues. For this pur-

(1 )

pose we assume that the radial functions Xkz (Ra ) already
satisfy the equation

where for simplicity we ignore the dependence of the re-
duced masses upon the arrangement.

We now consider the simplest case of hydrogen-to-
proton charge transfer at high energies:

H+H+~H++H,

with boundary condition

(I )

=0,
dRg

(4.10)
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i.e., with Bloch parameter b equal to zero. The potential
Vr(lsA, is~ ) occurring in (4.9) is the interaction potential
for this arrangement. Similar considerations apply for ar-
rangement P. This means that the parts

~u)r' " » (a' a P p~P p

had not, there would be no material difference in the re-
sult beyond an increase in complexitv. To this order of

(l ) (lpgaperturbation, the eigenvalues e~~, e&z remain unchanged.
Substituting (4.11) into (4.3) we obtain after a little manip-
ulation

of the Hamiltonian matrix are already diagonal with ele-
(l ) (lp)

ments 6'gg and e&~, respectively.
The remainder of the Hamiltonian matrix is diagonal-

ized by means of first-order perturbation theory. This
procedure yields two sets of functions:

(l lp)R ~Py
= —4[(2l~+ 1)(2lp+ 1)]

(l ) (lp)
&) ~ (d~ )( V~a 4(.;p(P„a (da )

(I ) (Ip)
k.p (ei A E)(e—pBP E)—

(4.12)

and

(I ) (I ) ~~ p(p ~ra

~)I.A =@A + g (( ) (I ) kpB
a pI' p &xa &pa

In order to evaluate this expression explicitly, we intro-
duce the partial-wave Green's function corresponding to

(l ) .
Eq. (4.9). In terms of the eigenfunctions X~~ it is given

by

(lp) (lp) (V )AB Al;pip (l )

(Op8 5pB + g (~ ) (( ) kii.A

~ a —~zwP

(4.11)

(l ) , (l )

gz~ (R„')X)a (Rx )
GE (R~,Rg ) = (4.13)

The nonorthogonality between the two sets of basis func-
(l- ) (lp)

tions g)„~ and g„~ has been neglected although even if it

(l lp)
and similarly for arrangement P. Consequently R~$
may be written in the form

R &
~ 4[(2l —+—A, )(2l&+A, )]

{l ) {lp)
&& f dr~ dQ& f dR&R&[Gz (Rz, dz)P& (cos8&)g» (rz)HQ» (rz)P( (cos8&)GE (Rz,d~)] . (4.14)

In keeping with the assumption of high-energy collisions,
we can obtain approximate expressions for the Green's
functions by neglecting the interaction potential
Vz( ls~; is& ) in (4.9). The details are given in the Appen-
dix, but using this approximation, together with similar
ones for D [Eq. (4.5)] and summing over l and l~, we ob-
tain

S p=(2p/fi)id~de(e "Q»„~H
~

e f), )

(4.15)

(neglecting the unimportant phase factor exp[i(k dz
+kgb)]).

If we replace H by VI in (4.15)—which is consistent
with our earlier neglect of overlap between basis functions
belonging to different arrangements —the matrix element
in this equation is precisely the same as that obtained in
earlier works' from the Born approximation. It should
be noted that this result is obtained here by use of first-
order perturbation theory which mixes basis functions
stemming from different arrangements in the region of
strong interaction. Evaluation of (4.15) is known to yield
a cross section for charge transfer which varies with ener-

gy as E . This dramatic fall in o ~ with increasing en-

I

ergy is due to the interference between the waves

exp(ik R„) and exp(ik~. R+). By using the correct ar-
rangement coordinates throughout, the R-matrix theory
incorporates this essential feature of the physical process.

From Figs. 1 and 2, we see that R~ ——R+yqrq and

R~ =y~ r~ —R. Substituting these expressions into (4.15)

it is seen that if one uses the separation R as a coordinate,
the electronic wave functions g&, ,P» acquire the "trav-

eling factors" exp(iyz k r~ ), exp(iyz k~. r~ ) which
feature so prominently in other formulations of charge-
transfer theory. ' There are therefore considerable ad-

vantages in using arrangement coordinates and thereby
avoiding the many difficulties associated with these fac-
tors. However, in order to carry through this program
one has to evaluate integrals of the kind appearing in
(4.15) for quite general atomic and nuclear wave func-
tions. This is the task to which we now turn.

