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Exact second-Born-approximation elastic scattering amplitudes are computed for a dipole excita-
tion pseudostate model of electron scattering by ground-state atomic hydrogen. Calculations at 15,
25, and 35 keV incident energy show a forward peak in the differential elastic cross section. The op-
tical theorem is exactly satisfied by these calculations, and the magnitude of the forward peak is
determined primarily by physical values of the atomic static polarizability and oscillator strength.
In the energy range considered, the computed peak is smaller by a large factor than the magnitude

required to interpret recently observed experimental data in terms of single elastic collisions of elec-

trons with ground-state atoms.

I. INTRODUCTION

A strong forward peak and rapid angular variation,
essentially a Fraunhofer diffraction pattern, have been ob-
served in extreme forward elastic scattering of 15—25-keV
electrons by rare-gas atoms. ' Geiger and Moron-Leon in-
terpret their data as a diffraction pattern due to shadow
scattering. The removal of forward electron flux, due to
inelastic scattering, which dominates elastic scattering by
a factor k ao in the forward direction, may affect the
elastic cross section analogously to the optical scattering
effect of a black disk, whose shadow is described by a
Fraunhofer diffraction pattern.

As shown by Joachain, a strongly absorptive potential
(complex square well) with a finite radius produces a
Fraunhofer diffraction pattern. The purpose of the
present work is to see if such a result can emerge from a
detailed study of electron scattering by an atom. To sim-
plify the theory, the hydrogen atom is considered here in a
pseudostate model, in which electric dipole excitation
from the ground state is described by transitions to a sin-
gle pseudostate. This pseudostate, constructed to give the
exact static dipole polarizability, is known explicitly for
hydrogen. Using this' pseudostate, the second Born
scattering amplitude has been computed exactly for the
coupled elastic and inelastic scattering channels, in the en-

ergy range 15—35 keV.
Details of the model and derivations of formulas used

for computation are given in Sec. II, and results of the
calculations are given in Sec. III. These results are dis-
cussed in relation to experiment and prior theory in Sec.
IV.

Because the present results apparently disagree both
with prior theory in the keV energy range and with exper-
iment, the authors consider it essential to publish enough
detail so that the calculations could easily be duplicated if

necessary and verified without any uncertainty. Prior
literature contains many second Born calculations of
e +H or e +rare-gas scattering, generally at much
lower collision energies than those considered here. This
field was reviewed in 1976 by Walters, and several
relevant papers have been published since. At relative-
ly low energy (30 eV) Ermolaev and Walters computed
the exact second Born elastic scattering amplitude for
e +H, summing over all intermediate-bound and contin-
uum states. In the range 50—500 eV, Byron and
Joachain ' summed second Born elastic amplitudes over
2s, 2p, and the pseudostate 3p expl'icitly, approximating
the residual sum by closure, with an average excitation en-
ergy parameter. The eikonal-Born series was used to con-
struct a third-order optical potential. An important quali-
tative point made by Byron and Joachain ' is that Refaz
dominates forward angular structure in elastic scattering
at high energies, through interference with fai. The latter
amplitude is slowly varying at small angles because it
represents the effect of a short-range potential. The
present work concentrates on obtained Ref82 with high
numerical accuracy for a well-defined model, at much
higher energies than considered earlier.

An important question is whether, for high-energy for-
ward elastic scattering, the second Born sum over inter-
mediate states is adequately modeled by a single pseudo-
state. This is best examined by partial-wave analysis, con-
sidered in a separate publication. Formal analysis leads to
an exact asymptotic expansion of the complex optical po-
tential for high-energy elastic scattering. Crucially, the
leading terms due to all intermediate dipole-coupled states
are of the same form. For a single pseudostate at excita-
tion energy hE~, the optical potential in every partial-
wave channel is

yoPt( )
t r —4 t r —5+0(r —6)
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Since a is a physical constant and total oscillator strength
is fixed by a sum rule, the effect of subdividing oscillator
strength among a series of intermediate states can be ap-
proximated by adjusting EEL to some empirical mean
value, as is done in typical second Born calculations.
Clearly, the use of a single pseudostate with correct a can-
not introduce a large qualitative error.

Earlier theoretical studies of the elastic optical potential
due to intermediate dipole excitation are relevant. In par-
ticular, Huo' showed that the ar static polarization
potential is corrected by a complex term varying asymp-
totically as r . Valone et al. " derive an absorption po-
tential proportional to r . Byron and Joachain express
third-order eikonal-Born theory in terms of a complex op-
tical potential. Kohl et al. ' derive a complex optical po-
tential that varies as r and r in an intermediate
range of r.

