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Degenerate four-wave mixing has been suggested as a possible generation scheme for squeezed-state
light. A recent analysis of the quantum effects of probe-conjugate loss in backward degenerate four-wave
mixing has shown that such loss puts an absolute limit on the squeezing that can be obtained via this gen-
eration scheme. In this Rapid Communication we show that it is the counter-propagating beam geometry
of backward degenerate four-wave mixing that makes it ill suited for squeezed-state generation. On the
other hand, the nominally copropagating beam geometry of forward degenerate four-wave mixing is shown
to alleviate the absolute probe-conjugate loss limit on squeezing.

I. INTRODUCTION

Degenerate four-wave mixing (DFWM) has been suggest-
ed by Yuen and Shapiro as a possible source for squeezed-
state generation. ' Their model was a simple extension of
the classical description of DFWM given by Yariv and
Pepper. 2 Quantizing only the probe and the signal beams
while retaining classical descriptions for the pump beams
and the nonlinear medium, they showed that a two-photon
coherent state (TCS) (essentially a minimum uncertainty
squeezed state) is obtained by a 50/50 combination of the
phase conjugate reflected beam and the transmitted probe
beam from backward DFWM. A recent analysis by Bon-
durant, Maeda, Kumar, and Shapiro has shown that probe-
conjugate loss puts an absolute limit on the squeezing that
can be obtained via backward DFWM. Since then Reid
and Walls have given a fully quantum-mechanical treatment
of backward DFWM. 4 Their analysis neglected the spatial
propagation effects and showed that pump-induced spon-
taneous emission limits the amount of squeezing achievable.
In this Rapid Communication we show that the absolute
limit on probe-conjugate loss is because the preceding work
all addressed backward DFWM, which has a counterpro-
pagating beam geometry. This geometry is ideal for correct-
ing phase aberrations via conjugate wave generation, but is
i11 suited for squeezed-state generation because of the
aforementioned probe-conjugate loss limit. We show that
forward DFWM, which has a nominally copropagating non-
planar beam geometry, removes the absolute probe-
conjugate loss limit. Such an interaction geometry has been
applied recently in studies of pressure-induced four-wave
mixing interactions. 5

In Sec. II we start with a classical analysis of forward
DFWM. It is well known that large nonlinearities are ob-
tained when the operating frequency is chosen near an
atomic or molecular resonance. Therefore, in Sec. III, we
develop a semiclassical treatment of forward DFWM in an
atomic medium consisting of an ensemble of stationary
two-level atoms. In Sec. IV we quantize the electromagnetic
fields and examine the squeezing behavior of the output
beams.

II. CLASSICAL EQUATIONS

E, ( r, t) =TAJ(r&) exp[i(cut k& r )—]+c.c.

where r& denotes the distance measured along k&. Following
Yariv and Pepper we can derive the following equations for
coupled modes 1 and 2:

dA ) „F2'= —i~"A2, =iKA)
dz dz

(2)

where K is the nonlinear coupling constant given by (mks
units)

K = coX A 324/2cnpcos—
2

is the third-order susceptibility of the nonlinear medi-
um, c is the speed of light in vacuum, and no is the back-
ground refractive index. Equation (2) has the following
solution:

2 ~ ( z) = cosh ( I K
I
z )A, (0) —i sinh ( I K I z )A 2' (0)

K
(4a)

A2' (z) = cosh(Ix Iz)Aq' (0) + i sinh(IvIz)A ~(0), (4b)

in terms of boundary conditions at z = 0.

k)

from the z direction, determining a plane H The pump
waves of wave vectors k3 and k4 also nominally propagate
along the z direction; k3 and k4 are obtained from k i and
k2 by rotating the plane %along the VS" axis. With this
choice of wave vectors we note that k~+ k2= k3+ k4, i.e.,
the phase-matching condition is satisfied.