V. CALCULATION OF MULTIARRANGEMENT
INTEGRAL S

%'e begin with the overlap integral between basis func-
tions (3.8) belonging to two different arrangements. This
example will serve to illustrate the general techniques for
evaluating such integrals. Let

(g~A(nA lA L'A pA rA RA)
~ gB (+B lB IB qa &B +B)) (5.1)
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the brackets implying integration over coordinates

(r~, Rq) or (rB,RB} within the R-matrix boundary. In
order to evaluate this integral it is necessary to transform
all functions to a common set of coordinates, (rB RB } say.

The electronic radial factor of gq is R~„ i (rz) and

this is represented as a linear combination of Slater-type
functions

Rz ——(1 ab—)rB —aRB

=PB—SB

The factor (1 ab—) is given by

(5.4)

where k =(m+ —,')m. /dz. Now from Figs. 1 and 2, we
find

with known coefficients. From Fig. 2 we have that

rg ——RB+b rB,

n —1
—&rA

rz e
brBRB r=0

where b= 1 —m/(MB+m), and corresponding to this
construction we may write

1/2

g (2r+1)g„,(g;brB, RB)

(1 ab)—=1—(1—yz )(1—yB)

=(y. +yB}
and corresponding to construction (5.4) we write

sin(k Rz) ~.+in« PB}(2s+ 1)
R~ 2, o ~pB

~ +1/2(kmSB )
P, (cos8B ) .

SB

(5.5)

(5.6)

XPi(cos8B) . (5.2)

This is the Barnett-Coulson zeta-function expansion
which is well-known in quantum chemistry for the calcu-
lation of multicenter integrals. The computations of the
g„„(q,brB', RB) functions is straightforward and is incor-
porated in several multicenter integral packages. " The
only modification here is the occurrence of the scaled dis-
tance brB.

As described in Sec. III, the nuclear radial functions are
expanded in terms of primitive sine functions:

(nlLA ) (nlLA )f~„"(R~)= g C~„" sin(k Rz), (5.3)
m =mo

Now for a proton with kinetic energy of 1 keV,
k =7)&10' cm ' and even k y~-4X10 cm '. We
may therefore derive a useful high-energy approximation
to (5.6) by replacing the Bessel functions by their asymp-
totic forms. In any case they appear in integrands with
other factors which become zero as rB or RB become
zero, so that the contribution of (5.6) in regions where pB
or SB are small is not significant. Substituting

1/2

cos[k~pB ——,
' (s+ —,

'
)——,

' ~]
mk pB

for the J,+«2(k~pB), and similarly for the second Bessel
function in (5.6), we derive

sin(k Rz )

Rg
1

2k~ pBSB
cos(k~ pB k~SB ) g (2s—+ 1)P,(cos8B )—cos(k~pB+ k~SB ) Q (2s+ 1)(—1)'Pg (cos8B )

However,

—,
' g (2s+ 1 )P, (cos8B ) =5(8B),

and

—,
' g (2s+1)(—1)'P, (cos8B)=5(m.—8B)

The complete transformation of the nuclear radial basis
functions now takes the form

(nlLA )

fj,„"(R~)

1 (nlLApA )[Q- ""
(pB SB}5(8B)

PB B

so that we have as the final formula (nlLApA )—Q+
" "

(pB,SB)5(m 8B)], — (5.8)
sin(k Rz) 1

I cos[k~ (pB —SB)]5(8B)
mPB B

—cos[k (pB+SB)]5(m —8B)I .

(5.7)

where

lLA pA ( nlL'A

Q
""(p,S )= g C " cos[k (p +S )].

m=mo m

(5.9)

It should be noted that this expression correctly preserves
the oscillating structure in both k pB and k SB as is re-
quired by the simple relation

exp(k .R~)=exp(k .pB)exp( —k .SB) .

