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Dielectric reciprocity theorem analogous to the Betti-Maxwell theorem
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A reciprocity theorem is stated which applies to a dielectric medium at rest polarized by one or

the other of two systems of charges. Its formulation is similar to the Betti-Maxwell reciprocity

theorem for elastic media.

I. INTRODUCTION AND FORMULATION

For elastic media, a simple reciprocity theorem exists,
known as the Betti-Maxwell theorem. ' This theorem
was applied to a particular case by Maxwell, ' and was
then formulated in a general way by Betti: "Consider
two equilibrium states of the same elastic body. The work
of the external forces of the first state in the field of dis-
placements of the second one, equals the work of the
external forces of the second state in the field of displace-
ments of the first one." So, this statement applies to the
deformation of an elastic body alternately subjected to the
stationary mechanical action of two other bodies X and F.

It will be shown now that a similar statement exists for
a dielectric medium which is alternately subjected to the
stationary polarizing fields of two systems of charges.
This statement is based on the hypothesis [hereafter re-
ferred to as (C)] of a linear dependence between the polari-
zation and the electric field, and it may be formulated in
the following way.

A dielectric medium N is considered, with arbitrary
fixed shape, and maintained at a uniform temperature T.
X need not be considered isotropic or homogeneous.
Then for any charge systems X and Y, the interaction en-
ergy of X with the dielectric N polarized by F alone, is
equal to the interaction energy of Fwith the dielectric po-
larized by X alone.

Denoting the interaction energy of two bodies A and 8
by V[A,B], and adopting the notation N(A) to represent
the dielectric N in its stationary polarization state induced
by A alone, the reciprocity relation is written

V[XN ( F)]= V [Y N (X)] .

II. DERIVATION OF THE RECIPROCITY
RELATION (1)

(i) Let us consider first the simplest case of a thin
dielectric slab, with perpendicular uniform polarization
P~ or P~, produced by a uniform external field Ex or
E~. I-et E=Ex+E~ be Maxwell's total electric field,
sum of the fields created by X, and the dielectric. In this
case, the electric displacement D=eE=e(Ex+E~~x~) di-

vided by eo coincides with the external field E~, so that
2we have a linear relation Px (Ep Ep/e)E—~—[or—similarly,

2Py=(Ep —E'p/6)Ei ] between the polarization vector and
the external field. Relation (1) is easily obtained in this
case, since

V[XN(F)]= —f Ex.

Perdu

(Ep —t'p/e')Ex ''Ei dU
N

is symmetrical with respect to X and Y.
In the general case considered in the Introduction,

where the dielectric N has an arbitrary shape, the relation
2Pz ——(ep —ep/e)Ex is no longer valid, and no other general

relation links the local values of Pz and Ez. Neverthe-
less, relation (1) may be established in the following
manner.

(ii) It is known ' that the free energy of a dielectric N
having an arbitrary shape, and any stationary polarization
N(A), induced by A, is

Ftt(a) =Ftt(p) 2V[A»(A—)] ~

where F~~p~ is the free energy of N nonpolarized. Though
relation (3) remains valid when N is only part of all the
dielectrics present —which means that the body A may
contain dielectrics —we will restrict (1) to the case where
X and Yare systems of fixed charges.

To establish the reciprocity relation, we do not consider
the dielectric N in the presence of one or the other of the
charge systems X and Y, but in the simultaneous presence
of both X and Y; let us denote by XU YUN the compos-
ite system consisting of X and F and the dielectric N.
Among the infinite number of fictitious polarization
states g conceivable for N, the true polarization state
N(XU F) induced by X and F, corresponds to the lowest
value of the free energy F=FXUi Utt of the whole system.

Specifically, we will state that the total free energy
F(gi ) corresponding to the true polarization state
gi N(XU Y) is low——er than the free energy F(gi) corre-
sponding to the fictitious polarization state gi which
would result if the charges in X were multiplied by A, . A
suitable notation for the polarization state gi is
N(AXU Y), where AX represents the charge system in
which the charges occupy the same positions as in X, but
are multiplied by iE.

