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Algorithmic complexity theory is used to discuss the degree of randomness of the sequence of energy

eigenvalues of conservative quantum systems.

The identification of the features of conservative, finite
quantum systems whose classical limit is chaotic (QCS) or
integrable is of great interest for the foundations of quan-
tum statistical mechanics and for several applications.

Here, we will consider the possibility to distinguish
between these two categories of quantum systems just by
looking at the sequence of eigenvalues. This last point is
quite controversial. Some arguments based on numerical
computations!=5 lead to the conclusion that for QCS there is
level repulsion and this is taken as an indication that the
levels are not at ‘‘random;” on the other hand it is claimed
that, for integrable systems there is no level repulsion, and
that the nearest spacing distribution follows the Poisson
law;%7 this may suggest that levels for integrable systems
are, in some sense, more random.

Connecting disorder in quantum mechanics with the de-
gree of randomness of the sequence of eigenvalues may be
a fruitful research program, but all its chances rely on the
possibility of removing that intriguing notion of randomness
from the sphere of one’s private feelings into a more objec-
tive domain.

While ‘“‘random” is a quite useful word, giving it an
operational, objective meaning is an open and perhaps un-
solvable problem, and so is not our aim here. Nevertheless,
we adhere to a point of view originated by the works of Kol-
mogorov® and Martin-Loef,® and lately advocated by
J. Ford,!° and submit that an algorithmic complexity theory
can bring substantial clarification to this particular problem.
This theory does not provide, in general, an effective test
for randomness of given sequences; yet, it can sometimes
enable us to say that certain sequences are not random.

In this paper we deal with one such case. We consider an
example of an integrable system for which analytical argu-
ments and numerical results® indicate that the corresponding
level spacing distribution obeys the Poisson law P(s)=¢~*
and we show that the sequence of spacings has zero algo-
rithmic complexity. The proof we give seems to be quite
easily generalized to a much broader class of integrable sys-
tems.

We have no idea as to what could be said about the com-
plexity of the eigenvalues of nonintegrable systems. As a
matter of fact, very little is known at present about the
spectral features of this class of systems. Nevertheless,
there are now reasons to believe that random matrix theory
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may yield a model for ‘‘chaotic’’ behavior. In particular,
statistical tests performed on ‘‘chaotic’’ billards gave results
analogous to the Gaussian orthogonal ensemble. So, it
seems useful to inquire about the complexity of the eigen-
values of a random matrix, in order to get a term for com-
parison for the, albeit particular, result obtained for an in-
tegrable billard. As a matter of fact, we show that the spec-
tral sequence of a random matrix in the orthogonal circular
ensemble has positive complexity.

Let us consider a billard ball in a rectangle with incom-
mensurate sides.

The eigenvalues, in suitable units, are given by

Epm=am?+n? (a>1) . 1

Let us rearrange the double sequence E,, in increasing
order, thus obtaining the sequence Ey. Since in this case
there are no degeneracies, from Weyl’s formula we know
that (asymptotically)

47
Ey——N ,
N4
where A is the area of the billard. Therefore, the sequence
of spacings sy = Ey — Ey—1 has the property that

S 4w
lim N lgl §=—=5 .
A beautiful argument by Berry and Tabor,® supported by
numerical computations, shows that the statistics of the se-
quence s, should yield a Poisson distribution. This suggests
the possibility that levels come at random as in a Poisson
process. Of course, the knowledge of the spacing distribu-
tion alone is not sufficient to answer this question: much
more detailed information concerning the correlation
between different spacings are needed.

From the point of view of algorithmic complexity theory,
a distinctive property of a random sequence of numbers Ay
such as, e.g., the spacings in a ‘‘typical’’ Poisson sequence,
is the following: any sequence of integers Iy obtained by
truncating Ay with sufficiently high precision and to some
maximum value has positive complexity—in other words,
the Kolmogorov complexity!! of finite strings of Iy's of
length L is asymptotically — const L.

In the following we show that the sequence s, has zero
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complexity, in the sense that the above constant is zero for
any truncation. To this end we will devise an algorithm
which gives the Nth eigenvalue Ey to within a given pre-
cision A and show that the required program length in-
creases asymptotically as InN.

The algorithm can be divided into two steps. The first
provides E,,, for 0= m,n=<K(N). The second step rear-
ranges the K2(N) numbers E,, in increasing order thus
obtaining the string E,[n < K2(N)].

The number K (N) must be chosen in such a way to en-
sure that

E/j=E; for /=N .

The length of the program needed for the above is, basical-
ly, the length needed to specify (1) the number K (N) and
(2) the irrational number o with the accuracy required to
compute the eigenvalue Ey with precision A.

One way of finding K(N) is illustrated in Fig. 1. K(N)
can be any integer such that the curve H = Ey lies com-
pletely inside the square of side K (N). Therefore, we may
assume K(N) = [/Ey]+1, where [ ] denotes the integral
part. By looking at the dashed triangle we see that
[(a~1Ey)Y?]2 < 2N whence /Ey < Va(1+~2N). There-
fore, one possible choice of K(N) will be just
2+ [Va(1++2N)).