[It is perhaps worthwhile mentioning a loio-energy ap-
proximation to the transformation (5.6). If k is very
small, the Bessel function J,+&&2(k~pB) can be replaced
by its asymptotic value. as pB~O. Neglecting second and
higher powers of (yz +yB ), we obtain
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sin(k~R~ ) sin(k~SB ) sin(k pa)
+PBCOSOB

8 Sg

of, and the greater of, ra and Ra. The coefficients
F(L,L') are given by

' 1/2

cos(k Sa}
m S

F(L,L+1)= L L+1
2L +1

1/2
(5.13)

l

rg Y) (a)„)=v 4nra g .G(l, A, )
A, =O

X9'i (A, , l A,;Ra,c—oa),
(5.10)

where
1/2

21+ 1

G(l, A) =(2K+1)-'~' (5.11)

which is just a Taylor expansion in the "small" parameter
pa.]

The transformation of the angular functions is carried
out by adapting a procedure due to Schulten and Gor-
don (SG) for heavy particle rearrangement collisions.
Since the electronic angular momentum is never large, it
is convenient to transform the solid spherical harmonic
rq Yi~(co~ ). Adapting formula (85b) of SG we obtain

—Rg

F(L,L —1)= L+1 L
3 2 +

Expression (5.12) is correct to first order in

mlle&.

Neglected terms are of order (mls, z) =10 at the larg-
est. For most purposes-the first line of (5.12} is sufficient,
the error involved in ignoring the second term is —10
In this case the transformation is trivial. It should be re-
called that in any event such approximations do not affect
the unitarity or symmetry of the final S matrix as long as
the Hamiltonian matrix —and hence the R matrix—
remains symmetric.

Expression (5.12) is obtained from the very much more
complicated expression of SG by replacing the hyper-
geometric function there by unity and neglecting higher
powers of (m/p„) than the first.

Equations (S.10) and (S.12) can be combined to give a
single formula. After carrying out the necessary recou-
pling of angular momenta we arrive at the final equation:

and a is given by (3.6).
The transformation of the nuclear angular momentum

is accomplished as follows [cf. SG, Eq. (72a)]:

YLM, (&g }=( 1)~YL—M, (&a)

' v4~( —1)
PA

F(L,L')O'L~ (L', I;Qa, boa) .

l
= X g «ara )Ci'i;I.L, 3/JM(L'1 7;f}a,re)—

A, =O L'

r&+ g DIJON';LL" %JM(L ",I'
& QB &NB ) (5.14)

Pg R ) A, ',L"
in which

G(l, A, )

L'=L+1

(5.12)
1—A, A, 1

X[(21+1)(2L'+1)]'~ ' (5.15)

In this expression r & and R) are, respectively, the lesser
1

and

1' L' L"
l

Dii.ii- ——( —1) + 04m Q g G(l, l')F(L,L')[(2L" +1)( A2,
' +1)( 12+1)(2L+1)] 1 —1' 1 A,

'

l'=0 L'=L+1 I

(5.16)

The large curly brackets appearing in these expressions
are the 6-j and 9-j symbols. In view of its small size and
greatly increased complexity, it is almost certainly ~orth
neglecting the second line of Eq. (5.14). However, it
should be emphasized that the methods used here are cap-
able of arbitrary precision if higher accuracy is indeed re-
quired.

%e now employ these techniques in the evaluation of
the overlap integral (5.1). We assuine that the electronic
radial functions are represented by a single Slater function

each. Transferring all functions in (r&,R&) coordinates

to (ra, RB) coordinates, we have from (5.2), (5.8), and
(5.14)

where

I(+)

I(—) I(+)

NnA NnBA B

agua b lA, lA —lB,.LA L

(5.17)

X g (2r+1)[co,(+)]
r=0

X0„(ng, lg, L„,P—g, na, la, La, qa ) .(+) (5.18)

In this last expression X„,X„are the normalization in-
A B

tegrals for the Slater orbitals,
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gAB (3 A+YB) ~

co,(+)=(—1)", ~„(—)=1,
(5.19)