II. 8 MODEL: BORN SCATTERING AMPLITUDES

Neglecting electron exchange, the Schrodinger equation
for electron scattering by a one-electron atom is

E%(r, r—')=0, (1)

gp
——2e "Ypp(r ),

and the pseudostate wave function is

The model scattering wave function is

(2)

where H, is the Hamiltonian operator of the neutral
atom, and r is the coordinate of the scattered electron.
The simplest dynamical model of electric dipole polariza-
tion and excitation effects is obtained by representing the
wave function 4 in terms of two target states: ground
state alp(r) and a dipole pseudostate p~ (r), constructed
to give the exact static polarizability. For the hydrogen
atom

+1
%I(r, r ')=alp(r ')Fp(r)+ g p~ (r ')F (r) .

m= —1

(4)

Substitution of this function into the Schrodinger equa-
tion gives the close-coupling equations (without exchange)
for Fp and F~ . The potentials in these equations, in
Hartree atomic units, are

r

Vpp(r)= —e ' 1+—
r

L

V{m)(~) ) V(m)(~r)e

1/2

(5)

2'
129

vip(r) Y)m(r),

p = —(uz
~

r
( up) = —(",,' )' (10)

where uz(r) and up(r) are the radial factors of 1l)zm and
1l)p, resPectively.

The ground-state channel wave function is the formal
solution of a Lippmann-Schwinger equation, for an in-
cident plane wave in this channel,

where
r

v p(r)= —e " r+—r+2+ —"+—2r 2 2 10 2., 1

r2 9 9 r r2

and V~~ '(r), which is not used in the present work. In
atomic units the ground-state energy Eo is ——,

' and the
pseudostate energy Ez is ——,', , so that the pseudostate ex-
citation energy b,E~ is —,", a.u. By construction, the
present coupled equations give the full static electric di-
pole polarizability of the hydrogen ground state,

a= —', a.u. , (8)

corresponding to oscillator strength

f=
t84y =0 788 534

for excitation to the pseudostate. For comparison with
model calculations, the reduced transition moment is

Vpp(r ')Fp(r ')+ g VI)), '( r ')F~m( r ')

The corresponding integral equation for the pseudostate channel wave function is

F~ (r)=— 1 f d
ik

)
r —r'/

r'
2'

V(m)(~i)F (~i)+ y V{ )(mal)F ( I)
m'

(12)

Here, for total energy E,

k =2(E—Ep)=2E;,

kp 2(E Ep )=2(E; AEq——), — — (14)

where E; is the energy of the incident electron. From the asymptotic forms (r~00) of these equations the scattering
amplitudes in the coupled channels for outgoing momenta k ' and kz are

fp — f d r e '" '"
Vpp(——r)Fp(r)+ g Vpz'(r)F&m(r) (15)2'
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V(m ( )~ ( )+ y V
mm' (r)~ (r)

2m'

The Born series is generated by iteration of Eqs. (11)
and (12), starting with

y (P)
( ~r) e i 71 r

l

and the total inelastic cross section is

, g J ~f,""(K)~'KdK0op (29)

Fqm'(r) =0 .
(17)

O24 k+k I2'uc '
k2 k —k g3 (30)

The first Born elastic scattering amplitude is
r

iB11 1 1
p (Kp) =—

2 + 1

2 1+Kp/4 (1+Kp/4)

where Ko——k —k ', with magnitude

Kp ——2k sin( —,
' 9),

the elastic momentum transfer for scattering angle i9. The
differential elastic cross section is

der' "/dQ=
~ fp

The first Born inelastic scattering amphtude is
1/2

f~m"(K)= Y*,m(K) J r drj1(Kr)u~p(r),
i 129

In the limit of forward scattering, K=k kz. —Com-
paring Eq. (20) for Kp =0 and Eq. (28) for K=k —kz, at
keV energies, the forward inelastic cross section is many
orders of magnitude greater than the forward elastic cross
section. The factor is 2.4&&10 at 15 keV for the present
model. Because of this large ratio it is important to evalu-
ate the induced effect of the inelastic process on forward
elastic scattering, even though the direct second-order
term, of order Vpp, may be negligible.

The direct second Born scattering amplitude is

~(82) 1 ~3~ ~3~i i( k ~ r ' —k '. r +k
~

r —r '
I )

(2m)

X
~

r —r '
~

'
Vpp(r ) Vpp(r ') .

