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Derivation of model Hamiltonians for interacting subsystems of nonidentical particles
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A method is given for deriving model Hamiltonians which describe the behavior of a subsystem in
interaction with a set of different particles. The formalism is illustrated by reducing the Jaynes-
Cummings Hamiltonian for an interacting fermion-boson system, to a fermion-only Hamiltonian.
The conditions are discussed under which such elimination of degrees of freedom is possible.

I. INTRODUCTION

Many different kinds of experiments in atomic, molecu-
lar, nuclear, and solid-state physics are customarily
described by giving values to adjustable parameters in
suitable Hermitian model Hamiltonians H~,d. The spin
Hamiltonians of Ising and Heisenberg, crystal fields, BCS
theory, nuclear and atomic shell models, and the Hamil-
tonians of Hubbard and Anderson are but a few outstand-
ing examples. These model Hamiltonians are extremely
useful because a complete description of the experimental
properties —albeit in a reduced energy range- —can be
given in terms'of relatively few parameters. Sometimes
H ~ is only an ansatz, but very often its analytical ex-

pression can be guessed from symmetry arguments, as
long as one assumes it to be invariant under the symmetry
group of the actual Hamiltonian H. ' If 0 is the domain
of I—Hilbert space for a single particle with only orbital
degrees of freedom. and Fock space in the general many-
body case—II~~ always operates within a manifold
Q ~C Q. In paramagnetic resonance experiments, for in-

stance, one takes the dimension of 0 ~ to be the number
of levels connected by the experimentally observed transi-
tions, ,

while for the Ising model one takes into account
only spin variables.

All in all, despite the fact that Q~~ is quite different
from 0, one cannot get rid of the feeling that a well-
formulated H ~ is a faithful though restricted represen-
tation of H and not just a convenient bookkeeping device.
One thus expects that the behavior of the quasielectrons
described by the atomic shell model is uniquely related to
that of the actual electrons. A rigorous mathematical jus-
tification of this belief requires proving the existence of a
basis in which the system may be described as a set of
noninteracting electrons. Whether or not such a basis ex-
ists is therefore a central problem for the discussion of the
relationship between H ~ and H.

If one is willing to disregard convergence problems, and
the ground state of the subsystem whose degrees of free-
dom one wishes to project out is nondegenerate, in some
cases it is fairly straightforward to derive H ~ from H
by using standard perturbation theory. For example, the
coupling constant J in the Heisenberg model can be thus
related to the exchange integrals between neighboring
atoms in an insulator.

One would like to have a method for bridging the gap
between model and actual Hamiltonians which does not
have the aforementioned shortcomings. Such a method
would provide both explicit expressions for the parameters
in H ~ in terins of the interactions in II and a systemat-
ic way of deriving novel model Hamiltonians. Summariz-
ing, the method's desired features are

(a) it should provide an explicit nonperturbative connec-
tion between H ~ and H;

(b) the model Hamiltonians thus obtained must be Her-
mitian and invariant under the symmetry group of H;

(c) one should be able to choose freely the manifold
0 ~ and to project out all unwanted degrees of freedom;
and

(d) the eigenvalues of H~~ should coincide with a
selix:ted set of eigenvalues of H.

When the remaining and the left-out degrees of free-
dom do not belong to identical particles, all the previous
requisites are fulfilled by suitably defined projections of
effective Hamiltonians IIeff. When that is not the case, as
when one defines valence-electrons-only model atomic
Hamiltonians, or in crystal-field theory, further steps are
required. In what follows we will concentrate upon the
former case, leaving the latter for a later publication.

Several reviews have been made on the subject of effec-
tive Hamiltonians, wherein abundant references may
be found. In two previous works it was discussed how
one may derive all effective Hamiltonians which satisfy
three very general conditions' and how the defining equa-
tions may be solved in a nonperturbative fashion. " It
should be stressed here that while some authors do not
distinguish between model and effective Hamiltonians, in
our terminology H ~ is empirically introduced, while
H,ff is derived from ab initio calculations. Moreover,
these two kinds of Hamiltonians should be distinguished
from the equivalent Hamiltonians used in certain calcula-
tions.

