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Stability of quantum motion in chaotic and regular systems
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The evolution of a quantum state is altered when a small perturbation is added to the Hamiltoni-

an. As time progresses, the overlap of the perturbed and unperturbed states gives an indication of
the stability of quantum motion. It is shown that if a quantum system has a classically chaotic ana-

log, this overlap tends to a very small value, with small fluctuations. On the other hand, if the clas-
sical analog is regular, the overlap remains appreciable (on a time average) and its fluctuations are
much larger.

I. INTRODUCTION

The motivation of this work is to try to understand ir-
reversibility in quantum theory. As explained in Sec. II,
the standard explanation of irreversibility in classical
physics (namely, mixing and coarse graining) cannot be
carried over to quantum theory. An alternative explana-
tion is proposed, based on the instability of Hamiltonian
orbits with respect to small external perturbations. This
explanation can readily be reformulated in quantum
language.

Section III gives explicit formulas showing how the
evolution of a quantum state deviates from its original
Hamiltonian orbit if a small perturbation is added to the
Hamiltonian. The overlap of the perturbed and unper-
turbed states gives an indication of the stability of quan-
tum motion. It is argued that if a quantum system has a
classically chaotic analog, this overlap must tend to a very
small value, with small fluctuations. On the other hand,
if the classical analog is regular, the overlap remains ap-
preciable (on a time average) and its fluctuations are much
larger.

In Sec. IV some numerical calculations are presented,
supporting the above (admittedly heuristic) claims. In
Sec. V these results are generalized to situations where the
initial state is not pure and must be represented by a den-
sity matrix. Finally, Sec. VI examines the implications of
these results with respect to the notion of irreversibility.

II. IRREVERSIBILITY IN CLASSICAL
AND QUANTUM PHYSICS

The intuitive meaning of "irreversibility" is that there
are some dynamical evolutions which can easily be
prepared, but it is extremely difficult (we say "impossi-
ble") to prepare the time-reversed evolutions. For exam-
ple, it is easy to get a cup of lukewarm water by placing,
one hour earlier, a cube of ice in a cup of boiling water. It
is impossible to prepare a cup of lukewarm water in such
a way that, one hour later, it will turn into an ice cube
floating in boiling water.

The familiar classical explanation of irreversibility is
based on the notions of mixing and coarse graining. Mix-
ing is a property of chaotic systems, which can be proved
rigorously (under suitable assumptions). ' It essentially

t

means the following: Consider two finite (and fixed) sub-
sets of phase space, say Vi and Vz, whose measures are
fractions pi and p2 of the total phase space. Suppose that
the distribution f, (p, q) is uniform in Vi at time ti, with

V& ——1. Then, or any time t2 su icien, ty remote
from t, (in the future or the past) and for sufficiently
large pi and p2, we have

~ ff2 1V2 —p2 ~
&5, with arbi-

trarily small 5, irrespective of where Vi is. This is the
property called mixing. Notice that it is time symmetric.
By itself it cannot explain irreversibility. Notice also that
the smaller 5 or pi or p2, the larger the time

~
ti t2 ~—

needed for mixing. (In the paper I consider only finite
times, not the unattainable mathematical limit of infinite
time. )

In the ice-cube paradigm we have pi(ice cube plus boil-
ing water) «pz(lukewarm water)=1. Therefore, with a
suitable value of the total energy, almost every evolution
will lead to a cup of lukewarm water, with only extremely
small inhomogeneities. Nevertheless, we can, conceptual-
ly, prepare the lukewarm water at time t2 so that, at a
later time ti it will separate into an ice cube and boiling
water. This "only" requires a very special preparation
(not just any cup of lukewarm water, but one with delicate
correlations between all the molecules) and this prepara-
tion has a p2 so small that the mixing property, as defined
above, will not yet be valid after the given finite time

Now comes coarse graining. We may be unable, be-
cause of the coarseness of our instruments, to achieve
such a preparation. We cannot locate the initial state
within such a small V2 (i.e., with p2 so small that mixing
has not yet occurred after a finite t, —t2). In summary,
we cannot prepare the system at time t2 so that, after a
finite time ti t2, it will be loc—ated with certainty in the
desired small region Vi of phase space. There are evolu-
tions (e.g., from lukewarm water to an ice cube in boiling
water) which cannot be made to proceed.