(31)
(21)

where K is the magnitude of the inelastic momentum
transfer

K=k —kp .

t=k —q,

this becomes

t '=k' —q,
By Fourier transformation with

(32)

Jd3~ e

[r —r'[
4m'

e l I'

. E (23)

into the defining equation

With u~p(r) given by Eq. (7), the integral in Eq. (21) can
be evaluated either directly or more easily by substituting
the Fourier transform

(B2)fp

fp(B2) 2 d q (g+t )(g+t' )

q k ie (4—+t —) (4+t'2)2 (34)

I [f,""(t ')]'fo""( t ) . (33)
2n- q k ie- —

Here fp "( t ) is given by Eq. (18), so Eq. (33) reduces to
the integral

f(B1) d3~ i K r J d3 icepm

gp(r') .1

r

This can be evaluated by the method of Feynman and
Dalitz. ' Details are given in the Appendix.

The indirect second Born scattering amplitude is of the
same form as Eq. (31), except that k multiplying

~

r —r '
~

in the exponent is replaced by k», and Vpp Vpp is
replaced by the indirect second-order term

This gives
(24)

y V(m)( ~) V(m1( ~ i
) (35)

1/2

f' "= I (K)Y" (K),m —.~2 129 ~ 1m (25) As before, by Fourier transformation, the scattering am-
plitude can be expressed in the form

I (K)= I r dr(r+ ,'r )e j",(Kr)—
= 12K( 12+K')/(4+K')4 .

From Eq. (21) the differential inelastic cross section is

d~i '&/d/ — y ~f' "~' — I (K)/K
k ~ 43 k~

(26)

(28)

f(Bl) q y[f (Bl)( t i)Pf (Bl)( t )
2~2 2 k2 lk' pm

q —
&
—«m

(36)

Using

I

g Y1 (t ') Y1 (t ) =
4m tt'
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and Eq. (25), this becomes

1(B2 32) 256
43m

From Eq. (27) and using

,
' (t'—+t —Kpt 2 2=
2

the explicit integral 1s

(B2) 18432f'"'=
43.

t t 'I~(t)I~(t')
t3t'3 (3&)

(39)

(a02/sr)dQ,

1.2

1.0

1.0

1.0

I I I II I I I

1
X q

g

(t +t' —
p

'—E')(12+t')(12+ t')
2t 2(4+t2)4(4+t 2)4

(40)

0.8—

0.6
0

I

2

I I I

4 6
I9 (mrad)

I I I

10

b the method of the Appendix.whicn canh nbe evaluated by t em
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8
(mrad)

0
2
4
6
8

10
12
14
16
18
20

f(B()

1.00000
0.998 34
0.99342
0.985 31
0.974 15
0.960 12
0.943 47
0.92443
0.903 31
0.880 39
0.855 98

R f(B2(

0.000 37
0.000 37
0.000 37
0.000 37
0.000 37
0.000 36
0.000 36
0.000 36
0.000 36
0.000 35
0.000 35

Imf 0("'

0.017 56
0.017 56
0.017 54
0.017 51
0.01747
0.01742
0.017 35
0.01728
0.01720
0.017 10
0.01700

f(B2)

0.088 42
0.005 08
0.000 85
0.00001

—0.00028
—0.000 39
—0.00043
—0.00044
—0.00043
—0.00041
—0.000 38

(82)Imfp

0.216 66
0.126 89
0.085 61
0.062 64
0.047 16
0.035 82
0.027 16
0.020 39
0.01504
0.01090
0.007 42

do /dQ
(a 0/sr)

1.240 31
1,028 48
0.99995
0.97800
0.953 32
0.924 62
0.891 97
0.855 84
0.81686
0.775 76
0.733 23
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and

Imf,'"'(0)=
4m.

(42)

k (ap ')

&ABLE II. Comparison off' '(0) with exact values. '

[f(821(Q)+f(82)(Q)] f( ) (p)
Re Im Re Im

(43)

which can be used to check the numerical accuracy of the
present calculations. In particular, o.oo

' can be evaluated
from Eqs. (18) and (20) to give

I f(B2)(0)= k (Bl)= 12k+18k'+7k'
(44)

12(1+k')'

in agreement with the value listed in Table I. Equation
(30) for cruz" has been evaluated and agrees with the com-
puted values of Imf~ '(0).

IV. DISCUSSION AND CONCLUSIONS

The essential conclusion from the present work is that
it is not possible to interpret the experimental data of
Geiger and Moron-Leon as the result of single elastic col-
lisions between electrons and ground-state atoms. Experi-
mental data' for elastic scattering of 25-keV electrons by
He show an incremental forward peak 10 times as large as
the first Born forward cross section. This is at least an
order of magnitude larger than the present result for
atomic hydrogen. The experimental peak height increases
with incident energy, in contrast to the decrease shown in
Fig. 1.