As the formalism used in the derivation of model Ham-
iltonians is rather abstract, we have chosen here to discuss
a specific example, the Jaynes-Cummings Hamiltoni-
'an, ' ' which is a simple example of the coupling be-
tween a fermion and a boson. As the exact solutions are
known, one may check the results obtained before project-
ing out the bosonic degrees of freedom in order to write a
dressed or renormalized fermion-only Hamiltonian. This
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Hamiltonian turns out to be an example of a class of sys-
tems where one expects to be able to solve exactly the non-
linear equation which determines H,ff.

The paper's organization is as follows. In Sec. II we
give a short survey of the effective Hamiitonian formal-
ism. Section III contains a discussion of the symmetry
properties of H,ff, where some new results are derived.
The Jaynes-Cummings Hamiltonian is briefly reviewed in
Sec. IV, while in Sec. V we give the actual calculations
leading to the fermion-only model Hamiltonian. Finally,
in Sec. VI we briefly discuss the results obtained, as well
as some possible generalizations.

where

V=H —H(),

ho(A) = g g PJ APk/(eq —ei,.),
j k (+j)

(2.8)

(2.9)

(2.10)
j

The simplest choice' ' ' is to take U =1 but this is not
obligatory. In the basis of eigenvectors of Ho, Eq. (2.7)
may be written"

II. EFFECTIVE HAMILTONIAN FORMALISM +kk Ik ~

(2.1 1)

An effective Hamiltonian associated with both H and a
reference Hamiltonian Ho is the operator H,ff that fulfills
the following conditions.

(a) H and K,ff have the same set of eigenvalues; that is,

H
I
~&=E l~&

R kj =(ek ej) y (R kj VjlR lj VklR lj )
I

where lk is the unit dkXdk matrix, and R kJ, Vkj are
rectangular dk Xdj matrices, dj being the degeneracy of
eJ. Due to its nonlinear character Eq. (2.11) does, in gen-
eral, have more than one solution. The adiabatic condi-
tion

then lim R gq
——1k5kj

V~O
(2.12)

H ff I
+ & ff=E. I

~ &.ff . (2.1)

H,ff ——S 'HS . (2.3)

The reference Hamiltonian Ho does not have to represent
any actual subsystem and is defined solely with respect to
the set of experiments one is aiming to describe by H ~,
the only requirement being that the dimension of Q,z
should be equal to the number of states experimentally in-
volved. As one usually chooses as a basis for 0 ~ the
best available approximations to the relevant eigenvectors
of K, the spectral decomposition

Ho =geJPJ.
j

is then fully determined. ' Here PJ are the usual projec-
tion operators.

If one further requests that H,rf be Hermitian,

H, ff ——H,ff, (2.5)

(2.4)

it then follows that

S=R(R R) 'i U=(St) (2.6)

where U is a unitary operator, diagonal with respect to
Ho but otherwise arbitrary, and R satisfies the nonlinear
Bloch equation' '

(b) The eigenvectors
~
a& and

~
a&,ff are related by a

nonsingular (and in general nonunitary) wave operator S,

ia&=S ia&,ff. (2.2)

(c) H,ff is diagonal' with respect to Ho, i.e., it has no
matrix elements connecting eigenvectors belonging to dif-
ferent eigenvalues of Ho.

From (2.1) and (2.2) it follows that

III. SYMMETRY PROPERTIES
OF EFFECTIVE HAMILTONIANS

Apart from the removal of a number of degrees of free-
dom, H and H ~ should have the same symmetries. I.et
G be the symmetry group of H and Go that of the refer-
ence Hamiltonian Ho. Practicality requires the degenera-
cy of Ho to be as large as possible, that is,

GCGO . (3.1)

With this choice symmetry is always lowered by the addi-
tion of V to Ho, which we take to be the rule. It is then
obvious that any symmetry operator Q belonging to G
satisfies