The fields are taken to be copolarized plane waves of an-
gular frequency cu

Consider the geometry shown in Fig. 1. Two weak waves
of wave vectors k~ and k2 propagate at small angles +$/2 FIG. 1. Forward DFWM geometry.
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III. COLLISIONLESS TWO-LEVEL MEDIUM

We now consider an ensemble of stationary two-level
atoms forming the nonlinear medium. The atoms are
characterized by a dipole moment, p, , and longitudinal and
transverse relaxation times T] and T2, respectively. Follow-
ing Abrams and Lind7 we obtain the following equations for
the coupled modes 1 and 2:

da)
dz

which has the following solution for a z =0 to z = L interac-
tion:

classically. They also describe the medium by a classical
third-order susceptibility. Using their approach for our for-
ward DFWM geometry we replace Eq. (2) with

da2 = lKa& (io)
dz

dA ) „dA2= —yA~ —iK"A2, = —yA2 +iKA~
dz

'
dz

a~(L) = pa~(0) —iva2 (0)

a2 (L) = p, az (0) + iv'a)(0)

(1 la)

(i ib)
where

Ap Qj (1+5') 1

n cup [1+5 + (lA3l + lA4l )/A']' cos(qb/2)

and

(6)

Here p, = cosh( f » l L ), v = e '~ sinh( l» f L ), » = f» f
e'~, a~ (0)

and a2(0) are the input field operators at z=0. The out-
puts at z = L are combined through a 50150 beam splitter to
generate two new modes described by annihilation operators
c and d such that

~0 et) (5+ i) 2A3A4

n ~0 [1+5 + (lA3l + lA4f )/A ] A cos(@/2)
c = [ a, ( L) —i a 2 ( L) ]/2'i',
d = [aq (L) + ia2(L) ]/2'i2

in terms of which the solutions become

(i2a)

(i2b)

where 6= (cu —coo) T2 is the normalized detuning from line
center, A,2=t /T~T2p is proportional to the line-center sa-
turation intensity, oJp is the atomic transition frequency,
ao=p'ANOT2cuo/2eocil is the line-center small signal-field
attenuation coefficient, ANo= (N~ —Nq) is the equilibrium
population difference in the absence of the applied fields, n

is the saturated refractive index given by

2cl'oc n(I+ S')
c ~ [I + z + ( lA3f'+ IA4f')/A ']'

n cv
2 2

c2

and k is the magnitude of the propagation vectors in the
medium. We note that the pumps are nominally copro-
pagating, so that no spatial averaging along the pump direc-
tion is required. Such averaging drastically reduces the
DFWM reflectivity in the conventional counter-propagating
pumps geometry. 7

Equation (5) yields the following solution:

c = p, c;n —v cin. d = p din+ & din

where

c;„=[a ~ (0) —ia2 (0) ]/2'i2

d~„= [a, (0) + ia2 (0) ]/2'i'

(i4a)

B. DFWM in a lossy medium

It was shown in Sec. IVA that modes c and dare in TCS.
Let us concentrate on the quadrature noise behavior of
mode c. Let c~= (c+ c )/2 and c2= (c —c )/2i be the in-

phase and out-of-phase quadratures of mode c, respectively.
Then from Eq. (13) one can show that the quadrature vari-
ances are

are annihilation operators describing field modes obtained
by linear combination of the input modes to the four-wave
mixer. Because fp f~ —fv f2= 1, it follows that c and d are in
TCS if a~(0) and a2(0) are in coherent states (CS).

A~(z) = e ~* cosh(f»fz)A, (0) —i sinh(f»fz)A2'(0) (& P ) =—(( —( ) )') = lp — l'/4, (15a)

(9a)

A, (z) = e-~ i
" sinh( f» f z) A, (0) + cosh( I» I z) A, (0)

(9b)

in terms of boundary conditions at z = 0.