The above argument explains classical irreversibility,
but it fails in quantum theory, because the Wigner distri-
bution in phase space has a much smoother evolution
than the Liouville-Cribbs distribution. It cannot develop
"whorls and tendrils" on scales smaller than R. There-
fore it does not lead to the mixing property, as defined
above. Moreover, coarse graining seems to make no sense
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in the quantum language or, in fact, any language where
dynamical variables occur with discrete values. It is in
principle possible to prepare arbitrary, pure quantum
states. 5 Even if there is a small error in the preparation of
the initial state, this error will not grow, because the
Hamiltonian evolution is unitary: The scalar product of
any two states is invariant, therefore two initially neigh-
boring states will always remain neighbors in Hilbert
space.

How can we have irreversibility in the microworld,
without coarse graining'? To explain this I propose anoth-
er mechanism causing irreversibility, which is valid in
both classical and quantum physics. Instead of assuming
that our preparations are marred by limited accuracy, we
may assume that they are perfect but, on the other hand,
the Hamiltonian H is not exactly known, because we can-
not perfectly insulate the physical system from its envi-
ronment. We may thus consider a family of Hamiltoni
ans

H(e)=H+eiVi+ +e„V„,
where H describes the free (perfectly isolated) system, the
Vk are any functions of its dynamical variables, and the

ek (denoted collectively as e) are small unknown parame-
ters, possibly time dependent. For example, the behavior
of a molecule which is not perfectly shielded from elec-
tromagnetic fields may be described by taking as ek vari-

ous components of E and 8, their gradients, etc., and then
the Vk will be the corresponding multipole moments of
the molecule.

We now assume that the ek have a probability distribu-
tion p(et. . . e„). This is the assumption which replaces
coarse graining and which is, after all, quite realistic.
Thus, we may assume that we start from a given point in
phase space but, as time evolves, this point diffuses into a
small cloud (so that we effectively have a kind of coarse
graining). The discussion then proceeds as before. After
a finite time, ordinary mixing, due to H, ensures that the
cloud has diffused uniformly throughout the entire acces-
sible phase space (i.e., all the regions which are not forbid-
den by the conservation laws of H).

Here it is important to distinguish regular from chaotic
Hamiltonians. ' A regular Hamiltonian, e.g., one having
as many constants of motion in involution as there are de-
grees of freedom, does not lead to mixing because of the
Kolmogorov-Arnol'd-Moser (KAM) theorem: Slightly
perturbed orbits remain on neighboring tori and separate
slowly. Their separation is typically linear in time. On
the other hand, the orbits of a chaotic Hamiltonian ex-
plore the entire energy surface and their separation grows
exponentially with time. This results in the mixing prop-
erty discussed above.

The approach embodied in Eq. (1) can easily be tran-
scribed in quantum language. Consider the simplest case
where the ek are time independent. The initial density
matrix po evolves as

e —iH(e)t/A iH(e)t/APO~8 Po8

Since the small parameters e~ are unknown, one must
take an average over their probability distribution. One

thereby obtains

p(t) J e
—«p e e)tlap(e) dne

Even if po is a pure state (po ——po), p(t) will be a mixture.
Its entropy —Tr(plnp) is positive. The remainder of this
paper is devoted to some quantitative estimates.

III. STABILITY OF QUANTUM EVOLUTION

I shall henceforth consider, for the sake of simplicity, a
Hamiltonian

H'=H+eV, (4)

P= gamum = gamum,

where

H~m =Em~m ~

and

H'u' =E' u'

Here we have assumed that the same set of quantum num-
bers (denoted collectively as m) can be used to label the
eigenvectors of H and those of H'. For a regular Hamil-
tonian, these quantum numbers may refer to a complete
set of commuting observables, including H. For a chaotic
Hamiltonian, there are no such quantum numbers' but,
on the other hand, there is a tendency to level repul-
sion' ' so that, for small enough e, it is still possible to
identify corresponding levels. '4

In any case, we have, from time-independent perturba-

where H and V are known. Moreover, the parameter e
(also known) is assumed constant and so small that time-
independent perturbation theory is valid: The eigenvalues
and eigenvectors of H' are very close to those of H and
can be obtained from them by standard formulas.

