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Nonlinear-response theory for steady planar Couette flow
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We present a simplified derivation of the Yamada-Kawasaki formula for the nonlinear adiabatic response
of the stress tensor to planar Couette flow. This formally exact expression is then used to prove the validi-

ty of two nonequilibrium molecular-dynamics algorithms that have been used to study fluids undergoing
planar Couette flow, very far from equilibrium.

I. INTRODUCTION

Early attempts at computing transport coefficients using
nonequilibrium molecular dynamics (NEMD) relied very
heavily on simulating as closely as possible, actual experi-
mental conditions relating to the transport process of in-
terest. These simulation techniques employed, as in experi-
ment, boundary conditions to sustain the nonequilibrium
state. ' Unfortunately, the use of moving, or thermal walls
in these simulations, leads to difficulties due mainly to the
extreme smallness of the simulated systems.

These difficulties lead to the development of synthetic al-
gorithms which employ fictitious (i.e. , not existing in na-
ture) mechanical forces to sustain nonequilibrium states.
Response theory is then used to relate the observed
mechanical response to the required thermal transport coef-
ficient. While this approach leads to dramatic improve-
ments in efficiency it has until now been limited to the cal-
culation of linear transport coefficients close to equilibrium. '
This was because of difficulties in the theory of nonlinear
processes.

In this Brief Report we derive a formally exact expression
for the time-dependent adiabatic response of the stress ten-
sor to a suddenly imposed (t=0) constant strain rate. This
derivation is essentially a simplified version of the Yamada-
Kawasaki (YK) result. This result is then used to com-
ment on the validity of a number of NEMD algorithms for
studying shear flow.

We find that the homogeneous shear or Lees-Edwards4
algorithm and the recently proposed "S11od" method are
exact. The Dolls tensor algorithm5 on the other hand is
found to give incorrect normal stress differences (Weissen-
berg effects) at second order in the strain rate.

tribution fi, by transforming the x velocity of every particle

x;(0+) =x;(0 ) +yy, (3)

Such a system is simply a canonical ensemble with an irn-
posed zero-wave-vector strain rate y = du„/dy.

If such a system evolves adiabatically under Newtonian
equations of motion, the strain rate cannot change with
time. W'e calculate the strain rate dependent stress tensor
by solving the Liouville equation for such a system. In fact
this is essentially how Yamada and Kawasaki derived their
result for the nonlinear stress tensor.

Their derivation can be simplified however if we note that
precisely the same distribution function f(t) will be ob-
tained if we consider the mechanical response of a canonical
ensemble fc at t=O to a fictitious strain rate field y(t)
where instead of evolving under Newtonian equations, the
system evolves as

xt = + y(t)y,
m

(4.1)

(4.2)

~ ~

Zi

where

F,I
m

(4.3)

y(l) =yo(t) (5)

and 0 is the Heaviside step function. The equivalence of
the two sets of trajectories is easily seen by integrating (4.1)
in a small e neighborhood of t=O to obtain (3). From (4)
we see that Newtonian dynamics will be followed for t )0.

It is convenient to work with first-order equations of
motion rather than the second-order form (4). Equations
(4) can be transformed to read

II. THE NONLINEAR STRESS TENSOR FOR
PLANAR COUETTE FLO%

In this equation P= I/ktt Tand

p 2

Ho= $ +4
2m

(2)

At time t =0 we change this distribution to the local dis-

Consider an initial canonical ensemble of systems charac-
terized by the N-particle distribution function,

x;= "' +yy;
m

Pyi

m

pz]

p~ = F~ —spy

pyI Fyi

p.i = F.i

(5.1)

(5.2)

(5.3)

(5.4)

(s.s)

(5.6)

30 1528 1984 The American Physical Society



30 BRIEF REPORTS 1529

The equivalence of (5.1) and (5.6) with (4.1) and (4.3) is
trivially seen by differentiating (5.1) and (5.3) and eliminat-
ing the momenta.

It is interesting to note that these equations cannot be
derived from a Hamiltonian. From (5.1) we see that p„, is
the peculiar rather than laboratory momentum. This obser-
vation shows that Hp is the thermodynamic internal energy
rather than the total energy. The observation also shows
that the pressure tensor P can be obtained as

As we noted above, we could also write
—iL ptf(t) = e 'fi f——((t)

( )
—PHD( —t) dre

where Lp is the Liouville operator derived from Hp. The
tilde (8), denotes propagation under Sllod rather than
Newtonian dynamics.

Substituting (1) into (8) we can write

PV X
Pipi +

m
(6) If (10) is substituted into the Liouville equation

where V is the system volume. Differentiating the internal
energy (2) using (5.1)-(5.6) we find that

8f ( t ) .Lf ( )9t

H()= —yP~ V (7) we find, using (7) that

f(t) =e ' 'fo= fo(t) (8)

This is the mechanical analog of the first law of thermo-
dynamics for adiabatic planar Couette flow.

Rather than studying the Newtonian evolution of fi we
can equivalently study the evolution of fo, the canonical
distribution, under the dynamics prescribed by (5.1)—(5.6).
We shall call this dynamics, Sllod dynamics.