(5.20)

and

(+ ) . B l~ —l~ —1/2 (.n~ l~L~ ) (+ )
d

A pA'nB B B eB)= f dR [RB f„(RB)V, (nA, iA, LA,pA', B,4;gA, qB,RB)] (5.21)

n&+l&+1/2 (n& l&L&p& )
V„—(nA, lA, LA,pA, nB, lB,gA, gB,RB)= drB[e rB g„ 1 „(qA,brB,RB)Q+ (pB,SB)] . (5.22)

The second term of (5.14) has been neglected in the in-
tegral (5.17). The I' ' and I'+' contributions arise from
the two terms of Eq. (5.8). The delta functions in (5.8)
have the following effect upon the angular integrals. The
relevant integral of I' ' is of the form

Jm L ~~A—

)& 9'~M(LB, lB,QB,coB )P„(cos8B)5(8B )] .

The angle 8B is the angle between the vectors rB and RB,
and the effect of 5(8B) is to ensure that they both lie in

the same direction, i.e., that both rB and RB .possess the
same angular coordinates in space-fixed axes. Conse-
quently the distinction between QB and coB disappears,
and the integral is simply

f dQ[9'gM(L', lA A;, Q, Q)9—'gM(LB, lB', Q, Q)]

=5L 'L~ 5lA —1„lB

In the case of I'+', the delta function is now 5(m —8B).
This introduces a factor ( —1)" into the angular integra-
tion and leads to the introduction of the factor co„(+), Eq.
(5.20).

The kinetic energy terms in the Hamiltonian give rise
simply to a linear combination of overlap integrals of the
kind discussed here. This is because in (rB,RB) coordi-
nates, the V„operator affects only the electronic terms

and VB only the nuclear factors: There are no cross
B

terms. Such cross terms will arise from the nuclear kinet-
ic energy term if the orbitals are of deformed atomic or
spin-coupled form. For in such a case, the electronic basis
functions will possess two-center character, i.e., must be
considered functions of rB and RB. This situation is dis-
cussed in more detail iri Sec. VII.

The potential-energy integrals are evaluated by expand-
ing the relevant operators as follows [cf. Eq. (3.5)]: &n

(rB,RB) coordinates (Fig. 2),

In this last equation

=RB+ rB (5.25)

and OAB is the angle between rB and rA, Fig. 5. It is
clear that at the very most only the first two terms, t =0
and 1, will be needed from expansions (5.23) and (5.24),
and in most cases the i =0 contribution will be sufficient.

Considering just the t=0 and 1 terms, we may write
for V in the ( rB,RB ) system

2
V=

4~op

ZB ZA ZB+
rB RB

ZA ZB
rBcos8B

RB

+ZA
rBcos8Bcos8A

2r

rB S1118BS1118A '

2 (5.26)

The first line of this equation gives rise to integrals known
in quantum chemistry, and presents no new problems.
indeed this part of V is independent of arrangement and

may be evaluated in either (rA, RA) or (rB,RB) coordi-
nates. The operators occurring in the remainder are of
"nonstandard" form (i.e., do not normally occur in calcu-
lations of electronic structure and properties), but whose
integrals are quite straightforward to evaluate using the
techniques described in this section.

ZA ZB

R
ZA ZB

(RB—YBrB
~

t
ZAZB ~B

YB R
Pt(COS8B ),

B g=O B
(5.23)

~
RB+brB

~

t
OO rB

rB P~(cos8A'B) .
rA' , O

r
(5.24) FIG. 5. Coordinate system for evaluation of nuclear attrac-

tion integrals.
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The methods described in this section are extensions of
procedures originally used for the evaluation of multi-
center integrals and incorporated in program packages
that have long become "standard. " The new features here
occur particularly in the V„'-'(Rz) integrals, Eq. (5.22).
The integrand involves the Q+ functions which oscillate
exceedingly rapidly. Since the rest of the integrand is

smooth, this means that the V„'—+'(R~) functions will be

very small; in order to obtain accurate values of these in-

tegrals as a function of R~ it is necessary to employ quad-
rature techniques —such as that due to Filon —which ex-