A physical system is prepared in an initial state P and
the problem is to compare its evolution e ' '~"P with the
unperturbed evolution e ' '~"P, for large t The in. tuitive
expectation (supported by the calculations below) is that
the overlap

S(t)
~
(e iHtltiy e iH'ti—ly)

~

2—

will decay to a much lower value if H is chaotic than if it
is regular. Not only the time average of S(t), denoted by
S, but also the rms fluctuations around S ought to be
much smaller for a chaotic system than for a comparable
regular one.

Here the reader may object that it is difficult to pro-
duce an unbiased comparison between different physical
systems (such as a regular one and a chaotic one). How-
ever, there are some classical Hamiltonians having both
regular and chaotic orbits, in different regions of phase
space. ' The quantized versions of these Hamiltonians
then have "regular states" and "chaotic states, "which are
well separated" in the semiclassical limit fi~G. It is
therefore meaningful (and unbiased) to compare the rela-
tive stabilities of different states of the same system.

To compute (5) explicitly, we expand P into the eigen-
functions of H and H':
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tion theory,

E' =E +V
where

V))) =(u~, Vu~) .

Moreover,

(u, u„')=5 „
and a' =a, to order e. It follows that

S(t)= gc exp( iV—~) 2,

where

(10)

(12)

(13)

This only depends on the perturbation V and the initial
state ()I) (not on H}. It can in fact be rigorously proved
that'

S(t)= g c c„cos(V —V„)~,
m, n

=S+g c c„cos(V —V„)r,

(20)

where we have used (15) and where the summation g'
excludes terms with m =n. We further assume that the
c are statistically independent of the V . Taking an en-

semble average (e.g., over many different types of pertur-
bation and initial states), we obtain

S(t) &cos (EVr)

for AVr &m/2.
For large t, the behavior of S(t) depends on the statisti-

cal properties of the V . We write

r=et/A . (14)

These formulas hold for small enough e. In fact, the only

place where e cannot be neglected is in ~, because t may
be large.

The behavior of (12) is very different in systems having
regular and chaotic Hamiltonians, for usual preparations
of these systems. Indeed, assume that the initial state P is
prepared by selecting systems having a given eigenvalue of
a "reasonable" operator' ' (such as a polynomial in the
canonical variables p and q). Then, for a regular system,
the a~ satisfy selection rules. ' ' Most of them vanish

(or are very small ) and only a few are large (an example is
given in Sec. IV). It follows that S(t) must oscillate with

a fairly large amplitude. Its time average (assuming no
degeneracy) is

(S(t))=(S)+(g c c„l(cos(V —V„)r) .
m)8

Now, by virtue of (15)

g'c c„=gc c„—S=l —S,

(22)

m, n m, n

since g c =1. It follows that

( S(t) ) = (S)+(1—(S))(cos( V —V„)r) . (24)

IV. NUMERICAL SIMULATIONS

The decay law of (S(t)) thus depends on the statistical
distribution of

~

V —V„~. For example, if the latter is
Gaussian, the behavior of (S(t) ) is Gaussian too.

2
Cm ~ (15) To test the above conjectures, I used the coupled rotator

model with Hamiltonian'

which is dominated by the few largest c . [Strictly
speaking, S(t) is almost periodic, but the recurrence time
may be inordinately long, ' unless Uery few a~ are in-

volved. ]
On the other hand, if H is chaotic, a reasonable P has

many small a, randomly distributed. ' ' Therefore S is
small (typically, it is of the order of I/N, where N is the
number of energy levels appreciably represented in P).
For the same reason, the rms fluctuations S —S are
small.

All the foregoing deals with the behavior of S(t) for
large (but finite) t On the other. hand, there is no reason
whatsoever that the initial decay rate of S(t) should be
larger for chaotic than for regular systems. It is in fact
completely independent of the Hamiltonian. Indeed, if we

expand S(t) in a power series for small t, we obtain

(16)

where

H =I.,+M, +I.„M„. (25)

Here, L and M are two independent angular momenta.
The constants of motion of this system are H, L, and
M . For some values of these constants the classical sys-
tem with Hamiltonian (25) is regular, and for other values
it is chaotic. ' These properties are reflected in its
quantum-mechanical spectrum' ' ' and matrix elements.

For given values of the constants L2=fi l(l+1) and
M =Pi m (m +1), the Hamiltonian (25) is a finite matrix
of order (2l+1)(2m+1). I have taken, as in Ref. 20,
l =m =20 and %=0.1707825. This corresponds to
I. =M =3.5. The energy eigenstates of this system ap-
pear to be mostly regular if

~
E

~

&9 and mostly chaotic
if

~

E
~
(6. This is what was found in the static calcula-

tions. 2o » I shall now investigate differences in the
dynamical behavior of nonstationary quantum states.

