
PHYSICAL REVIEW A VOLUME 30, NUMBER 3 SEPTEMBER 1984

Spec&ral densi&y from nonlinear Fokker-Planck equations:
The high-frequency limit

J. J. Brey J. M. Casado and M Morillo
Departarnento de Fisica Teorica, Facultad de Fisica, Universidad de Sevilla,

Apartado Correos 1065, Sector Sur, Sevilla, Spain

(Received 24 April 1984)

Using a method introduced by Zwanzig, we study the power spectrum of a system described by a simple

nonlinear Fokker-Planck equation. The high-frequency region is analyzed, and the asymptotic behavior is

established.

The study of power spectra for nonlinear system has re-
ceived some attention in the last few years, especially in
connection with the broadband spectra characteristics of
nonperiodic flow regimes. The high-frequency part of those
spectra can often be fitted by power laws, but some contro-
versy has arisen about the exponent of the leading term in
the high-frequency limit. '2

We have recently reported some results about the
behavior of the spectral density in several limiting cases.
In those works, we have obtained expressions valid for a
broad range of frequencies and which fit very well the ex-
perimental data.

The purpose of this report is to show that the high-
frequency behavior of the spectral density for nonlinear sys-
tems can be studied in an exact manner. As a consequence,
we can establish that the high-frequency spectra of systems
described by first-order Langevin equations have an eo

behavior independently of the nonlinearity. This result is in
agreement with those of Caroli, Caroli, and Roulet' and it
seems to be at variance with the numerical solution reported
by Kawakubo.

Although the theory can be established in a general and
forrnal way, for the sake of simplicity we are going to con-
sider the following particular model. Let a system be
described by the variable x satisfying the first-order
Langevin equation

= —U'(x) + F ( t)
dt

where U'(x) is a nonlinear function of x and F(t) is the
noise term assumed to be Gaussian and 5 correlated. The
probability density f'(x, t) obeys the Fokker-Planck equation

rtf(xt) Df( )

where

D = U'(x)+u8 82

8Ã 9x

is the Fokker-Planck operator and a the diffusion constant.
Let us define the time correlation function

C (r ) = (x (r )x,'), = „dx xe' x,
'f ( t) (4)

One easily proves that

P'(t) =P(t)
On the other hand, it follows from Eq. (4) that

dC (v) dx xDe' x,'f ( t)
dv

(6)

The quantity e'ox, 'f (t) can be separated into two parts by
means of the operator P (t), i.e. ,

e' x('f(t) =P(t)e' x,'f (t)+ [1—P(t)]e' x,'f (t)
xr'f (t) C(7)+ [1—P(t)]e Dx,'f(t)

Although P(t) is a time-dependent operator, the variable t

plays the role of a parameter as long as the 7- evolution is
concerned. Then the standard procedure allows us to obtain

where x,'= x —(x), and the angular bracket with subindex t
means ensemble average at time t. It is our aim to study
the evolution of this quantity as a function of 7. We will
follow a method due to Zwanzig. Let us introduce an
operator P (t) as

x,'f (t)
P(t)G =, J dxxG

[1—P(t)]e' x,'f (t) = [1—P(t) ]e' " p ' x'f (t) + JI ds [I P(t)]e»~t —P~&&~DP (t)e&~ —~»x'f (t) (9)

Inserting (9) into (8) we get

x,'f (t) x,'f (t)e' xi'f(t) =, C(&)+ ~ »[I —P(t)]e' " '"'D, C(r —s)+ [1—P(t)]e' " t'~ x'f(t)&(x')') i
(10)

The last term in Eq. (10) identically vanishes as

P(t)x, 'f (t) =x,'f (t)
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Therefore, using (7), (10), and (11) we finally get

C(r)=, C(r) + '~ dsC(r —s) ldx(D„) [1—P(r)]e' " '"'Dx,'f (t)
dr ((x, )')

(12)

where we have introduced the adjoint Fokker-Planck opera-
tor

D = —U'(x) + n8 8
Bx

(13)

S(cu) =Re J dr e ' 'C"(r)
Laplace transform of Eq. (14) yields

C'"(0)[II'+d, ( )]
S(ru) =

[ II '+ 4, (cu ) ] '+ [cu + 4&; ( o) ) ] '

(17)

We want to notice that Eq. (12) is exact. In particular, no
hypothesis about the initial condition of the system has
been assumed. The projection operator P(r) has only been
introduced as a convenient tool in order to show that C(r)
obeys a linear equation. Furthermore, no hypothesis about
the projected quantities appearing in (12) is needed.

A particularly simple case corresponds to the equilibrium
time correlation function C'q(r) = (x(~)x),q. In this case,
the coefficients in Eq. (12) are expressed as averages taken
with the equilibrium distribution function. Namely, we get

dC"(r) = —II C"(r)+ J~ ds C&(s)C'"(r —s), (14)
dq. 0

( (D„')x ),q

(x'),q

C (s) = ~ dx(D„) [1—P]e' " 'Dxf, ~

with P given by Eq. (5) but replacing f(t) by f„. We are
also considering that (x),q=0. To obtain an expression for
C (T ) valid for all r, one has to evaluate the function
4(s). In practice, this requires to resort to some kind of
procedure to approximate the memory kernel which may
contain long-time memory effects. This will not be needed
here.

The spectral density is defined as

y(1)
4, (cu) = — +0

Q) EO

(19)

and

4;(co) =— +0 1

QJ
t

(20)

where $ and @
' are given by

y o =n (U"(x)), —
(x').q

@"'= —cx ( [ U" (x) ]').q

2o.' CX+, (U" (x))„—

(21)

(22)

From the above results it is clear that the spectral density
behaves as cu in the high-frequency limit. This result is
valid for any expression of the force term U'(x). In addi-
tion, explicit expressions for the coefficients of the first few
terms of the expansion are obtained. They are given in
terms of equilibrium averages.

The same method can also be applied to higher-order
Langevin equations. In particular, for those of second order
a cu asymptotic behavior is obtained, in agreement with
the result found by Caroli et al. '
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I

where 4„and 4; are, respectively, the real and imaginary
parts of 4(i co), the transform of &b(s).

The high-frequency part of the spectrum can then be easi-
ly analyzed from Eqs. (16) and (Ig). We just need to know
the first few terms of the asymptotic representation of
4(ice) for co going to infinity. By expanding the exponen-
tial one easily finds

B. Caroli, C. Caroli, and B. Roulet, Physica A 112, 517 (1982).
2T. Kawakubo, Phys. Lett. 64A, 5 (1977).
J. J. Brey, J. M. Casado, and M. Morillo, Physica A 123, 481

(1984); J. J. Brey, J. M. Casado, and M. Morillo (unpublished).
4M. Bixon and R. Zwanzig J. Stat. Phys. 3, 245 (1971).