[Q Hl=[Q Ho]=[Q V]=0 . (3.2)

unambiguously identifies the proper solution.
In order to set up an effective Hamiltonian H,ff, the

following steps are to be followed. Define first an ap-
propriate reference Hamiltonian Ho in accordance with
the experimentally accessible energy levels and available
approximate wave vectors; solve Eq. (2.7) or (2.11) for R,
exactly if possible ' or approximately otherwise;" make a
choice of U in Eq. (2.6) if different from 1, thus obtaining
S; write K,fr Eq. (2.3); solve the eigenvalue Eq. (2.1), thus
obtaining the actual eigenvalues E; and obtain the actual
eigenvectors from Eq. (2.2). One should notice that be-
cause of condition (c) of this section both Eqs. (2.11) and
(2.1) may be solved within any chosen subspace with pro-
jector PJ, this being the foundation of standard perturba-
tion theory.

R =1+ho(R ( VR &
—VR), (2.7) As Q leaves invariant the manifold of eigenvectors of Ho
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[Q,P~]=0 . (3.3)
I

which belong to any given eigenvalue ej, it immediately
follows that

Froin Eqs. (3.2) and (3.3) the transformation properties of
the operator R defined by Eq. (2.7) are immediately found
to be given by

R'=QRQ '=Q 1+$ $ (PJR PkVR Pk PJ—VR Pk)l(ej —ek) Q '=1+Iip(R'( VR') —VR') .
j k (+j)

(3 4)

From the adiabatic condition Eq. (2.12)

lim R'=1,
V~0

(3.5)

it follows that R and R' satisfy the same equation and
should necessarily be equal, that is,

[Q,R]=0 . (3.6)

If H,rr, that is, K ~, is to have the same symmetries as
H it must then be

(3.7)

which from Eqs. (2.3) and (3.6) leads to

[Q, U]=0. (3.8)

As was previously pointed out, one may choose U =1,
which fulfills Eq. (3.8), leading to the Hermitian sym-
metric effective Hamiltonian previously defined. '

There is no general agreement on this point and several
other choices have been made, notably that of Van
Vleck, who was the first to use effective Hamiltonians in
solid-state physics. Although we do not intend to discuss
the point at length here, we must stress that because of
Schur's lemma Eq. (3.8) imposes severe restrictions on
U, which may only connect equal partners of identical ir-
reducible representations. This partial freedom in the
choice of U may perhaps be useful in some cases but it
makes no difference here where we can take simply

C2 ——k(o+a+o at) —ho, ,

[C),C2] = [Ci,H ]= [C2,H ]=0,
where

5= —,
'

(co—cop) .

(4.3)

(4.4)

(4.5)

. The eigenvalues E„and eigen-vectors
~

+,n ) of H thus
turn out to be

E„+=co(n + —, )—+A,„,
~
+,n ) =cos8„~ —)

~
n+1)+sin8„~ + )

~

n ),
,n) = ——sin8„(—) ) n+1)+cos8„) +) (

n),
where

(4.6)

(4.7)

(4.8)

)

are the Pauli matrices, a~ and a the boson's creation and
annihilation operators, co the boson's single-mode energy,
cop the energy difference between the two possible fermion
states

~
+ ) and

)
—), and k the fermion-boson coupling

strength. The energy levels for the noninteracting case
k =0 are shown in Fig. 1, where n is the boson's excita-
tion number.

The Hamiltonian's eigenvectors and eigenfunctions are
easily found if one knows all constants of motion (sym-
metries). These are given by the coinplete set of commut-
ing operators C&, C2, and H, where'

Ci ——co(a ta +—,
' o, ), (4.2)

U=1 . (3.9) (4.9)