It is convenient to label a basis in Hilbert space (for
given l =m) by

(b, V) = gc~ V~ — pc~ V~
m

(17)
and

(26)

(18) k =lz —mz (27)
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TABLE I. Statistical properties of the two initial states.

Initial
state

i
40,0)

i
0,0)

6.8313
0

0.2917
0.6125

3.2950
0

0.7386
4.5115

0.1968
0.0069

The Hilbert space then splits into four disjoint subspaces,
with j, even or odd, and

~
j„k,)=+

~
j„—k, ). The

Hamiltonian (25) has no matrix elements connceting these
subspaces. It is therefore convenient to consider just one
of them, for example, the even-even subspace, having di-
mension 21~=441.

As the perturbation V in Eq. (4) I took

(28)

which, like H, has no matrix elements connecting the four
invariant subspaces. I considered two initial states,

~
40,0) and

~
0,0), which were expected to behave regu-

larly and chaotically, because the corresponding values of
(H) are in the regular and chaotic regions, respectively
(see Table I).

Moreover, as shown in Table II, the
~
40,0) state has an

energy dominated by a few, strong, nearly equidistant
lines. On the other hand, the

~
0,0) state has numerous

weak lines of roughly the same magnitude. Note that
these two sets of lines belong to the same energy spec-
trum. The regular or chaotic nature of the states is not a
property of the energy spectrum alone, but is controlled
by how the most populated leuels are related Those .of

~

40,0) are nearly equidistant (they are all within 0.2% of
E =6.794+0.213n, with n =0, +1) as expected from the
correspondence principle, for classically periodic
motion. ' ' Those of

~
0,0) do not show any such regu-

larity.
The behavior of S(t) is shown in Fig. 1. As expected,

the time average S=g c is considerably smaller for
the chaotic initial state ~0,0) than for the regular one

~
40,0).
The physical meaning of S(t) is the probability to get

an affirmative answer to the question, "Is the final state
of the system e '+'/"P?" or, in other words, "Is the final
state unaffected by the perturbation?" (Notice that it is
experimentally meaningless to ask, "What is the state of a

TABLE II. The most populated energy levels of the initial
states.

0.5-

0 I I f I I I I I I

0 0.5 +C

FIG. 1. The overlap function S(t) for the initial states

~

R ) =
~
40,0) and

( C) =
~
0,0). The time axes are labeled by

~=et/fi and drawn with units inversely proportional to b V, so
that the initial decay rates appear the same. The dashed line F
is Fleming's unitary limit (Ref. 19) cos~(h Vv).

system?" ' 4 We can only ask, "Is the system in some
given state?") Thus, in the present case, the probability
that

~
R ) is unaffected by the perturbation is, on a time

average, 19.68% (see Table I). The probability that
~
C)

remains unaffecttxl is only 0.69% (i.e., in 99.31% of cases,
the evolution startin~ from

~

C) leads to a state which is
orthogonal to e ' '

~
C)).

It is remarkable that the time average S and the fluc-
tuations around it are independent of the perturbation pa-
rameter e (as long as the latter is small enough so that
time-independent perturbation theory is valid). The value
of e affects only the time scale, as shown in Eq. (14).

V. DENSITY MATRICES

These results are readily generalized to the case where
the initial preparation is not represented by a pure state
but by a density matrix p. Instead of (5) we have

S(t)=Tr(e iHtliipe iHt lite——iH't
loupe

iH't/0) /7 r(p2) (29)

It is easily seen that this reduces to (5) in the pure-state
case, where p=P~ is the projection on state P. The oppo-
site extreme is a perfect mixture (p=I/N, where N is the
dimensionality of Hilbert space), for which one has
S(t)=1, trivially.