Although the forward scattering peak found in the
present work agrees in qualitative features (angular range,
linear dependence on momentum transfer) with the pub-
lished experimental data, the magnitude i.s much too small
compared with the first Born cross section. While the
atomic radius, polarizability, and oscillator strength of
heavier atoms are larger than for hydrogen or helium, no
reasonable increase of these parameters in the range ap-
propriate to ground-state atoms can account for the
discrepancy.

The internal consistency of the present calculations is
evident. The optical theorem is exactly satisfied as a rela-
tionship between the erst Born total cross section and the
imaginary part of ' ' in the forward direction. The in-
cremental terms fo ' and fz

' are small compared with
f' "at all angles considered here, although not negligible
in the extreme forward direction. Magnitudes of the real
and imaginary parts of f ' ' are related since they are de-
rived from the same formalism. Both depend on the mag-
nitude of the effective transition moment p, which is
determined by atomic polarizability. The only reasonable
way to increase the relative magnitude of the forward
elastic peak substantially is to increase p by a large factor.
This would occur for an excited atom, in a Rydberg state,

4.0
5.0
7.0

'Holt, Ref. 16.

0.716
0.577
0.415

0.942
0.840
0.691

0.878
0.698
0.481

1.264
1.111
0.896
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for which the effective radius varies as the square of the
principal quantum number, but not for an atomic ground
state.

The present results disagree by several orders of magni-
tude with the partial wave calculations of Mohr, ' who
computes a forward elastic scattering peak more than
three orders of magnitude larger than first Born for atom-
ic hydrogen at 34-keV incident electron energy. The an-
gular range of this peak, despite the large discrepancy in
magnitude, is very similar to that shown in Fig. 1, at 3S
keV. While the present results indicate that a peak of
such large magnitude is incompatible with the oscillator
strength and polarizability of atomic hydrogen, the reason
for this discrepancy has not been identified.

The present second Born calculations for a single pseu-
dostate can be compared with exact calculations of
f' '(0) for atomic hydrogen by Holt, ' who extended ear-
lier simplified second Born calculations' by explicitly
summing the forward amplitude over discrete states and
integrating over the continuum. Results are compared in
Table II, for the largest k values considered by Holt. Re-
sults are of similar magnitude and become closer as k in-
creases. This indicates that the present restriction to a
single pseudostate does not introduce a large qualitative
error.

Partial wave calculations based on a pseudostate model
have been undertaken as part of the present project. In
general, they confirm the results of the present work,
while ensuring unitarity of the scattering matrix at all en-

ergies. Details will be published separately.

APPENDIX: EVALUATION OF THE SECOND BORN INTEGRALS

The integral expressions for f' ' are evaluated by reduction to Dalitz integrals, ' as described by Joachain. The in-
tegrand in Eq. (34) or (40) is first decomposed into partial fractions, giving a linear combination of integrals of the form
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TABLE III. Dalitz integrals Qq ——g CD'A, ~f.

—3

4

—3

—3

—3

3

—3

0

—3

0

—3

0

0

—3

0

0

—3

—3

—3

0

0

0

lp

N(N —2p )

N —2p

iNp

N(N —2p')

3N —2p

N —2p

iN p

lp

N'(N —2p')

N2(N —2p')

N{N —p )

N(N —2p )

3N —2p

N —2p

iN p

iNp

N(N —2p }

N'(N —2p')

N (SN —6p )

N(N —2p )

5N —2p

N(N —2p')

3N —2p 2

iN p

iN p

Lp

1

4
1

2

4
3

1

8

8
3

1

3

1

6

2
3

1

2

1

4
5

64
3

32

16
5

4
5

3
10

4
5

1

5

1

8

1

10
7

128

1

16
32
5

24
5

2
5

3
16

1

8

—3

—3

—3

—3

—3

—3

—3

—3

—3

0

0

—3

—3

—7

—13

0

0

0

N{N —2p )

N(N —2p )

N3(3N —4p )

N'(N —2p')

N (5N —6p )

N(3N —2p 2)

N'(N —2p')

N(N —p')
5N —2p

N(N —2p )

3N —2p

N —2p

iN'p

iN p

iNp

N(N —2p )

N(N —2p )

N4(7N —10p )

N(N —2p )

N'{3N —4p )

1V (7N —6p )

N (N —2p2)

N (5N —6p )

N(3N —2p')

7N —2p 2

N2{N 2p 2)

5N —2p.2

N(N —2p')

3N —2p 2

N —2p

LN p

iN p
iN p

lp

1

3

5
24

1

2

1

12

1

6
35

384
5

96
1

16

21
512

35
768

32
3

32
3

16
7.