plicitly take into account the oscillating nature of the in-

tegrand. These and similar technical matters will be treat-
ed in more detail in succeeding publications with numeri-

cal applications.
The presence of the Q+ functions in the integrand of

an integration over electronic coordinates arises from the
transformation of a nuclear wave function in another ar-
rangement. The highly oscillating nature of these func-
tions means that the off-diagonal matrix elements of the
Hamiltonian are small and decrease rapidly with energy;
in other words the cross section for charge transfer will

fall steeply as the energy increases, which is precisely
what is observed.

From this we conclude that the approximation in the
transformation of electronic radial factors and all angular
factors obtained by neglecting terms of order (m/pz ) are
perfectly acceptable; errors no greater than —10 are
thereby introduced. But the transformation of the nuclear
radial functions is critical, and no approximations of this
kind are allowable. It is essential to maintain the oscilla-
tory nature of these functions in the new coordinates. The
"high-energy" approximation (5.7) is therefore central to
this development.

mMA mMB
mA —— mB =

m+mA m+MB
(6.3}

these being the reduced masses of an electron with respect
to atom A or atom 8, and

MAMB
I AB =I X~X~ (6.4}

A+ B

where M„ is the total mass of atom A:

MA ——MA+%A m,T (6.5)

and similarly for B. Equation (6.4) defines the reduced
mass of atoms A and B. The value of pzii depends upon
the arrangement and is more properly specified as JM~ z .
Similar remarks apply to Rzz, which is short for Rz ~ .

Mass-polarization contributions, of the form

of atom B, and passes through the center of mass of the
entire system. The situation is illustrated in Fig. 6 for the
case of a collision between, say, Li( S)+Li( S) which
might result in Li+('S)+Li ('S).

The Hamiltonian for arrangement a:(N—~,Nji) in this
coordinate system, with motion of the center of mass of
the whole system separated out, is given by

H= — Q Vqg — g V — Vg +V.
2m' p )

" 2mB ~ )
~ 2PgB

(6.2)

The indices p, A,, . . . will be used for coordinates joining
electron positions to nucleus A, and v, cr, . . . for coordi-
nates connecting electrons and nucleus B. The reduced
masses in (6.2) are given by

VI. EXTENSION TO MANY-ELECTRON SYSTEMS

The purpose of this section is to show fairly briefly how
the techniques of Secs. III and V extend to many-electron
systems. We consider the charge-transfer process

(6.1)

e6

where the participating atoms and ions now involve
several electrons. We begin by defining an arrangeinent as
the assignment of Nz electrons to atom A, and N~ to
atom B, where Nz+Nz N, the total nu——mber of elec-
trons in the system. The two sides of Eq. (6.1) differ in
such assignments, the left-hand side corresponding to
(N~, Nii) say, while the right-hand side corresponds to
(Nz 1,N&+ 1). We d—enote such differing arrangements
by a =(N&,N~), P:(N~, Nz ), y:(N~, N~ ),—etc., w—here

N~, and Nq stand for Nz+1 or Nz —1 in an obvious
notation. For simplicity of presentation we only consider
one-electron transfers, i.e., just two arrangements, a and

Center of ma

e, e,
1

A2

(b)

"84

e, e,

of mass

Corresponding to each arrangement there is a definite
coordinate system and a particular form of the Hamiltoni-
an. In every case, we define N~ electron-nuclear coordi-
nates r&z (@=1,. . . , N&) and similarly Nz coordinates

radii (v=Nb+1, . . . , N~+N~). The coordinate R& ~
joins the center of mass of atom A to the center of mass

FICs. 6. (a) Coordinate system for a six-electron system in ar-
rangement a—:(3,3). (1) Arrangement P:—(2,4).
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pA gA an ~ vB oB
2M„ &

" 2M
@+A.

