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Solitary surface-charge propagation along a plasma boundary
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The nonlinear properties of long-wavelength ion acoustic surface modes in a semi-infinite plasma are

studied. It is shown that finite-amplitude surface-charge layers can propagate along the plasma boundary

with a velocity that exceeds the ion sound speed by a small term which is proportional to the squared in-

verse width of the solitary layer.

whereas for z ( 0 the potential satisfies the Laplace equa-
tion

+2@ () (3)

Similar equations have previously been studied for a cold
semi-infinite plasma interacting with a high-frequency exter-
nal field. 3 The boundary condition, which follows from an
integration of Eqs. (2) and (3) across the boundary, is

s= (4)
Bri & p

0+
where S = N dq. In deriving (4) we have neglected0—
Bp/Bg(p+ in comparison to B$/Bg(p . The validity of this

Although the nonlinear behavior of ion acoustic volume
waves has been analyzed in numerous works' for uniform
as well as slightly nonuniform plasmas it seems to us that a
corresponding investigation for ion acoustic surface waves
does not yet exist. In the present Brief Report we shall thus
extend previous linear theory for such long-wavelength
surface modes in order to present a comparatively very sim-
ple formalism taking into account perturbations which are so
large that the nonlinear terms play a significant role.

To simplify the calculations we consider a semi-infinite
(z ) 0) two-component plasma which is bounded by a

dielectric medium at z «0. The electron and ion densities
are denoted by n„=no+hn, ;, where n0 is constant for
z & 0 and zero for z «0, and the perturbations Sn„are
much smaller than n 0. Considering the equation of
momentum for the electrons in the long-wavelength limit,
we then adopt the Boltzmann distribution'
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where qh = g(x, z, t) = q4/T„q is the magnitude of the elec-
tron charge, T, the electron temperature, and 4 the poten-
tial of the electrostatic surface wave we intend to study. In-
troducing the dimensionless coordinates' r =co~;t, f =x/kD,
and ri=z/XD, where pp~; is the ion plasma frequency and Xp
the electron Debye length, we then note that, for z ) 0, the
Poisson equation with the symbols N —= Bn;/(np) ) p and
& = B /B$ + Bz/Bg2, can be written as

approximation, which is we11 known within linear theory,
can subsequently be verified also for the present slightly
nonlinear equations.

In addition to the equations above we shall also for z ) 0
make use of the equation of continuity for the ions

+ '7 (u+Nu) =0
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as well as the ion momentum equation

Q u +u ~ Vu= —7) (6)

Here, we have introduced the notation u = v;/c„where
v; is the ion fluid velocity and c, the ion sound velocity. In
the nonlinear terms in (5) and (6) we will then neglect u, in

comparison to u„as corrections of third and higher order in

the wave amplitude are to be omitted. Furthermore, con-
sidering the long-wavelength limit we appropriate Eq. (2) by
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which, when integrated from q = 0 —to g = 0+, yields
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We have accordingly now at our disposal a system of two
coupled equations, namely, (3) and (9) which are connected
by (4). Although it is impossible for us to present a general
analysis of these equations, we are able to propose the soli-
tary wave solution
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We shall now look for solutions of Eqs. (5)-(7) which are
functions of the new coordinate g = g

—r as well as of g and

an additional weak 7 dependence. This means that it is con-
venient to introduce the normalized potential $((, g, r )
—= @((,g, r) together with corresponding symbols for N and
u„. Following previously developed techniques' to reduce
similar equations, i.e., eliminating u from the system of
Eqs. (5)—(7), and neglecting third-order terms, we then ob-
tain
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and
]j2

S,(8), (11)

8 + ~ ]. The argument 8, which already was defined
above, can here be rewritten in the alternative form

S (8) —1 "
d
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(12)

It is easy to check that (10) and (11) actually satisfy the
system (3), (4), and (9). We have thus found an expres-
sion for the nonlinear surface-charge density, which has the
form of a solitary triple layer that is described by the func-
tion Sg(8) [note that Ss(8) is positive for ~8~ ( 80 and neg-
ative for ~8~ ) Ho, where 80= 0.6, that Sg has a maximum at
8=0 and minima at 8= +1.0 and that Sg(8) = —1/48 for

where the constant @0 represents the amplitude of the po-
tential at the surface, 8= m '($0/3)'"(& —r —&or/6), and
the function Sg is

x —(1+2xo/xo )c,t0= (13)

xO[ XD(12/gp) &) A.o] is the characteristic width
of the solitary layer. The maximum surface-charge density
is determined by the initial perturbation.

In conclusion, we have, thus, by means of a simple choice
of model, supplemented the nonlinear theory for ion acous-
tic solitary volume waves in uniform or slightly nonuniform
plasmas with a corresponding theory for surface waves on a

sharply bounded plasma. An exact solution of (3), (4), and
(9) has been found. An additional experiment4 intending to
study ion acoustic solitary surface waves would be of much
interest ~
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