IV. JAYNES-CUMMINGS HAMILTONIAN
and

tan8„=k(n+1)'~ /(A, „+4) . (4.10)
Exactly soluble Hainiltonians for coupled systems are

exceedingly rare. One of the few known ones is the
Jaynes-Cummings Hamiltonian, which was originally in-
troduced in order to discuss the interaction of a two-level
atom with a quantized radiation field. ' Later on it was
used in electron paramagnetic resonance, '" its complicated
dynamics having only recently been investigated by means
of coherent states. ' For our purposes the Jaynes-
Cuxnmings Hamiltonian H may be looked upon as
describing a fermion (spin —,, two-level electron, isospin
doublet, etc.) which is capable of absorbing and emitting a
boson (photon, phonon, meson, etc.), its expression being

H = , popo.,+coa—ta+k(ao++a to ), (4.1)

V. FERMION-ONLY MODEL HAMILTONIAN

We now set about the task of writing a fermion-only
model Hamiltonian for the coupled fermion-boson system
described by the Jaynes-Cummings Hamiltonian Eq. (4.1).
H ~ will operate within the manifold

where )-& I n+1) )
—p ) n+p)

1 0 01 00
~+

0 —1 ' 00' 10 FIG. 1. Energy-levels scheme of the Jaynes-Cummings Ham-
iltonian in the uncoupled limit.
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& ~—= { I+& I

—&1

its most general expression being

(5.1) where

V++ ——co(a a+ —,),
H w ——Co&f+C o. ,

where

If=
I + &&+

I
+

I

—&& —
I

C=C„ i +C& j +C,k, .

0 =0„1+o j +o.,k .

(5.2)

(5.3)

V =co(ata ——,),1

V~ =ka,
V + ——ka~.

Equation (2.11) now reduces to

R+ V +R+ —V++R+ ~R+ V

(5.11)

The eigenvalues of H ~ are

E—+ =Co+C, (5.4)

—V~ ~2~ ~ =0, (5.12a)

R +V+ R + —V R +~R +V++
where —V ~ —2~ ~ ——0, (5.12b)

C=
I
C

I
=(C„'~C„'~C,')'/2 . (5.5)

If one is interested only in the energy splitting, taking C
as the only adjustable parameter will do, but if directional
properties are involved one should fit all three com-

ponents of C from suitable experiments, Co usually being
irrelevant because it gives only the zero of energies.

In order to derive H ~ from first principles we first
have to write an appropriate effective Hamiltonian, which
requires choosing the right reference Hamiltonian Ho.
Decoupling the degrees of freedom requires the eigenvec-
tors of H,ff to be direct products of fermionic and bosonic
state vectors. It is then straightforward to project out the
boson's degrees of freedom by taking matrix elements of
H ff with the bosonic state vectors. Property (c) of Sec. II
shows that this goal may be achieved if Ho is taken to be
fully degenerate as regards the undesired degrees of free-
dom, so we may take it to be any purely fermionic opera-
tor.

It wi11 prove convenient to write

—V++R+-+R+- V-- =0
—V R ~+R ~ V~~ ——0.

Equations (5.12) may then be rewritten

X~ —2~~=V~ V ~=k aa2

X ~2~ =V ~v~ =k ata,
where

(5.13a)

(5.13b)

(5.14a}

(5.14b)

(5.15)

may be solved to give

X+ ——6—(dP+k aat)'

X = b, +(6 +k at—a)'
(5.16a)

(5.16b)

where we have used R++ ——R = lb Fr.om the symme-
try property Eq. (3.6) with Q =C, it is straightforward to
prove that

Ho her, lb, ——
from which

(5.6)
The signs of the square roots have been chosen in accor-
dance with Eq. (2.12). Equations (5.12) may now be writ-
ten

V=co(ata+ —,'o, lb)+k(ato +ao+),

where

(5.7)
R+ X —ka+2~+ ——0,
R +X+ ka 2LR + ———0, —

which from Eqs. (5.16) immediately give

(5;17a)

(5.17b)

ls ——+In&&n I (5.8)

is the unit operator in the boson's space. The eigenvalues
' of Ho are

R ~ kaIi, ——

~ ——ka I2,
where

(5.18a)

(5.18b)

e+-=+5, (5.9}
Ii ——Il[h/(5 /k a a)' )=Ii,

1 y[Q+ (+2+k 2aa t)1/2]

(5.19a)