ZA

have been neglected in (6.2) since these play no role in the
physical processes of interest here. Otherwise Hamiltoni-
an (6.2) is complete. The potential energy is given by

~2 AN ZBv=
4%6P 1 TpA

and

NA

5A=~N YN g rAA,
A, =1

ra,
o =NA+1

yN„m——jMg, yN m ——IMB .T T

(6.8)

(6.9)
2

+ '
4meP „N +1

ZA ZB

~vA ~vB

2

+
4m'

1 ZAZa
+

J ] re R
(6.6)

and

rpa=
I ~,~ —R~a —&~+ &a I,

r.~=
I
r B+R~a+&~ &a

I
*—

(6.7a)

(6.7b)

R =
I R~a+ &~ —&B I,

where

(6.7c)

In arrangement (N„,NB} the distances r„a, r„~, and R
are given, respectively, by

The vector 5N joins the nucleus of atom A to the center

of mass of the atom in arrangement (Nq, NB), and simi-
larly for 5N .

In order to construct suitable basis functions for charge
transfer, we begin with electronic wave functions for
atoms A and 8 in arrangement (N&, NB ):

C A(a„,L&,Sw, Mr.„Ms„) C B(aa,LB,SB,Mr, ,Ms )

in which a~,aa denote the electronic configurations of
the two atoms, and the other quantum numbers LA, SA,
etc., have their usual meanings as the net electronic orbital
and spin angular momenta. From 4„,4B we form an-
tisymmetrized products in which the spins SA,SB are cou-
pled to form a resultant S~a and the orbital angular mo-
menta to a resultant L,AB.

C'wa [aw, aa(Sw, SB)SAB,M$„,'(L&,La )LAB,ML „]
~[4w (ax,Lg, Sg, MI ~,MS„)@a(aa, LB~SB&ML& ~MS~ ) ]

Ms, Ms ML, M
A B A 8

)& (Sg,SB,MS„,MS
I Spa, MS„)(Lg,LB,ML I Lga, Mr.„), (6.10)

in which W is the usual antisymmetrizing operator. The "channel angular momentum" I.AB is in turn coupled to the
nuclear orbital angular momentum /za to form an overall resultant Nz..

N~g 4&a(. . . ,L~B,MI„)Y~ sr, (L&B,I„B,Mr„,m,„,I Ni M~)=W.„,(r~ rB ~A re IIAB) .
M m

AB AS

(6.1 1)

N~
The P,„are the channel functions of arrangement

(N~, NB), the index cuba standing for
g,„.~„(rg, ra, Rqa )

cga =
I a~, aa(Sg, SB)Spa', [(Lg,LB }Lga', l~a]] . (6.12)

f,„,J„,(R„B)4, (r„,ra;~~ .~a'@~a) (613)

All angular functions are in space-fixed coordinates,
coA, ~B collectively denoting the angles coA1, . . . , ~AN

A

and coaN„+~, . . . , coaN of the electrons. Similarly, rz, ra
stand for the collective electronic radial coordinates of the
two atoms, and GAB denotes the angular coordinates of
the vector RAB. The net spin angular momentum SAB
and Nz are not coupled since the Hamiltonian (6.2) does
not contain any terms corresponding to spin-orbit interac-
tion. The final basis functions are then formed as

where R~~'f, .a„(R~B) is the nuclear radial basis func-

tion.
Similar considerations go through for arrangement

(N„+,N ), only that A and 8 are everywhere replaced

by A+ and B,respectively.
The R-matrix eigenfunctions are represented as linear

combinations of basis functions drawn from both arrange-
rnents:
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N~
~A y y +(cAB PAB ~SCAB,BAB( r A r B RAB )

CAB PAB

=RA+B +5N 5N-
A+ B

Hence

for (NA+, NB ) .

AB+ N~ NB N ++ N (6.15)

We assume that the charge transfer occurs by the
transference of electron NA from nucleus A to nuclear 8,
and this corresponds to the difference in the configura-
tions (aAaB) and (a„+a ). In other words the coordi-

N~ N~
nates of the channel functions P, and P, differ in'~+B—
just one electron only. Corresponding to this we have
from (6.15)

5N ——yN g rB,
B v=N~

rBN„+yN
v=N~ +1

=yN rBN +5N +O(m/MB)

In addition,

rBN ——rAN —RAB+O(m/MA ) .