16
7

8
7

3
7

3
14

1

7

5
32

5
14

3
56

1

14

9
128

5
128

5
112
33

1024
9

256
128
7

160
7

48
7

2
7

16
3

4
3

8
3

1

2
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(A2)

I~ „(aPkk 'p)= f d q z 2 (A 1 }
(g —P —lE} [(q k) +a ] [(q k ') +P ]

In the present cases only terms with m &0 and n &0 have nonvanishing coefficients. The denominator in Eq. (Al) is
simplified by using the integral representation of Feynman. ' Then

I~„(a,P;k, k',p)= '
du u '(1 —u}" 'Q~+„(p, k,, tc),

(m —1)!(n—1)!

in terms of Dalitz integrals

Qt(p, A,, tc)= d q
(q —p —ie') [(q —Pc)'+ A,']'

where

tc=ku+k '(1 —u),

A, =a2u*P (1—u)+ICou(1 —u) .
(A4)

( ~ )
t

1
P+K+lA

K p —K+lA,
(A5)

For higher indices

(A6)

In particular,

Q2(p, l,, tc) = 1

A(~ +Ape 2p, l—i)— (A7)

For I&2 the Dalitz integrals are complex rational func-

Here Eo is the magnitude of the momentum transfer
k —k'.

By contour integration

D = (tc +A, p) +—4p A,

multiplied by polynomials in p and

(A8)

(A9)

To evaluate f' ' the required sum over Dalitz integrals
is carried out for given variable u, and the integral over u
froin Eq. (A2) is done numerically. Because inverse
square-root singularities occur at both end points, integra-
tion is facilitated by expressing the integral over u in the
form

1 1/2f du F(u)= f du[F(u)+F(1 —u)] (A10)

xx I' —,x + 1 ——,x . A11

Since xF[(—, )x J reinains finite at x=0, this is suitable

for numerical quadrature, especially with open-interval
formulas that avoid a limiting process at the end point.
For calculations reported here, subdivision into five subin-
tervals with 48-point Gauss quadrature in each give indi-
cated accuracy of eight decimal digits or better. For the
elastic scattering amplitudes considered here, F(u) and
F(1—u ) are equal.

I

tions of p, A, , and tc. Those used in the present work
(I=2, . . . , 8) are defined in Table III as sums of rational
monomials in powers of A, and of

~J. Geiger and D. Moron-Leon, Phys. Rev. Lett. 42, 1336
(1979).

2C. J. Joachain, Quantum Collision Theory (North-Holland,
Amsterdam, 1975), Vol. 1, pp. 197—199, and Appendix D.

R. Damburg and E. Karule, Proc. Phys. Soc. London 90, 637
(1967).

4H. R. J. Walters, Comments At. Mol. Phys. 5, 173 (1976).
5A. M. Ermolaev and H. R. J. Walters, J. Phys. 8 12, L779

(1979).
F. W. Byron, Jr. and C. J. Joachain, J. Phys. 8 10, 207 (1977).

7F. W. Byron, Jr. and C. J. Joachain, J. Phys. B 14, 2429 (1981).
SF. W. Byron, Jr. and C. J. Joachain, Phys. Rev. A 8, 1267

(1973).
R. K. Nesbet, Abstracts, Fifth West Coast Theoretical Chemis-

try Conference, SRI International, Menlo Park, California,
April 1983 (unpublished).

W. M. Huo, J, Chem. Phys. 56, 3468 (1972).
i iS. M. Valone, D. Thirumalai, and D. G. Truhlar, Int. J. Quan-

tum Chem. S 15, 341 (1981).
D. A. Kohl, A. C. Yates, and M. M. Arvedson, J. Phys. B 14,
3227 (1981);D. A. Kohl and M. M. Arvedson, ibid. 14, 3233
(1981).
R. H. Dalitz, Proc. R. Soc. London Ser. A 206, 590 (1951).

i4Q. Muller and J. Geiger, in Abstracts of the Thirteenth Inter-
national Conference on the Physics of Electronic and Atomic
Collisions, Berlin, 1983, edited by J. Eichler et al. (North-
Holland, Amsterdam, 1983), p. 81.

I~C. B.O. Mohr, J. Phys. B 2, 166 (1969).
6A. R. Holt, J. Phys. 8 5, L6 (1972).
A. R. Holt and B.L. Moiseiwitsch, J. Phys. B 1, 36 (1968).

~SR. P. Feynman, Phys. Rev. 76, 769 (1949).


