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Momentum representation of Dirac relativistic wave functions
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A momentum representation of the Dirac relativistic wave functions for a hydrogenlike atom is obtained
in a simple form by means of Fourier transformation. The expressions given are convenient for analytic as
we11 as numerical applications.

The electronic momentum distributions in atomic systems
are needed in the calculations of inner-shell ionization cross
sections in a binary-encounter approximation, the problems
related to Compton profiles, and many others. The Fourier
transforms of nonrelativistic hydrogen functions and Slater
type orbitals are well known. ' However, in many of the
applications the relativistic effects are seen to be important,
for example, in low-energy inner-shell ionization. There-
fore, it is of interest to have the momentum representation
of Dirac relativistic wave functions convenient for analytic
work or numerical applications wherein self-consistency ef-
fects are not included. The momentum representation of
the Dirac relativistic wave functions has been considered
earlier by Rubinowitz, 4 who utilized the direct Fourier
transformation from configuration space and also by Levy, 5

who obtained the same results by solving directly the Dirac
equation in the momentum representation. However, the
final results were obtained by a complex form inconvenient
for numerical as well as analytic applications. Recently,
Komarov and Nankov obtained the wave functions con-
venient for numerical applications by means of Fourier
transformation. On the other hand, Lombardi has obtained
wave functions in a representation using variables p„p~,p@
which have been chosen properly conjugate to the appropri-
ate position variables. Following Weniger and Steinborn3 or
Komarov and Nanikov, one can easily get the momentum
representation of the Dirac relativistic wave functions.
However, Dirac wave functions have spin-angle functions
X"„(r) or X~(p) instead of simple spherical harmonic func-
tions yi (r) or yi (p) as compared to nonrelativistic or
Slater wave functions. This is to say that orbital angular
momentum l(~) which is integral goes over to nonintegral
l(y) in the radial equation of relativistic mechanics, s where

I

y = [~ —(uZ) ]' . This results in an expression which is
not in the form of terminating series unlike the nonrela-
tivistic expression. In this work we show that the resulting
expression can still be a terminating series if the expressions
are transformed appropriately. The final expressions ob-
tained are simple and convenient for analytic applications.
The Dirac wave functions for hydrogenlike atoms are given
by9, 10

g ( r ) X"„(r )

if(r )X"x(r )

G(p)x"„(p)
iF(p)x" „(p) (2)

where

ji(pr )g (r ) r dr

1/2 P oo

F(p) =i'—
7r

j;(pr )f ( r ) r2dr (4)

Here I = I( —~) = l —~/lKl and lKl =j+ —,'.
Following Weniger and Steinborn, we get

where g(r) and f(r) are upper and lower component radial
wave functions, respectively. X"„are the usual spin-angle
functions. The corresponding wave functions in the
momentum representation are given by

@"„(p ) = (2n ) e' " ' ' iii"„( r ) d r

E(l, n) =„rr+'i2e 0 Ji+~i2(pr) tFt( —n, 2y +1, 2por)dr

I (n+1)I (2y+1) i ti2 i ii2
" ( —2po)'T(l+ m+y+2), 2 ., t]q(i+ + ~2)

I (I+ 3 ) o I'(m+ 1)I'(n —m+ 1)I'(2y+ m+ 1)

x 2F, ((i+ m+ y+2)/2, (l —m —y)/2, l+ Y~,pz/(p2+ p$ ))

Using the identities" '

2Ft(a b a + b+ 7, 4z(1 —z)) =2F&(2a, 2b a+ b+ Tz) for lzl ~ (6)

d" (a).(b).
zFi(a, b, c,z) = " " 2Fi(a+ n, b+ n, c + n, z)

dz" c II

zFi(a, 2 —a, T, sin z) =3 ~ 2 sin[(2a —2)z]
a —1 sin2z
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FIG. 1. Calculated velocity distribution function f'(~) as a function of velocity v for 1s~~2 and 2s&~2 electrons in Au. Full curve Dirac re-
lativistic wave functions and broken curve nonrelativistic wave functions.

We get,
8 ( 2p )m(p2+ p2 ) 1/2(I+m+2+ 2)

K(i, n) = —I (n+. 1)I (2y+1)21/2n'/2p'+'/ x g
o I'(m+ 1)I'(n —m+ 1)I'(2y+ m+ 1)I (i —m —y) sin[7r(m+ y) ]

1x [sin[(m+ y)x) cotx+cos[(m+ y)x) ] (9)sinx dx

where x =tan '(p/po). Therefore, we have the final ex-
pressions,

G(p) = i'(I+a)'/ p ' (2po)1'-'C

x [ —n, K (i, n„—1) + (N —sc)K(l, n, ) ], (10)

F(p) = i'(I —~)'/'p '/'(2po)~

x [n,K(i, n, —1)+ (N —K)K(in„)]

I

plications.
For example, for K shell, we get,

G(p) = —(I+ &)' (p'+ po ) ' +" 'sin[(y+1)x], (13)
P

F(p) = — (I —p)1/2(p2+ p2 )
—tv+1&/2

sy

with the normalization condition

dp p ([G[ + [F[ ) =1

where
where

(y+ 1)cos[(y+ 1)x]— sin[(y+ 1)x] (14)

N = [(n, + (K [)'—2n„()~ (
—y) ]'/'

n, = radial quantum number = 0, 1, 2,

[(2y+ n, + 1)]' '(2po)' '
I (2y+1) [4N(N —~)r(n„+ 1)]' 2

I (y + 1)(2p )1'+' '
C=

2r'/'JI (2y+ I)
In the nonrelativistic limit, i.e., y 1 and e 1 we get

(2p )5/2

~1/2(p2+ p2 ) 2 (15)

po=, y= [K' —(~z)']' 'z
Nap

'

,=1+ (Z'
(n, +y)' (12)

It is evident from Eq. (9) that the expressions of Eqs. (10)
and (11) reduce to simple form for most of the practical ap-

which coincides with the nonrelativistic result.
Figure 1 presents the velocity distribution function f (v )

with the normalization condition ff(v)dv = 1 for 1st/2 and

2s~~2 electrons in Au. A comparison with nonrelativistic dis-
tribution function is also shown. It may be noted that
f (v ) 0 as v c (the velocity of light in vacuum) in the
relativistic case, whereas f(v) 0 as v ~ in the non-
relativistic case.
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