If we denote the Liouville operator for Sllod dynamics by
L, then at time t the distribution function is given exactly by
the equation

Bf(t)
Qt

= —Py VP ( —t)f(t)

This equation may be integrated to yield

Ptf(t) = exp —Py V „dsP~( —s) f'0 (12)

If we denote the viscous pressure tensor as Ff (=P pT)—
thus the time-dependent adiabatic response to the shear im-
posed at t=0 is

(H(t)) = $ ( —Py V)" dst
n 1

(13)

The brackets ( )0 denote a canonical ensemble average.
This is the Yamada-Kawasaki expression, 3 for the nonlinear
response of the pressure tensor. The presence of y in the
Sllod Liouville operator means that (13) is not a simple
power series expansion of the stress. Equation (13) is thus
not a straightforward generalization of the Green-Kubo rela-
tion for shear viscosity.

I

which can be derived from the Dolls tensor Hamiltonian.

~=~ 0+yx~a i . (14)
l

The equations of motion are very similar to the Sllod equa-
tions except for a permutation of indices in the momentum
equation. Equations (5.4) and (5.5) are replaced by

III. NEMD ALGORITHMS
P xi ~xi

Pyi ~yl +Pxl ~

(s.4')

(s.s')

From the equivalence of the Newtonian response of the
local distribution fi and the Sllod dynamics response of the
canonical ensemble fo, we immediately derive two algo-
rithms for studying adiabatic planar Couette flow. In fact
the two algorithms described by Eqs. (4.1)—(4.3) and
(5.1)—(5.6) are known, respectively, as the homogeneous
shear or Lees-Edwards method4 and the Sllod algorithm,
respectively.

The Lees-Edwards method or the homogeneous shear al-
gorithm has been used extensively in shear flow simula-
tions. The Sllod method was recently devised by Hoover
and Ladd. It is so named because of its close relationship
to the Dolls tensor algorithm, 5 the equations of motion for

I

The other equations are unchanged.
Under Dolls tensor dynamics the momenta are still pecu-

liar momenta and the dissipation is still given by (7). The
Dolls tensor method of course yields precisely the same
linear response as both the Lees-Edwards and Sllod
methods. In the nonlinear domain the Dolls tensor method
is found numerically, to produce statistically indistinguish-
able pressures and shear stresses but different normal
stresses. Since we now know that the other two methods
are correct, the Dolls tensor method must therefore be in-
correct.

If we formally expand our exact expression for the
viscous pressure tensor to quadratic order in y we find that

pt
(Ff(t)) = —i8 V J ds (fT(0)II ( —s, )) y —p V„ds, (ff(0)(11 ( —s, ) —II ( —s, ))) 7

(P V)2 Pi Pi+ „,ds Jt ds (H(0)II ( —s )II ( —s2))op'+0(y') (15)

As before the tilde denotes propagation with the full y-dependent propagator.
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If we use the well known result that

tL sILt e 0 yg e/L(t —s) Igl, e 0
& 0

Eq. (15) can be written entirely in terms of Newtonian propagators.

et V)2 pt t s&

(ft(t)) = —py && ds, (rI(0)II ( —s, )) + y
J ds, J ds (B(0)II ( —s, )II ( —s ))

(16)

+py~v& dss s(s) g y; —p B )o+o(y )
~Pxl

(17)

The first term on the right-hand side of (17) is the fami-
liar Green-Kubo expression for the pressure tensor. The
quadratic terms could have been derived applying Kubo's
power series representation of the mechanical response, ' to
the Sllod equations of motion. %e did not use this ap-
proach here because a proof of the validity of the NEMD al-

gorithms would require a formal summation of the non-
linear response. Furthermore, it is expected that in three-
dimensional fluids the coefficient of y2 in (17) is infinite
due to long-time tail effects. "

%e can employ the same Dyson decomposition of propa-
gators to examine the error in the Dolls tensor expression
for the viscious pressure tensor. If that error is denoted as
(AB(t)) we see that to O(y2) it arises from the differ-
ences between the Sllod and Dolls tensor propagators ap-
pearing in the second term in (15).

(18)
Thus we find that to second order in y, the Dolls tensor

method correctly describes the shear stress, the hydrostatic
pressure, and the zz component of the normal stress. In

agreement with computer simulation results, it gives in-

correct normal stresses H H~.

IV. SUMMARY

We have produced a simple rederivation of Yamada and
Kawaskai's formal expression for the nonlinear adiabatic
response of a fluid to planar Couette flow. In contrast to
the YK derivation, ours shows the intimate relationship of
Sllod equations of motion used in computer simulations and
the adiabatic response observed in nature. This relationship
is so close that the proof of validity of both the Sllod and
homogeneous shear NEMD algorithms is trivial.

The errors in the Dolls tensor algorithm, which first show

up at O(y2), indicate that extreme care must be exercised
in interpreting the results of NEMD simulations in the non-
linear regime. The correct linear response is simply insuffi-
cient to guarantee the correct nonlinear behavior.

A major issue that we have not discussed in this paper is

the steady-state response to shear flow. We have restricted
ourselves to a discussion of the time-dependent adiabatic
response.
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