In the general case, it is convenient to write p in diago-
nal form

i 0,0) p= g iuk~k
k

(30)

6.801 926
6.994 843
7.019689
6.581 356
6.791 842

0.381 937 6
0.153 378 1

0.114 185 5
0.078 724 7
0.060 1146

k 1.074 954
k 11.05602
% 11.575 16
+2.298 508

0

0.023 537 8
0.017808 1

0.014 828 6
0.013251 7
0.012087 5

Tr(p ) = g (iuk ) (31)

where the Pk are projection operators on a set of orthogo-
nal states ui, and the iuk are non-negative numbers whose
sum is 1. We then have

5

g c„=0.788 3405
9

g c„=0.1509399
Tr(e iHt/hpeiHt/he iH't—/hpeiHt'/ii) g ~ ~—S (t) (32)

J,k
'
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we want to prepare an initial state P so that, a time r later,
the state of the system will be, with a high probability, in
some given subspace of Hilbert space. This subspace is
spanned by a set of orthonormal vectors vi, . . . , v„, with
corresponding projection operators Pq, . . . , P„. Let

0.5-

p= gpk .
k

We thus want to have

(e iH—t /re pe iHt /—tip )

or, more generally, for an initial density inatrix p,

Tr( iHt/—rt iHt/tiP)

(3&)

(39)

(40)

0
0 6 8 10 T

FIG. 2. The overlap function for two density matrices con-
sisting of an equal weight mixture of six states in the regular re-

gion and in the chaotic region, respectively.

Here the projection operator P is given and the problem is
to find the initial P or p. It is assumed that we have per-
fect control on the initial conditions, so that any initial
state can be prepared.

A possible solution of (39) is

e iHt/sg (41)

where

Sk(r)
I
(e iHt/hv —

e iH't/svk )
—

I

2 (33)
where X is any vector in the assigned subspace, satisfying
PS=X. More generally, we have

All these quantities are readily calculated in any specif-
ic case. We write, as in (6), ~

Vk = Qk Q (34)
m

and obtain
2

Sik(t)= ga~* ak exp( iV r)—

which generalizes Eq. (12). Finally,

S(t)= g wiwkS&k(t) g (w„) (36)
j,k n

As an example, using again Hamiltonian (25), I took
two sets of six states: a "regular set" with j, & 36 and a
"chaotic set" with —2 &j, & 2 and k, =0,2. In both cases
all the w„were taken equal to —,'. The result is shown in

Fig. 2. As expected from the averaging process, the re-
sulting curves are much smoother (have smaller fluctua-
tions) than in Fig. 1.

On a time average we have, from (35),

Sik=X Ia, I'lak (37)
m

In the chaotic case this is typically of the same order of
magnitude as (15). As there are, in our example, 36 terms
in the numerator of (36) and only 6 terms in the denomi-
nator, this explains why curve C in Fig. 2 is about six
times higher than in Fig. 1.

On the other hand, in the regular case the existence of
selection rules implies that most Sjk are very small for
j&k. This explains why curve R of Fig. 2 does not lie
much higher than in Fig. 1.

VI. %'HITHER IRREVERSIBILITY'?

It is now possible to reformulate in quantum language
the "ice cube and boiling water" paradigm. Suppose that

eiHt/Pip e —iHt/fip= ~ wke ke
k

(42)

with arbitrary non-negative wk, satisfying gkwk ——1.
The difficulty is that we have no perfect control on H,

because no system can be perfectly isolated from its envi-
ronment. Actually, the Hamiltonian is some perturbed
H', as in Eq. (4). The question thus is, how far will the
small perturbation EV carry us away from the targeted
subspace?

This is precisely the kind of question which was dis-
cussed in the preceding sections. It was shown that the
evolution of a regular system was only moderately affect-
ed by an external perturbation. In the examples given, the
right-hand sides of (39) and (40) were of order 0.2 or 0.3.
In other words, there was an appreciable chance to hit the
target, even after a very long time.

On the other hand, for chaotic systems, the right-hand
side of (39) or (40) was very small, with small rms fluctua-
tions. Thus, the chance to end up the evolution in a
prescribed subspace of Hilbert space was virtually nil (un-
less that subspace was very big).

In real life, this difficulty is met, for example, in selec-
tive photochemistry. Suppose that we want to break a
certain bond in a large molecule —but not the weakest
bond. In principle a laser beam could supply enough en-
ergy to that particular bond, leaving the other ones cold.
It should then be possible to determine a priori the bond
which is most likely going to break. However, it is
found experimentally that intramolecular energy transfer
dissipates the laser energy very rapidly among the other
bonds or the different vibrational states. Considerable
theoretical efforts have been devoted to explain this
phenomenon.