(5.19b)

I+&
v=&+

I v++ v+-
&
—

I v, v
(5.10)

their degeneracies being infinite as the corresponding
eigenvectors are

I

+
&

I
n & (n =0, 1, 2, . . .). Using the no-

tation discussed in connection with Eq. (2.11) one may
write the Hermitian matrix

Therefore

1b

ka ~I2

lb

kI)a~

1b

kIza

1b

(5.20)

(5.21)

In order to find the wave operator S [Eq. (2.6)], which
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lb+k I2aatIz

0

0

1+k2Iia taIi (5.22)

defines both the effective Hamiltonian Eq. (2.3) and the
actual eigenvectors Eq. (2.2), one needs

where we have used some straightforward relations such

(aI, +I,a)
i
n & =0 .

As RtR is diagonal and positive definite' it follows at
once that

(lb+k2I2aatI2)-1/2
S=R RtR -'"=—k.tI,(1,+k I,aatI )- ~

kaI, (1,+k'I, a'aI, )-'"
(ls +k IiataIi) (5.23)

The effective Hamiltonian Eq. (2.3) is thus given by
i g(0) ) = Q C. i

a ) . (5.31)

in)
S

I

S++in&
=S~i &n

cos8, in)
—sin8„

i
n+ 1)

H ff ——S 'HS

= —,coptr, + —,boa ta+ —,k (a taIi+aa tI2)

+ ,'k o, (a—atIz ataI, )—.

The eigenvectors of H, tt are easily found to be

in) 0
I + )crt () I &eff

i
n )

The eigenvectors of H are therefore

(5.24)

(5.25)

(5.26a)

It is then immediately found from Eqs. (2.2), (2.6), and
(5.25) that

F(0)= (y(0) i
F

i
y(0) )

= ggc~ti(a iF i P)
a P

=gg ~~.„( is'FsiP)„,
a P

= g pc,'„c,'„(j i((n iStFS in' )) ij'), (5.32)

where

0 S+ in)
in) S in)

sin8„ i i
n —1)

cos8» i in) (5.26b)

H ~ l~& ~=(Ep+E ) I~& ~ (5.27)

where 8„ is given by Eq. (4.10). In the same fashion it
may be shown that the eigenvectors are those given by Eq.
(4.6), thus verifying all the given results.

We now undertake the task of writing the model Ham-
iltonian H ~. For that purpose it is fundamental to
clearly establish what one expects from H ~. From the
eigenvalue equation

iJ&=i+), i
—

& (5.33)

cj» =djd»

If such is the case, it follows at once that

F= ( b
i

SERFS

i
b ) = (StFS )b,„,

where

i
b)= gd„ in),

(5.34)

(5.35)

(5.36)

are the fermionic state vectors. The fulfillment of Eq.
(5.28) requires the existence of the fermion-only operator
F, which in turn forces the factorization

one wishes to obtain the true eigenvalues E apart
perhaps from a uniform energy shift Ep. In practice one
also expects to be able to determine the expectation value
of any physical fermionic operator F from the formula

and Eq. (5.28) is satisfied with

(5.37)

(F&= ~(~iFi~) ~=(F& ~, (5.28)

iA (F) w ——([F,H w]) w+ifi
dt m ™m Bt

so that the time-dependent Schrodinger equation

I
a) ~=H (5.30)

should be satisfied. Let us analyze how this may come
about in our formulation. Assume the combined system
to be in an arbitrary initial state

where F is a suitable renormalized operator.
One would moreover like (F) ~ to obey the standard

equation of motion (Ehrenfest's theorem)

Cp ———,'boa a+k (a aIi+aa I2)b,»,
C„=0=CD

C, = —,'cop+ —,'k (aa I2 —a aIi)b,„
(5.39)

are the model's adjustable parameters Eq. (5.2). One may
then say the fermion energy top is renormalized to

It may be shown that condition (5.34) is a necessary and
sufficient condition for the fulfillment of Eq. (5.30) (see
Appendix). The model Hamiltonian H ~ is but the re-
normalized fermion operator

H ~——H = (H,tt )b,„——Cp lf +C.cr,
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pip r—pp+ki(aa I2 a—aIi )b,„„ (5.40)

VI. CONCLUSIONS

The experience gained in the discussion of Sec. V makes
it easier to generalize the method for writing model Ham-
iltonians, which is the goal of this section. Let H, and
Hb be the Hamiltonians corresponding to different sets of
nonidentical particles and H, b the interaction term.
Thus the closed-system Hamiltonian is

due to the interaction with the bosons, or that the particle
described by H ~ is a quasifermion.