IV. SQUEEZED-STATE COGENERATION

A. Lossless case

In giving a quantum treatment of backward DFWM,
Yuen and Shapiro' replace the complex field amplitudes A&

and A& with the photon annihi1ation and creation operators
a& and a&, respectively, for j=1,2. They assume that the
pump fields A3 and A4 are strong and hence can be treated

«/) —= &( —&»)') = fp+ f'/ (isb)

when a~(0) and a2(0) are in CS. Thus arbitrarily large
squeezing is obtained in ct when fv f is made arbitrarily large
with p, v' real and positive. Large values of fv f have been
shown to be obtainable in resonant media, such as described
in Sec. III.9 An inspection of Eqs. (6) and (7) together with
the defining equations for p, and p shows that a large value
of fv f is necessarily accompanied by a large value of y, the
loss per unit length in the medium. We follow the approach
of Bondurant et al. 3 to analyze the effect of this probe-
conjugate loss on the squeezing obtainable via forward
DFWM in a resonant medium.

We note that Eq. (10) can be obtained from the effective
interaction Hamiltonian

Hi=tv(»a&a2+» a2a~ )

using the Heisenberg equations of motion and then convert-
ing the temporal differential equations into spatial differen-
tial equations by the change of variable z = ut.
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2

+i( g a, x K('i(('+ a,' g K(b/'
g ]. I 1 I 1

(17)

where KI represents the coupling between the modes of in-
terest, i.e., a~ and a2, and the loss oscillator modes. From
Eq. (17), we obtain two coupled spatial differential equa-
tions for the slowly varying operators a~ and a2.

dai = —yat —i(('az + Gt(z)
dz

da2 = —yaz +i~a(+ G2 (z)
dz

(18a)

(18b)

where y is the loss per unit length and G, (z), s=1, 2 are
Langevin noise operators obeying

f 2

ya, (z) = v g IK(l a, (z') e xp[i ( 0((—(v)(z' —z)/ ]vdz';
I

s=1, 2

and

(19a)

G (z) = X K(bI (0) exp[i (cu —co()z/v ]; s = 1,2, (19b)

respectively. These noise operators, under the Wigner-
Weisskopf approximation, obey the commutation rule

[G, (z), G (z')]=2y8 5(z —z') for ss'=1, 2 . (20)

The set of Eqs. (18) can be integrated with the result

a((L) = e ~ [pat(0) —ivaz (0)]+I t

a2 (L) = e " [i v"a((0)+ p, az (0)]+r',

where

I't = e ~'~ ' '[cosh[I~ I(L —z') ] G((z')dp
—ie (~ sinh[le I (L —z ) ] Gz (z')) dz'

(21a)

(»b)

In order to account for probe-conjugate loss quantum
mechanically we adjoin the system of Eq. (16) to two reser-
voirs of loss oscillators' described by annihilation operators
b(, for I = 1 to ~ and s = 1, 2. The total effective interac-
tion Hamiltonian can therefore be written as

Hg = tv(Ka(az+K azat )T

where

I „=(I', +I ()/2, I zz= (I'z —I'2)/2i

+ ~exp[ —2(y —IKI)L] I—1 y(2N+ 1)
(25b)

where N measures the initial excitation of the reservoir
modes, i.e., N= (bf (0)b ((I0)), and is assumed to be the
same for all the modes.

Several cases of interest can now be considered.
(i) y=0, i.e. , the zero probe-conjugate loss limit, in

which Eq. (25) reduces to Eq. (15) and ideal squeezing is
obtained.

(ii) y A 0, y ( IKI, and L » 1/(ly —I~l I). In this limit
(he]) ~ and (Ac)') y(2N+1)/4(y+ I~I), i.e. , for a
given N ideal squeezing can be obtained by making

Though it should be noted that pump induced
spontaneous emission noise will limit this squeezing as is
the case in backward DFWM as shown in Ref. 4.