In the approach presented here, the inability to excite
and break a given bond can be explained as follows. The
"bond excitations" are not the true normal modes —the
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energy eigenstates of the entire molecule. In standard
molecular-dynamics calculations an appI'oximation is
made whereby attention is focused on a few "relevant" de-

grees of freedom and all the other ones are ignored. The
latter then play the role of the "environment, " simulated
in the present work by an eV perturbation. Then, if the
dynamics of the relevant degrees of freedom is chaotic, it
is impossible to concentrate enough energy on a particular
bond so as to break it selectively. This is so because the
state (or density matrix) with only that bond highly excit-
ed is a tiny subspace of the Hilbert space, just as the ice
cube in boiling water was located in a tiny fraction of the

classical phase space. In that situation, nearly every
dynamical evolution must miss the mark.

ACKNOWLEDGMENTS

I am grateful to Mario Feingold for supplying the ener-

gy levels and the various matrix elements used in the nu-

merical examples. This work was supported by the
Gerard Swope Fund, the Lawrence Deutsch Research
Fund, and the Fund for Encouragement of Research at
Technion.

tV. I. Arnol'd and A. Avez, Ergodic Problems of Classical
Mechanics (Benjamin, New York, 1968).

2E P Wigner Phys Rev 40 749 (1932)
H. J. Korsch and M. V. Berry, Physica D 3, 627 (1981).

4M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros, Ann.

Phys. (N.Y.) 122, 26 (1979).
5W. E. Lamb, Jr., Phys. Today 22 (4), 23 (1969).
G. Casati and I. Guarneri, Phys. Rev. Lett. 50, 640 (1983).
J. Ford, in Fundamental Problems &n Statistical Mechanics,

edited by E. G. D. Cohen (North-Holland, Amsterdam, 1975),
Vol. III, pp. 215—255.

M. V. Berry, in Topics in nonlinear Dynamics, edited by S. Jor-
na (AIP, New York, 1978), pp. 16—120.

M. Henon and C. Heiles, Astron. J. 69, 73 (1964).
M. Feingold and A. Peres, Physica D 9, 433 (1983).

~tM. V. Berry, in Chaotic Behaoior of Deterministic Systeins,

Vol. 36 of Les Houches Summer School Proceedings, edited

by G. Iooss, R. H. G. Helleman, and R. Stora (North-
Holland, Amsterdam, 1983).
I. C. Percival, J. Phys. B 6, L229 (1973).

tsA. Peres, in Quantum Chaos, edited by G. Casati and J. Ford
(Plenum, New York, 1984), and references therein.
G. Hose and H. S. Taylor, Phys. Rev. Lett. 51, 947 (1983).
L. G. Yaffe, Rev. Mod. Phys. 54, 407 (1982).

~6K. G. Kay, J. Chem. Phys. 79, 3026 (1983).

A. Peres, Phys. Rev. A 30, 504 (1984).
A. Peres, Phys. Rev. Lett. 49, 1118 (1982).
G. N. Fleming, Nuovo Cimento A 16, 232 {1973).
M. Feingold, N. Moiseyev, and A. Peres, Phys. Rev. A 30, 509
(1984).
A. Peres {unpublished).

N. Moiseyev and A. Peres, J. Chem. Phys. 79, 5945 (1983).
D. Finkelstein, in Paradigms and Paradoxes, edited by R. C.
Colodry (University of Pittsburgh, Pittsburgh, 1.971), Vol. V;
reprinted in Logico Algebraic A-pproach to Quantum Meehan
ics, edited by C. A. Hooker (Reidel, Dordrecht, 1975), Vol. II,
pp. 141—160.

24A. Peres, Am. J. Phys. 52, 644 {1984).
A. H. Zewail, Phys. Today 33 (11),27 (1980).
W. M. Gelbart, S. A. Rice, and K. F. Freed, J. Chem. Phys.
52, 5718 (1970).

z7D. W. Oxtoby and S. A. Rice, J. Chem. Phys. 65, 1676 (1976).
E. J. Heller, J. Chem. Phys. 72, 1337 (1980).

2 E. J. Heller, E. B.Stachel, and M. J. Davis, J. Chem. Phys. 73,
4720 (1980).
D. W. Noid, M. L. Koszykowski, and R. A. Marcus, J. Chem.
Educ. 57, 624 (1980).
R. Ramaswamy, P. Siders, and R. A. Marcus, J. Chem. Phys.
74, 4418 (1981).

32N. Moiseyev, J. Phys. Chem. 87, 3420 (1983).