It is easy to realize that the only case in which c~„may
be factorized is when

I
g(0) ) involves a single nondegen-

erate boson state. In this case no energy is exchanged be-
tween the fermions and the bosons, and the last subsystem
acts only as a scleronomous constraint. One may then
write a fermion-only Hamiltonian which satisfies the
standard time-dependent Schrodinger equation. A de-
tailed mathematical proof of these statements is given in
the Appendix. Whether or not such a factorization is
realized in practice depends on the experiments performed
on the system, because if the excitation energies are such
that the number n of bosons is fixed, H ~ is well de-
fined, although its parameters will change if n changes.
In the case where these requirements are not satisfied a
model Hamiltonian can render only an approximate
description of the actual fermion s behavior. If, for in-
stance, energy transitions are allowed between boson
states, the time evolution of the fermion-only Hamiltonian
will not be given by the time-dependent Schrodinger equa-
tion, but by a more complicated nonlinear one correspond-
ing to a dissipative system. Although this problem is of
great practical importance, it is beyond the range of this
work.

perturbative determination of H,ff when H, b is small,
but this is not mandatory. In general one need only ask
that the basis vectors [ I p), j which define Q ~ be not
only eigenvectors of Hp with some set of eigenvalues
je, J, but the only eigenvectors with those eigenvalues.
This ensures that all the states required by the defining set
of experiments are included in H ~, and only them.

As H ~ should be both Hermitian and invariant under
the symmetry group of H, so should H, fr. The simplest
effective Hamiltonian fulfilling this condition is the
Hermitian-symmetric one previously discussed. ' One has
now to find the exact or approximate solutions of Eq.
(2.7) or (2.11) in order to obtain the wave operator S from
Eq. (2.6) and H,ff from Eq. (2.3). Approximate solutions
may be obtained by iterative methods, one of which is the
degenerate Rayleigh-Schrodinger perturbation theory, " or
by a self-consistent numerical solution of Eq. (2.7). The
choice of Eq. (6.4) ensures that the eigenvalue Eq. (2.1)
has the solutions

od b (&
I
H ff I

~ & b (6.6)

and the expectation value of any physical magnitude A of
the a system may be evaluated by the formula

(6.7)

(6.5)

thus showing the a-type and b-type particles to be decou-
pled in this representation. This is not true if the two sets
consist of identical particles because then one has still to
deal with the mixing due to the symmetrical or an-
tisymmetrical nature of the total state vector.

In the case where the experimental situation ensures
that only a single state

I X)b is involved, the model Ham-
iltonian is given by

H=H~+Hb+H~ b . (6 1) where

We are interested only in the a-type particles for which
we wish to write a model Hamiltonian H~~ describing
their properties in a certain energy range. This energy
range is determined by the set of experiments made on the
system, from which it should be possible to guess both the
number of a states involved and its approximate nature.
One should therefore have a set of approximate state vec-
tors f I y), J which define the domain Q ~ of H ~,

(6.2)

In the case of the Jaynes-Cummings Hamiltonian Q~~
has been taken to be the domain Q, of H„but this need
not be so and in the general case

(6.3)

(6.8)