(iii) y & I~ I and L && 1/(y —IK I). In this limit
(he() y(2N+1)/4(y+ I~l) and (he/) y(2N+1)/
4(y —IK I). For N = 0, i.e., when the loss oscillators are ini-
tially unexcited, we get (Ac/) =y/4(y + IKI) 4 and

(hcz2) =y/4(y —l~l) ~ for y && I((l. This result is ex-
pected here because loss totally dominates the nonlinear
coupling and any quadrature noise asymmetry caused by the
latter is swamped by the fluctuations introduced by the
former. In the case of y= IKI, a squeezing factor of 2 is
still obtained in (he)). The uncertainty product

K
(Ac/)

(bc]�)

= (2N+1)2/16 1—

and we have chosen pump phases such that 8=0. After
substituting Eqs. (22a) and (22b) into Eq. (24) and evaluat-
ing the appropriate moments, we get

( ( )
y(2N+1)
4(y+ IKI)

+ 4 exp[ —2(y+ IKI)L] 1—1 y(2N+ 1)
(y+ I.I) (25a)

and

y(2N+ I)
4(y- I.I)

pL
I z=„e "~ '

(
—ie (esinh[l~l(L —z )]Gt (z )4 p

(22a) implying that a squeezed state which is not a minimum un-
certainty state is generated. Also, since for our choice of 8,
p, v' is real, this state is not a TCS either. "

and

c = e &L(p, c;„vc;„)+ (I', ——iI 2)/2' '

e
—2yL

(hc/ ) = (p. —v)'+ ~((I ((+ I 22)')
4

(23)

(24)

+cosh[IKI(L —z')]G2(z')]dz' . (22b)

The loss per unit length, y, appearing in Eq. (19a) is nu-
merically the same as that in Eq. (6) for a medium consist-
ing of stationary two level atoms. Operator equation (21)
reduces to the classical equation (5) when expectation
values are taken.

To calculate the effect of probe-conjugate loss on squeez-
ing, we construct new modes as in Eq. (12) and evaluate
the quadrature variances. As an example,

V. DISCUSSION

The results of Sec. IV show that the DFWM beam
geometry plays an important role in determining the squeez-
ing that can be obtained in a realistic experiment. The non-
linear coupling introduces quantum noise asymmetry
between the quadratures of the interacting modes. In
DFWM this asymmetry is between the quadratures of two
different modes and mode mixing at the output of the
DFWM interaction is required to obtain new modes, whose
two quadratures show this asymmetry. Probe-conjugate
loss, on the other hand, introduces independent fluctuations
into the two quadratures which are coupled via the non-
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linear interaction, thus tending to equalize the observed
output beam quadrature f1uctuations. The latter is the
result of case (iii) in Sec. IV, where loss dominates the non-
linear coupling.

In the counterpropagating geometry of backward DFWM,
the interaction at any point couples forward and backward
going waves. Because of loss, each of these waves has suf-
fered the noise-symmetrizing effect noted above. It is the
combination of the loss with the nonlocal nature
(forward/backward wave coupling at all points in the in-
teraction medium) that is responsible, we believe, for the
severe loss limit on backward DFWM squeezed-state gen-
eration. On the other hand, in forward DFWM only for-
ward going waves are coupled. Although loss injects a sym-
metric noise contribution at each point in the interaction
medium, the nonlinear interaction from that point to the
end of the interaction squeezes that noise contribution.
Thus, with the forward interaction and gain coefficient in
excess of the loss coefficient, the only fundamental limit on
achievable forward DFWM squeezing will be due to pump
induced spontaneous emission. Indeed, our view of the
physics of this problem is supported by Yuen's loss analysis
for DPA squeezed-state generation, which shows that in
that forward going three-wave interaction arbitrary squeez-
ing is obtained for any y and N so long as ~~ ~

can be made

arbitrarily larger than y.
In summary, forward DF%M appears more promising

than backward DFWM as a squeezed-state generator. It is a
phase-matched interaction with no fundamental limit on
squeezing due to probe-conjugate loss. Moreover, we ex-
pect there will be differences in the limits on obtainable
squeezing set by pump-induced spontaneous emission in
forward and backward DFWM, because of the different
physics of their spatial propagation characteristics, as
described above. Furthermore, since all the beams are pro-
pagating in roughly the same direction, the interaction is not
velocity selective. The participation of all velocity groups
results in a very large nonlinear interaction. Both experi-
mental and theoretical investigations of forward DFWM
have recently been published. ' Phase conjugation and
sub-Doppler resolution due to strong saturation have been
reported.
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