Thus, for any choice of A,

F(ki) &F(4»
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and consequently Replacing A, by 1 in the derivative

(4)

Fttt(ixu r) =F~(o)—& V[N(AX U Y)~AX U Y] (7)

The interaction energies occurring in F(gi ) and

FN[~U z~ may be broken down according to the principle

(C) of superposition of polarizations:

In (4), the total free energy F:Fx—uru~ may be broken

down into the sum of the internal free energies F»,Fr,F+
of the three bodies, and the mutual interaction free ener-

gies, glvlng

F(gi) =Fxur+F [XU Y N]+FN,

=Fx+F[X,Y]+Fr+F[XU Y,N]+F~,
or more precisely

F(4)=Fx+Fr+Ftt(ixu r)

+F[X,Y]+F[XUY,N(~U Y)]

since N is considered in the polarization state N (AX U Y).
Because X and Y are fixed systems of charges, there is

no correlation entropy between them (S» r ——0), and they
have no correlation entropy with the dielectric
(Sxu r & ——0). Thus, the interaction free energies

F= V TS in (5) re—duce to the interaction energies V

F(g), ) =Fx+Fr+FN(zxur)

+ V[X, Y]+V[XU Y,N (~U Y)] .

F~(incur)

is the free energy of the dielectric when its

polarization is generated by the systems AX and Y.
Therefore, its value is given by Eq. (3), when the charge
system A is taken to be ~U Y in this relation. Thus

, —V[—XN(Y)]+ , V [—YN(X)]

calculated from (10), (4) is expressed as

, V[X,—N(Y)]+—,
' V[Y,N(X)]=0,

which is (1).
We notice that, apart from several direct applications of

the linear, hypothesis (C), this demonstration requires only
relation (3) [for the obtaining of which hypothesis (C) has
also been used through a Giintelberg's charging process].

III. CONCLUSION

The similarity between (1) and the Betti-Maxwell
theorem is not surprising, when it is recalled that the
Betti-Maxwell theorem also originates from a linear hy-
pothesis, similar to (C). This hypothesis postulates the

linear dependence of the stress tensor T and the deforma-

tion tensor E and is used in the derivation of the
Clapeyron's theorem —which could be compared to (2)—
through which Betti-Maxwell's is often demonstrated. '

Property (1) can even be applied to a single polarizing
system of charges X, moving slowly: An elementary dis-
placement of X may be considered as the result of the su-

perposition on X(t) of a tiny additional system 5X of
charges. Application of (1) to the bodies X and 5X leads
to the relation

—f P 5E»dv = —f 5P Exdv, (11)

between the polarization ' P and the field Ex created by
X. Formula (11)yields again" the known relation'2

and

V[XU Y N(AXU Y)]=A V[XU Y N(X)]

+ V[X U Y,N(Y)] (8)

5(F»u)v —Fx)= — P 5Ex dv
N

since (3) implies

5(F»ux Fx) =5( 2 V [»—N])

V[N(~U Y),AXU Y]=A,'V[N(X), X]+A,V[N(X), Y]

+AV[N(Y), X]+V[N(Y), Y] .

When Ftt(ixur) is replaced in (6) by its value resulting

from (7) and (9), and the value (8) of V[XU Y,
N(AXU Y)] is used, the following expression of the total
free energy F(gi) is obtained:

F(gt ) =Fx+Fr+F~(0)+ V[X,Y]

+A,(1—A, /2) V[X,N(X))+ —,
' V[Y,N( Y)]

+ (1—A, /2) V[X,N ( Y)]+(A, /2) V[Y,N (X)] . (10)

—f P 5E» dv —f 5P.E» dv

Theorem (1) is useful whenever a system
M =XU YU of charges, consisting of several parts
X, Y, . . . interacts with a neighboring dielectric X: In the
computation of the interaction energy, relation (1) may
then be used to simplify the sum

V [X,N(Y)]+ V [YN(X)]

occurring in V [M,N], to a single term 2 V[X,N ( Y)]. For
instance, there already exist applications of (1) to a mole-
cule M =XU YU. . . surrounded by a dielectric solvent

N, or to a molecule X surrounded by a solvent N placed
in an external field Er.
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