Here
I y), satisfies the usual time-dependent Schrodinger

equation and (A ), satisfies Ehrenfest's theorem. If the
state of the b subsystem is not uniquely determined by the
experimental conditions, a model Hamiltonian can render
only an approximate though perhaps very good descrip-
tion of the a subsystem, the nature of such an approxima-
tion being outside the scope of this paper.
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where Q' ~ is the orthogonal complement of Q ~.
One may now define an effective Hamiltonian H,fr as-

sociated with both H and the reference Hamiltonian

(6 4)

where 0, is any a-type operator and lb is the unit opera-
tor for b-type particles. In the simplest case one may take
O, =H„which is probably a good starting point for a

APPENDIX

In what follows we use the notation of Sec. VI. Let
I J), and

I l)b be the eigenvectors of the separated sub-
systems

(Al)
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where H is given by Eq. (6.1). Assuming that

gcjt(t) I j& I
I&b

j I

(A4)

from the normalization condition (g I
f&=1 it follows

that

(j I
k & =sjk for a=1,2 . (A2)

The eigenvector
I P& of the combined system satisfies the

time-dependent Schrodinger equation

HIy&=tr

gt g —1

From Eqs. (A14), (A 1 1), (A9), and (A15) we obtain

disc =fisc =~m I fI I
(A16)

w~ere

fz ga——tgJJ . (A17)
J

Equation (A16) may be satisfied only if fl differs from
zero only for a single value of J, say J=N. In the new
basis [Eq. (A13)j the effective state vector Eq. (A9) may
be written

(A5)
I 0&.= &fl I

~&. =fH IN&. (A18)

Pk" ——g ckt(t)c,'i(t)
I

(A7)

If A is any operator on subsystem a, its time-dependent
expectation value is given by

( 2 & = (l(t I
2

I f& = g g P'kj'(t), (1 I
2

I
k &, , (A6)

j k

where

where from normalization

(A19)

In the same fashion it is now straightforward to show that
in the new representation the combined system's state vec-
tor may be written as the external product

(A20)

is the reduced density matrix of subsystem a. The
necessary condition for subsystem a to be describable by a
new Hamiltonian H, such that

where

10&b = X ~Ni I
I &b,

I
(A21)

H. Iy&. =i~ (A8) CJI g gkt Ckl ~

k
(A22)

where

is that it should be possible to write

(A9)

Equation (A10) is therefore satisifed if and only if the
system's state vector is factorized. It.would seem that
such a stringent condition may only be satisfied for nonin-
teractin„subsystems, that is, H, b

——0. Actually, this is
not necessarily so, as is shown below.

I et T (t) be the time-development operator s

(a)
pkj ——akaj' (A 1 1)

It is easily shown that condition (Al 1) is sufficient for the
fulfillment of Eqs. (AS) and (A9) as it corresponds to the
case of a pure state where

(A12)

Because e" is an Hermitian matrix it may be diagonal-
ized by a unitary change of basis

= g g aj(t) ak(t), (j I
A

I
k &, . (A10)

j k

Comparing Eqs. (A6) and (A10), it is therefore required
that

iPOHPO t lit —iH~ t lit iHb t lt—i—
PpT tPp e' =e ——' e (A25)

where

[H,Hb]=0 .

T(t)
I
g(0) & =

I
P(t) & (A23)

and 0' ' the manifold spanned by the time evolution of
I P(t)&,

Q~o) =0&0)XQ(0) (A24)

In order for the time evolution of subsystem a to be that
of an isolated system within 0' ' it should be

such that

(A 13) Therefore

PpHPp =Pp(H~+Hb+H~ b )Pp =H~ +Hb,
and it should be

(A26)

gt (a)g

where

(A14)
P0K~ bP0=I~1b+Ib 1 . (A27)

and

dJK 5JIcdJg, (A15) Equation (A27) is satisfied b~ a general interaction H, b if
and only if the manifold 0,' is one dimensional.

Therefore, if subsystem a interacts with subsystem b
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the time evolution of a is th'at of an isolated system if and
only if the state of subsystem b remains constant. In
practice this condition is fulfilled if b has a ground non-
degenerate state and the energy of interaction with a is

less than that required for a transition to b's first excited
state. A little reflection shows that this condition is satis-
fied in all cases where model Hamiltonians successfully
apply.
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