Substituting these relations into (6.15) we find

R„+B =RAB(1 YN )-+(5N„5—N, )+yN—
RAB(1 YN )+(3 N + YN ) AN

+ & & ('A+B- &A+B-
a+B— a+B—

N~ +

Xg, q (r„+,rB,R„B ) ~

A+B A+B

(6.14)

In order to determine the C(. . . ;A, ) coefficients occurring
here, it is necessary to form the Hamiltonian matrix over
the basis functions and to diagonalize it. Matrix elements
between basis functions stemming from the same arrange-
ment are straightforward to evaluate. The essential
task—as in the one-electron case—is to evaluate matrix
elements between different arrangements. The Hamiltoni-
an matrix will however remain diagonal in SAB. In the
remaining part of this section we indicate how the tech-
niques of Sec. V are extended to the many-electron case.

Referring to Fig. 6 we see that for each arrangement we

may write

R=RAB+5N„—5N for (NA, NB)

—cos[k (PAB+SAB)15(~ ON„—) I,

where

(6.17)

S» ——(1—YN )RAB,
B

PAB (YN +1 N )rAN

(6.18)

and ON is the angle between RAB and rAN .
Expression (6.17) is central to this development: It

shows that on transforming nuclear radial basis functions
from arrangement (A+,8 ) to (A,B), a part of the high-
ly oscillating nature of this function is also transfered to
the coordinate of the electron which is shifted. From this
conclusions reached earlier also now apply: The higher
the energy, the more violent the oscillations and the more
effectively all off-diagonal matrix elements are averaged
to zero—and hence the smaller the cross section for
charge transfer.

The angular transformations go through as in Sec. V.
One may use the individual formulas (5.10) and (5.12) and
recouple the result. In any case it is not useful at this
stage to derive a general formula, since the amount of
recoupling is prodigous. It is more transparent to consid-
er individual cases on their merits. However, the funda-
mental point should be emphasized that this transforma-
tion involves functions which are "smooth, " and that the
neglect of terms of order m/MA or m/MB causes little
error. This is not so in (6.17) where it is essential to main-
tain a distinction between center-of-mass —to—center-of-
mass coordinates in the different arrangements.

Similar remarks apply to the transference of the elec-
tronic radial factors which are of course smoothly varying
functions. Corresponding to transforination (6.16) we also
have

'rBN~ ——r AN~
—RAB —5N~+ 6N

N~ —1

= (1 YN„)rAN„RAB Y——N„Q—rA„
@=1

N

+YNB g rBv
v=Nb +1

electron case. From triangle construction (6.16) we im-

mediately derive the transformation for the nuclear radial
basis functions [cf. Eq. (5.7)]:

sin(k RA+B )

A+8

1
[ cos[k (pAB —SAB)]5(+N„)

k PAB~AB

+O((m/MA), (m/MB) ) . (6.16) =(1 NAYN„) r AN„—R»+N, yN, r—BN„,

This equation, which relates the center-of-mass —to-
center-of-mass vectors in two different arrangements
should be compared with Eqs. (5.4) and (5.5) in the one-

(1 NByN )rBN ——(1 —NAyN„)rAN„—RAB—. (6.19)

This equation should be compared to the triangle relation-
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and (6.20}

sA (1 NAYN } AN

The single orbital involved in the charge-transfer process
may then be transformed by Eq. (5.2).

The off-diagonal elements of the Hamiltonian matrix
may now be evaluated by the techniques described here
and in Sec. V. The details of these one- and two-electron
multiarrangement integrals will be described in subse-

quent publications together with numerical applications.

UII. FINAL REMARKS

The electronic part of the basis functions described in
this paper consists of products of undeformed atomic
states —antisymmetrized when appropriate. This valence
bond basis is suitable for high-energy collisions (& 1 keV)
when the interacting systems have no time to distort. In
order to extend the range of the theory to lower energies it
is necessary either to use a much larger basis set of atomic
target functions or to allow for some deformation of the
atomic states.