As to the second point, the error in computing E,,, is
3E,,,=8am? Since m?>< K*(N) one has that 8E,,, <A if

<_A _ A
K*(N) 2N

This shows that in order to compute N eigenvalues with
precision A the number of digits in a must increase as In/N.
Therefore, the minimum program length required to com-
pute N eigenvalues within A increases no faster than const
In, N, and the sequence of eigenvalues is not random.

Our construction seems easily generalizable to a wider
class of integrable systems. In particular, the following con-
ditions seem sufficient in order that the same conclusion
holds: () H(I,,...,1I,) is a smooth function of algebraic
growth at infinity; (ii) the ratio of the volume Vg of the

da

m
[VE ]+ ——r e : .
+ + + + + o+ + + + +
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F o+ + + + 4+ 4+ 4 + 0+ + A
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Fo+ + + 4+ o+ o+ 4 + + o+

F +~ + + +/+01+ + + + + + A
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n

[VE,]+1

FIG. 1. Illustrating the choice of K (N).

smallest hypercube containing the hypersurface H = E to the
volume Sy of the region where H =< E, is bounded.

Independently of the above conclusions, empirical statisti-
cal tests commonly used in nuclear physics, such as the A;
Dyson-Mehta statistics, might be applied to the present
case. These tests involve an ‘‘unfolding’’ procedure, and
are sensitive to the particular choice of the ‘‘smoothed”’ lev-
el density used in that procedure. Our result holds, in-
dependently of this choice, as long as the ‘‘smoothed’’ den-
sity is a computable function and introduces no complexity
of its own in the algorithm. On the other hand, it seems
hardly reasonable that this requisite of computability of the
smoothed density can be dispensed with, whatever defini-
tion of the latter one may wish to adopt.

It is a known fact that sequences of eigenvalues of ran-
dom matrices look quite different than, e.g., Poisson se-
quences. They are much more ‘‘rigid>’ because of correla-
tions between different levels. This is particularly apparent
in the orthogonal circular ensemble &, which consists of
symmetric unitary matrices of rank N, whose eigenvalues
are distributed on the unit circle according to the density

o) =Cv  TI  1e"/—e"k] 1))

Isj<K=<N

WN(gl: ..

with Cy a normalization constant. Wy has a maximum
Wy,= CyeNInN/2 when the 8, are equally spaced and, there-

fore, are very regularly distributed.!? On account of the re-
gularity of this ‘‘most likely’’ configuration, one might con-
jecture that the string obtained by ordering the 6, is a some-
what “‘ordered’’ string. Then, suppose that {8, ... ,0x}
are measured in units of the average spacing 2w/ N with an
approximation 8. (In the sequel we take 8=1.) By order-
ing them, we get a string of N integer numbers, ranging
from 1 to N. We are going to investigate the complexity of
this string for N — co.

For given N, the total number 4 » of nondecreasing
strings of length N, that one can form by using numbers
from 1 to Nis

_ _Q@QN-1)!
Ay NUN—-1)!

The maximum complexity of one such string is, asymptoti-
cally,

O(ln; #¥)=0(N)

3

The number of strings with complexity not exceeding
In, #y—1is, <<27!'*1 #}, and the statistical weight of the
matrices in &y associated with such strings is
uy=2"'*! #non where oy is the maximum probability of
one string. Suppose that we can find y, 0 <y <1, such
that # Joy— 0 for N— oo (A yoy=1 be definition).
Then assuming I=Iy=(1—%)In; #y we find uy(ly)
<24 %o y— 0 exponentially as N — oo, meaning that, for
large N, the overwhelming majority of matrices in &y will
give strings of complexity greater than y In, A4y, i.c., of the
same order, as N — oo, as strings of maximum complexity.

This y we can actually find. For any given string
{x1, . .., xy} we have

Prob{x;, . . ., xn}

=N!fA1d01 st fANdBNW(gl' [ ,BN) >



RAPID COMMUNICATIONS

1588 CASATI, GUARNERI, AND VALZ-GRIS 30

where A, are intervals in (0,27) of width 2#/N. There-
fore, we may assume

O'NsN'

N
—21%] CreNmv2 @)

Using the known expression for C,, (Ref. 12)
1

Com= Sam

in inequality (4), and relation (3) we find that #"}oy— 0
for N— oo provided that 0 < y < %—lnz (2e/w).

Thus, we have shown that most matrices in &y have
eigenvalues with asymptotically maximal complexity.

If now one is willing to accept the idea that statistical
properties of the eigenvalues of a random matrix reproduce
somehow analogous properties of eigenvalues of chaotic sys-
tems, then the sense of our whole discussion is that in order
to operate a distinction between integrable and chaotic sys-
tems, according to the different degree of randomness of
their eigenvalues, one must consider the eigenvalues of
classically chaotic systems as being generally more random
than those of integrable systems. The important question
remains open, whether any such distinction is possible at
all, at least generically.
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