As described in Sec. I this can be done by .using spin-
coupled orbitals. In the simplest case of a H(ls) state
interacting with some other ion, the 1s orbital is replaced
by the linear combination

0~ -4i.„+~Pi; . (7.1)

The coefficient A, is determined by a spin-coupled calcula-
tion of the molecular electronic state involved: the same
calculation providing the potential 8'(R„) from which
the nuclear distorted-wave basis functions are determined.
The parameter A, is a function of the relevant center-of-
mass —to—center-of-mass separation Rq, and becomes
zero as Rz becomes large.

In the R-matrix calculation of charge transfer, the use
of a deformei atomic state (7.1) amounts to the addition
to the set (3.9) of channel functions of the type

RB i (~B )+JM [(L~, l )J;0Z, coB ] . (7.2)

It should be noted that this is now a function of Rz and
will be affected '

by the nuclear kinetic energy term
( —fP j2pz)V'B in the Hamiltonian giving rise to radial

and angular coupling matrix elements similar to those en-
countered in studies of the crossing of potential energy
curves

ship immediately preceding Eq. (5.2)—and to which (6.19)
correctly reduces in the case of a single electron. The two
arrangements are then characterized by (0,1) and (1,0)~

From (6.19) there immediately follows a zeta-function ex-
pansion similar to (5.2) involving the scaled distances

sB ——(1 NB—y~ )rBN„
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APPENDIX: DETERMINATION OF APPROXIMATE
R-MATRIX GREEN'S FUNCTION

In order to obtain an approximate expression for the
Green's function

X,'"(R)X,'"(R ')
GB(RR)

[cf. Eq. (4.12)], we consider solutions of the "field-free"
equation

1 d R d~ + k2 l(l+1) g(R)=0
R2 dR 'dR Rz (A2)

which satisfy the R-matrix boundary conditions

X(R) & oo as R ~0

d

In general the two linearly independent solutions of (A2)
are ji(kR ), which is a spherical Bessel function of the first
kind, and ni(kR ), a spherical Bessel function of the
second kind. The function ji(kR } satisfies the boundary
conditions at R =0, but for R =d the combination

p, (kR)= n( iRk)j/ (kd) nI (kd)j, (k—R) (A4)

satisfies the boundary condition at R =d. In this, the
prime denotes differentiation with respect to R. From
ji(kR) and p~(kR) we construct the Green's function in
the form

GB (R,R')=.
g (kR )p, (kR')

R &R'
kj~' (kd )

pi(kR )ji(kR ')
R ~R' .

kj/ (kd )

In particular we find that

G "~(R,d )=
—ji(kR

k2d2ji' (kd )
(A6}

Substituting this expression into Eq. (4.14) and replacing
the upper limit of the integration over Rz by Do, we ob-
tain

(l lp)
R~p = 4[(2l~+ l)(2lp+1)k~kpd„dBj/ (k d„)j/ (kpdB)]

+ (~»gJ& (k&R&)+& (cosl)& }
I
If

I 0»g«kpRB)~l
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D =R~~R ppL~L p ———R~~R ppk~kp .

The (lalp) contribution to this is given by

(lal @) (l+ ) (,lp)
D p = G—E (dg, dg)GEp (dp, Dp)

(A8)

(A9)

In order to evaluate the (lalp) contribution to the S ma-

trix (4.4), it is necessary to evaluate D. This is given ap-

proximately by

Replacing jt ( . )jt ( ) by the average values of their

asymptotic expressions, I/2kakp, and suinming over all
l and lp we find

S p- i(k kp)'~2dgdtt

X $ (2l.+1)t (2lp+1)t. '&..l .l

~i(k kp)'~ dgdtt

and hence

16
2P [(21 +1)(21p+I)]'

jt (k dg)ji (kpdit)
X

kakpdgditjt ( kad„)jj (kpdit)
(A 10)

or

(A 1 1)

2 (2l.+1)(2t,+1) (.
D' tJ' irt 4jt (k dg)ji (kpdtt) k kp

for plane-wave functions normalized to a flux of p/fi as
before.
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